
Citation: Neri, F.; Forlini, M.; Scoccia,

C.; Palmieri, G.; Callegari, M.

Experimental Evaluation of Collision

Avoidance Techniques for

Collaborative Robots. Appl. Sci. 2023,

13, 2944. https://doi.org/10.3390/

app13052944

Academic Editors: Lorenzo Scalera,

Andrea Giusti and Renato Vidoni

Received: 12 January 2023

Revised: 16 February 2023

Accepted: 23 February 2023

Published: 24 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Experimental Evaluation of Collision Avoidance Techniques for
Collaborative Robots
Federico Neri * , Matteo Forlini , Cecilia Scoccia , Giacomo Palmieri and Massimo Callegari

DIISM—Department of Industrial Engineering and Mathematical Sciences, Polytechnic University of Marche,
60131 Ancona, Italy
* Correspondence: federico.neri@pm.univpm.it

Abstract: This paper presents the implementation of an obstacle avoidance algorithm on the UR5e
collaborative robot. The algorithm, previously developed and verified in simulation, allows one to
modify in real time the trajectory of the manipulator with three different modalities to avoid obstacles.
Some test cases with fixed or dynamic obstacles affecting the robot’s motion were first simulated and
then experimented on. The paper describes the hardware/software architecture of the robotic system:
an external controller is realized by a standard PC that communicates with the robot controller by
a TCP/IP protocol; algorithms and data processing are executed by Python/Matlab software that
guarantees a duty cycle of at least 100 Hz. The error analysis between simulated and real data allows
one to conclude that the developed algorithms revealed to be effectively applied to a real robotic
system, showing behavior similar to what is expected by simulations.

Keywords: collaborative robotics; obstacle avoidance; human–robot interaction; trajectory planning

1. Introduction

Worker safety is one of the most important issues in the world of manufacturing today.
In a decade that is projected beyond Industry 4.0, humans can work alongside robots and
ensure flexible production without machine downtime. The results of this improvement
are already visible in companies that have introduced new technologies and methods to
reduce production costs and optimize processes. Looking to the future, we hear more
and more about Industry 5.0, which envisages greater human involvement in industrial
activities [1,2].

The coexistence of humans and robots is a promising goal in the industry, as it al-
lows them to work without protective barriers, in cooperation, and with different tasks.
The introduction of new technologies such as collaborative robots (cobots) makes it possible
to ensure safety in this context inherently.

As described in [3], cooperation between humans and robots is very common in the
industrial environment, especially in assembly lines. The main problem is that the presence
of the operator near the robot opposes the speeds required for sufficient production volume.
Typically in collaborative robotic cells, When an operator enters the robot’s workspace, the
manipulator must reduce its speed and stop immediately in case of direct contact with
any part of it. This aspect may cause a slowdown in production, stopping the machine
repeatedly [4,5]. In addition, robotic applications must be certified according to strict safety
standards, which require the analysis of possible collisions of the robot with a human
through the use of special measuring devices [6].

One way to mitigate these problems is to implement obstacle avoidance algorithms,
i.e., strategies that modify the robot’s motion in real-time to avoid a collision with an
obstacle/human once the latter’s position is sensed by a dedicated sensor system. In
general, obstacle avoidance strategies are based on the combination of:

Appl. Sci. 2023, 13, 2944. https://doi.org/10.3390/app13052944 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13052944
https://doi.org/10.3390/app13052944
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2085-0892
https://orcid.org/0000-0003-1242-0320
https://orcid.org/0000-0002-1763-2616
https://orcid.org/0000-0001-7820-2890
https://orcid.org/0000-0002-4065-3212
https://doi.org/10.3390/app13052944
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13052944?type=check_update&version=2

Appl. Sci. 2023, 13, 2944 2 of 17

1. a method for obstacles identification and localization;
2. a control law able to modify in real time the motion of robot based on obstacles coordinates.

Numerous methods can be used to identify an object or the position of the human
body in space. Studies about the prediction of human motion and the evaluation of
the risk of collision can be found in [7], whereas strategies that are based on the posi-
tion of the manipulator, using, for example, Newton’s method for systems with high
degrees of freedom, can be found in [8]. Several methods for identifying obstacles are
based on contacts, in which capacitive touch sensors [9] or torque sensors [10] are used
to measure the force exerted on the part of the manipulator. Other methods evaluate
the position of obstacles using vision systems [11]. For example, cameras can detect the
movement of the human arm (or body) by extrapolating the coordinates of skeletal mod-
els [12] and predicting their position in space thanks to machine learning algorithms [13].
In the case of depth sensors, such as RGBD cameras, it is possible to perceive the human
pose in space [14,15], also by using multiple cameras around objects [16], or to detect objects
in the workspace, for example through filters that isolate a specific color [17,18]. If greater
precision is required, it is possible to use devices that are positioned in specific areas of
the body, allowing, with an initial calibration, to identify the position of limbs in space.
An example of such devices are wearable inertial measurement units (IMU) [19]. In all
cases, whatever the sensor, a high acquisition frequency, at least 100 Hz, is required to
ensure real-time control and capture the movement of even very dynamic obstacles.

Regarding the real-time control law, this paper resumes the obstacle avoidance algo-
rithm proposed by the authors in [20,21]. Such a strategy allows the collaborative robot
to move from one point to another with a trajectory that changes when an obstacle is
perceived. When the distance between the obstacle and any point of the manipulator’s
kinematic chain is lower than a critical threshold, a repulsive speed is generated, which
allows the robot to deviate from the path initially established, trying to avoid the collision.
The region of influence of each link is defined by a radius r whose dimension must be set
as a compromise of avoidance capability and easiness of motion and task execution. In ad-
dition to this, the region of influence may vary depending on the relative velocity between
the obstacle and the manipulator. In fact, implementing a safety volume proportional to
the speed of the obstacle is a technique widely used to ensure greater safety [22].

The algorithm provides three modes of motion re-planning [23]. The first mode
allows both the position and orientation of the end-effector to be varied with 6-DOF. Often,
however, it is necessary to limit the freedom of movement of the tool, so two other modes
are available. The second mode allows 4-DOF to be varied so that all translations are
free, such as rotation about the vertical axis. The third mode keeps the orientation of the
tool fixed, while the position can vary with 3-DOF. The algorithm is briefly resumed in
Section 2.

Section 3 describes the implementation of the algorithm on a real system with a
collaborative UR5e robot that can be controlled by an external reference at a maximum
frequency of 500 Hz. Several methods are available in the literature for real-time control
of robots, a very common problem [24,25]. In the present application, the cobot was fixed
upside down on a stand and flipped over from normal use conditions; in addition, a tool
was added to make the application as real as possible. All three modes of the control law
were tested.

In Section 4, the results obtained in the tests are compared with data obtained from
simulations, which were carried out under the same conditions. Kinematics data of the
joints are then analyzed to verify the transferability of the algorithm on a real system.
To do this, 3 case studies are proposed. In the first one, the robot moves between two points
in a straight line, free from obstacles. In the second test, a stationary obstacle is placed on
the planned trajectory, always straight between two points, forcing the robot to avoid it
by deviating from the original path. In the third example, the robot stands still at a point
in the workspace while an obstacle moves to interfere with the end effector. Results and
insights on future works are then discussed in the concluding Section 6.

Appl. Sci. 2023, 13, 2944 3 of 17

2. Obstacle Avoidance Algorithm

This section invokes the obstacle avoidance algorithm in the formulation for a generic
manipulator operated by a number of actuators greater or equal to 6 (depending on
its degree of redundancy). The position of the joints can be described by the vector
q =

[
q1 q2 . . . qn

]T , in which the n components give the n-DOF. The pose of the end-
effector in the Cartesian space, according to the Euler angle ZYZ convention, is defined by
the vector x =

[
x y z α β γ

]T . The forward velocity kinematics can be written as:

ẋ = Jq̇ =

[
Jp
Jr

]
q̇ (1)

where J is the 6× n arm Jacobian (n ≥ 6), with Jp the submatrix of the position and Jr of
the rotation. To obtain inverse kinematics, it is necessary to use a damped least-square
strategy to avoid singularity problems. The inverse of the Jacobian J can be obtained as

J∗ = JT(J JT + λ2 I)−1 (2)

where λ symbolizes the damping factor, which depends on the minimum singular value of
the Jacobian matrix, and by the value ε, which is a tunable parameter of the algorithm to
which it is compared. It can be seen as a compromise between accuracy, low value, and
numerical robustness, high value. In particular, for a full J rank matrix, λ is set to 0.

The algorithm detects the manipulator link where the risk of collision with obstacles
is greatest. This requires calculating the distance of each obstacle from each robot body,
bounded by two control points located at the extremes of the link. The center of the obstacle
is called Po and its distance from the body is calculated according to the diagrams of
Figure 1, in which dl is the vector representing the segment; dp and dd are the distances
between the obstacle and the proximal and distal ends of the link, respectively. In addition,
Pr is the point of the segment closest to the obstacle. The Jacobian J0 associated with the
linear velocity of Pr is defined as

J0 =

[
J0p
J0r

]
(3)

Figure 1. Obstacle-link distance calculation; cases (a–c) refer to Equations (4)–(6) respectively.

The motion of the robot is influenced by the presence of the obstacle if the distance
do is lower than the radius r, which is a parameter of the algorithm. Thus, the region of
interest of each link can be visualized as a cylinder with two hemispheres at its extremities,
all of radius r. The repulsive velocity ẋ0 is applied to Pr. In detail:

(a) cos β < 0; the point Pr is localized to the distal extremity of the link:

do = dd x = 1 (4)

Appl. Sci. 2023, 13, 2944 4 of 17

(b) cos α ≥ 0 and cos β ≥ 0; the distance do = Pr − Po is orthogonal to the link, and the
position of Pr along the link is defined by the scalar parameter x:

do =
|dl×dp |

dl
x =

dp cos α
dl

, 0 < x < 1 (5)

(c) cos α < 0; the point Pr is localized to the proximal extremity of the link:

do = dp x = 0 (6)

Once the distance and position of the most critical obstacle are determined, three
methods are proposed to avoid the collision [23].

2.1. Mode I: 6-DOF Perturbation

Mode I leaves the manipulator 6-DOF to avoid the obstacle, varying position and
orientation with respect to the planned trajectory. The algorithm is based on the Closed-
Loop Inverse Kinematics (CLIK) approach, imposing two-speed tasks. Joint velocities can
be calculated as

q̇ = J∗(ẋ + Ke) + J∗I
[
avvrepd̂0

]
(7)

where ẋ is the vector of planned velocities and ẋ0 = avvrepd̂0 is the repulsive velocity due
to the presence of an obstacle. vrep is a tunable magnitude, and av is an activation factor
that is a function of the distance from the obstacle d0. The damped least square algorithm
is applied to invert J and JI = J0p. The term e is a vector of position and orientation errors
(ep and er), defined as

e =

[
ep
er

]
=

[
P− Pd

1
2 (i× id + j× jd + k× kd)

]
(8)

where P is the position of the end-effector and the subscript d represents the desired
planned variable. Instead, i, j, and k are the unit vectors of the end-effector reference frame.
In (7), the error e is multiplied by K, which is defined as ke I with ke a gain vector that may
vary according to the application. It is possible to give different gains to the orientation
(ker) or positioning (kep) components of the error: ke =

[
kep kep kep ker ker ker

]
.

2.2. Mode II: 4-DOF Schoenflies Perturbation

In manipulation tasks, it is often necessary to maintain the constant orientation of the
end-effector. The second mode allows only the rotation of the tool along the vertical axis.
Thus, a 4-DOF motion of the Schoenflies type is used to modify the planned trajectory to
avoid obstacles. Equation (7) is modified in

q̇ = J∗(ẋ + Ke) + J∗I I

[
avvrepd̂0

02×1

]
(9)

The Jacobian matrix of the mode II, of dimension (5× n), is defined as

JI I =

J0p
Jr4
Jr5

 (10)

in which J0p is the translation part of the Jacobian associated with Pr, Jr4 and Jr5 are the
first and second rows of the orientation Jacobian matrix Jr of the end-effector.

Appl. Sci. 2023, 13, 2944 5 of 17

2.3. Mode III: Perturbation with Fixed Orientation

In the last mode, only the translation of the end-effector is allowed as a perturbation
of the planned motion, whereas the orientation of the tool is constant. The inverse velocity
kinematics is defined as

q̇ = J∗(ẋ + Ke) + J∗I I I

[
avvrepd̂0

03×1

]
(11)

The Jacobian matrix of the second term has a (6× n) dimension; it is composed of the
translation part of J0 and the orientation part of J:

JI I I =

[
J0p
Jr

]
(12)

Thus, a null angular velocity is imposed on the perturbation term of the control law.

3. Implementation

This section covers the main aspects of the implementation in the real system and
describes the test cases carried out to verify and validate the algorithms.

In this work, obstacles are simulated: their positions and velocities are imposed by
software and communicated to the control system simulating the output of a sensor system.
This is because the goal is to validate the obstacle avoidance algorithm, regardless of the
methodology adopted for their detection. Second, virtual obstacles can perfectly replicate
the scenarios used for simulations so that a comparison of equal conditions can be made.
The integration of a real sensor system capable of detecting physical obstacles will be
covered in a later article.

3.1. System Architecture

In addition to the coordinates of the obstacles, the algorithm needs as input the angles
of the robot joints to estimate the actual relative position between the manipulator and
the obstacles. Instead, the velocities of the joints to be sent to the robot controller are the
output of the algorithm, and the cycle restarts by comparing the new configuration of
the robot with the new position of the obstacles. Obviously, the actual operation of the
algorithm depends on the speed of execution of the loop iteration; the faster the data are
reprocessed and sent, the greater the responsiveness of the robot in moving away from
the obstacle and, at the same time, reaching the set point. In the tests performed in this
work, if no obstacles are perceived in the work area, the manipulator will follow a straight
trajectory, moving the end-effector between the two established points, initial and final.
This simple condition, without any perturbation, is used preliminarily to verify that the
system architecture settings are properly adjusted so that the robot can move smoothly
and continuously.

Figure 2 shows the hardware and software architecture of the robotic system.
The control algorithm is executed by a standard PC connected to the robot controller
for data exchange; a closed-loop velocity control cycle is executed iteratively until the target
point is reached within a predefined tolerance.

Initially, the joint position of the robot is read using the Real-Time Data Exchange
protocol (RTDE) [26], which allows synchronizing external applications with the UR con-
troller over a standard TCP/IP connection, without affecting the performances of the
UR controller. This communication method has been implemented through the Python
programming language, allowing to receive data from the robot with a frequency of
500 Hz. Subsequently, this information is sent to a Matlab routine through the User Data-
gram Protocol (UDP), widely used in real-time applications. The Matlab routine executes
the obstacle avoidance algorithm giving in the output the joint velocities reference signal
to be sent to the robot controller. To do this, a TCP/IP communication is used between
Matlab and a UR Script loaded on the UR5e controller that allows one to directly control
the velocity of the joints of the robot by an external reference signal.

Appl. Sci. 2023, 13, 2944 6 of 17

UR5e

PC

UDP
(joints position)

Ethernet
(joints position)

RTDE
(joints position)

TCP/IP
(joints speed)

Ethernet
(joints speed)

Software Hardware

Figure 2. Software/hardware architecture: standard PC connected to a UR5e robot with a socket
communication cable (compliant with TCP/IP standards); the PC receives in input the robot’s joint
rotations and sends out the joint velocities reference signal. Software is realized by Python and
Matlab development environments for communication and data processing.

3.2. Test Cases

A particular configuration of the manipulator was chosen to carry out experimental
tests representing a collaborative task between human and robot: the manipulator was
fixed in reversed mounting configuration to an aluminum frame positioned at the height of
1.90 m so that the encumbrance of the base is avoided and the human can physically enter
the workspace of the robot (Figure 3). In addition, a tool with a length of 205 mm has been
used to simulate the encumbrance of a generic end-effector. In all test cases, a common set
of parameters is used for both the simulation and the real case; in this way, it is possible to
compare the results obtained since the conditions in which the algorithm is implemented
are the same. Common parameters are summarized in Table 1.

Figure 3. Simulated (left) and real (right) test bench.

Appl. Sci. 2023, 13, 2944 7 of 17

Table 1. Parameter values used for both simulation and real case.

rin f [m] rsup [m] vin f [m/s] vsup [m/s]

0.15 0.20 0.1 0.5

λmax ε θ̇max [rad/s] T [s]

10−3 10−3 π 5

As mentioned, the position of the obstacle is simulated to avoid possible errors in
the object detection system. In the proposed examples, a general spherical obstacle is
considered. Regarding the safety volume around the links of the robot, the radius r is set as
a linear function of the velocity v of the obstacle, with lower and upper bounds (r = rin f

for v ≤ vin f , r = rsup for v ≥ vin f). The θ̇max value is introduced to saturate the angular
velocity of the joints if the algorithm generates a speed excessively high. This safety limit
is imposed at all joints, and the consequent positioning error is recovered in subsequent
movements thanks to the proportional corrective term.

Other parameters must be changed in the real system because the simulation operates
in an ideal context that does not consider the actual reaction of the robot’s motors, the
communication latency, or other implementation and hardware limits. Gains parameters,
in particular, such as the repulsive speed vrep and the proportional gain ke of Equation (7),
resulted very sensible to variations and have been tuned by a trial and error procedure.
Final values are collected and discussed in the next section.

4. Results

Three different test cases were performed to verify the algorithm’s applicability to
a real system. For each case, four frames ranging from T = 0 to T = 5 s are plotted to
show the robot’s motion. In addition, the position and the velocity of each joint and the
respective absolute errors over time are plotted. For Sections 4.2 and 4.3, the 3 modes of
obstacle avoidance are tested.

4.1. Test Case 1

In the first test case, the robot moves between two points in a straight line without
obstacles. This case is used to verify the communication system and to generate a control
case for other cases with obstacles. Figure 4 shows the frames at t = [0; 2; 3; 5] s for both the
simulation and the real case.

In the plots shown in Figure 5, the curves of the simulation and the real case perfectly
overlap, showing that the robot can follow the given path and reach the final position
in the expected time. The absolute error between the two curves (Figure 6) is extremely
small and shows a constant trend, with an average of about 0.0025 rad for the position
and 0.003 rad/s for the velocity. Regarding the communication between the PC and robot
controller, the transmission reached a rate of about 350 Hz, which is higher than the
desired minimum value. Compared to the simulation, there is a slowdown due to data
exchange and processing; nevertheless, the error generated is negligible, and the robot
moves smoothly without sudden changes in velocity.

Appl. Sci. 2023, 13, 2944 8 of 17

Figure 4. Test case 1: straight motion between two points, Mode I. Simulated (top) and real (bottom)
motion of the robot.

0 1 2 3 4 5

-3

-2

-1

0

1

2

3
Simulation

Real system

0 1 2 3 4 5

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Simulation

Real system

Figure 5. Test case 1, Mode I. Joint rotations (left) and joint speeds (right).

0 1 2 3 4 5

0

0.005

0.01

0.015

0 1 2 3 4 5

0

0.005

0.01

0.015

Figure 6. Test case 1, Mode I. Error between simulation and real system. Joint rotations (left) and
joint speeds (right).

Appl. Sci. 2023, 13, 2944 9 of 17

4.2. Test Case 2

In the second test case, a stationary obstacle is placed in the robot’s path. As in the
previous example, the planned motion is a straight line between two points at a speed of
0.12 m/s. A spherical object has been placed at the location where the virtual obstacle is
located to facilitate the interpretation of the motion (Figure 7). When the end effector’s
region of influence reaches the obstacle, the algorithm imposes the repulsive velocity term.
Once the robot overcomes the obstacle, the positioning error is gradually recovered, thanks
to the proportional corrective term.

Figure 7. Test case 2: avoidance of a fixed obstacle while the robot moves along a linear path, Mode I.
Simulated (top) and real (bottom) motion of the robot.

Figures 8–10 make a comparison between the joint positions and velocities in the
simulation and in the real system. Figure 8 refers to the case where the robot avoids
the obstacle with mode I, i.e., the end-effector can freely vary both the position and the
orientation. For this reason, a change in the velocity of joints 4 and 5 can be observed
at t = 2.2 s. Figure 9 refers to mode II, i.e., with the possibility of changing the position
and only the rotation about the z-axis. It can be seen that there is a small variation in
the velocities of joints 4 and 5 so that the obstacle can be avoided without changing the
orientation of the end-effector. Figure 10 refers to mode III, where the orientation is kept
constant. The diagrams are very similar to the previous case, except for a different tendency
of the speed of joint 6.

All plots show that the simulated and real data follow the same trend. The main
difference is due to a slight latency in the real system when the obstacle effect is activated,
which leads to an increase in joint velocity so that the obstacle can be avoided in a shorter
time. Nevertheless, the recovery in the final phase of the trajectory is fast enough to reach
the endpoint in the foreseen time.

Appl. Sci. 2023, 13, 2944 10 of 17

0 1 2 3 4 5

-3

-2

-1

0

1

2

3
Simulation

Real system

0 1 2 3 4 5

-1.5

-1

-0.5

0

0.5

1

1.5 Simulation

Real system

Figure 8. Test case 2, Mode I. Joint rotations(left) and speeds (right).

0 1 2 3 4 5

-3

-2

-1

0

1

2

3
Simulation

Real system

0 1 2 3 4 5

-1.5

-1

-0.5

0

0.5

1

1.5 Simulation

Real system

Figure 9. Test case 2, Mode II. Joint rotations (left) and speeds (right).

0 1 2 3 4 5

-3

-2

-1

0

1

2

3
Simulation

Real system

0 1 2 3 4 5

-1.5

-1

-0.5

0

0.5

1

1.5 Simulation

Real system

Figure 10. Test case 2, Mode III. Joint rotations (left) and speeds (right).

Figures 11–13 show the error between simulated and real data when mode I, II, and
III are selected, respectively. A peak of the error is visible when the obstacle is perceived,
but it does not exceed 0.14 rad in position. The average of the error between the joints is
0.02 rad for position and 0.1 rad/s for velocity.

Appl. Sci. 2023, 13, 2944 11 of 17

0 1 2 3 4 5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1 2 3 4 5

0

0.5

1

1.5

Figure 11. Test case 2, Mode I. The error between simulation and real system. Joint rotations (left)
and joint speeds (right).

0 1 2 3 4 5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1 2 3 4 5

0

0.5

1

1.5

Figure 12. Test case 2, Mode II. The error between simulation and real system. Joint rotations (left)
and joint speeds (right).

0 1 2 3 4 5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1 2 3 4 5

0

0.5

1

1.5

Figure 13. Test case 2, Mode III. The error between simulation and real system. Joint rotations (left)
and joint speeds (right).

4.3. Test Case 3

In the last case, the obstacle moves on a straight line between two points while the
robot takes a fixed position in the middle of the trajectory (Figure 14). The obstacle moves
at a speed of 0.11 m/s, higher than the reference speed vin f ; thus, the safety radius r results
increased than rin f . When the obstacle reaches the end-effector’s region of influence, the
algorithm demands a repulsive velocity from the robot that starts to move. Once the
obstacle leaves the region of influence, the positioning error is recovered, and the robot
returns to its stationary pose.

Appl. Sci. 2023, 13, 2944 12 of 17

Figure 14. Test case 3: avoidance of a dynamic obstacle interfering with the end-effector in a fixed
position, Mode I. Simulated (top) and real (bottom) motion of the robot.

Figures 15–17 show the graphs of joint positions and velocities in the three avoidance
modes. Similar considerations to case 2 can be made by analyzing the different responses
for the various modes.

0 1 2 3 4 5

-3

-2

-1

0

1

2

3
Simulation

Real system

0 1 2 3 4 5
-0.15

-0.1

-0.05

0

0.05

0.1

Simulation

Real system

Figure 15. Test case 3, Mode I. Joint rotations (left) and speeds (right).

Appl. Sci. 2023, 13, 2944 13 of 17

0 1 2 3 4 5

-3

-2

-1

0

1

2

3
Simulation

Real system

0 1 2 3 4 5
-0.15

-0.1

-0.05

0

0.05

0.1

Simulation

Real system

Figure 16. Test case 3, Mode II. Joint rotations (left) and speeds (right).

0 1 2 3 4 5

-3

-2

-1

0

1

2

3
Simulation

Real system

0 1 2 3 4 5
-0.15

-0.1

-0.05

0

0.05

0.1

Simulation

Real system

Figure 17. Test case 3, Mode III. Joint rotations (left) and speeds (right).

Figures 18–20 show the trend of the error between simulations and real data. The
absolute error increases, as in the second test case, from the moment the obstacle is perceived
but remains below 0.04 rad in position. The average of the error is about 0.005 rad for
position and 0.01 rad/s for speed. As a summary of the results obtained by comparison
between simulated and experimental data, Table 2 reports maximum and average errors of
joint positions and speeds for all the examined cases.

0 1 2 3 4 5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 1 2 3 4 5

0

0.02

0.04

0.06

0.08

0.1

Figure 18. Test case 3, Mode I. The error between simulation and real system. Joint rotations (left)
and joint speeds (right).

Appl. Sci. 2023, 13, 2944 14 of 17

0 1 2 3 4 5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 1 2 3 4 5

0

0.02

0.04

0.06

0.08

0.1

Figure 19. Test case 3, Mode II. The error between simulation and real system. Joint rotations (left)
and joint speeds (right).

0 1 2 3 4 5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 1 2 3 4 5

0

0.02

0.04

0.06

0.08

0.1

Figure 20. Test case 3, Mode III. The error between simulation and real system. Joint rotations (left)
and joint speeds (right).

Table 2. Summary of results: comparison between simulated and real joint data.

Max Position
Error [rad]

Max Speed Error
[rad/s]

Average Position
Error [rad]

Average Speed
Error [rad/s]

Test case 1 0.008 0.008 0.003 0.003

Test case 2 0.13 1.50 0.02 0.10

Test case 3 0.04 0.08 0.005 0.01

The tests described in this chapter were performed after carefully evaluating the
coefficients that allow the algorithm to perform optimally. Some of these values, particularly
the proportional gains, cannot be determined a priori. These gains were modified by trial
and error until a good fit was obtained between simulated and real data; it was also verified
that the robot motion was continuous and smooth. However, it should be noted that the
absolute error between the simulations and the real case would have been acceptable even
with the same parameters used in the simulation. In detail, the values for vrep and ke used
in simulation and the real system are listed in Table 3.

Table 3. Values of the algorithm parameters for the simulation and for the real case.

vrep [m/s] kep [s−1] ker [s−1]

Simulated 2 10 30

Real 1 1 0.16

Appl. Sci. 2023, 13, 2944 15 of 17

5. Discussion

In all the avoidance modes, the differences between simulated and real data resulted
less than 0.02 rad for joint positions and 0.1 rad/s for joint speeds. Thus, it can be con-
cluded that the theoretical algorithms revealed to be effectively applied to a real robotic
system showing behavior similar to what simulations expect. Only a few parameters, i.e.,
proportional gains, need a trial and error setting procedure to optimize the response of the
system.

Diagrams of the three modes in which the robot can execute a trajectory to avoid the
obstacle were proposed for each test case. In this way, it is possible to analyze the behavior
of the system in the case when some degrees of freedom related to orientation cannot be
updated during motion. Even though only the three translation-related DOFs are exploited
in Mode III to replan the motion, the system still shows good obstacle avoidance capability,
and the variation in position and velocity between the real and simulated data remains
negligible: the maximum position error in mode III is about 0.13 rad, whereas the same
value for mode I is 0.11 rad. In general, the difference between simulated and real data may
depend on many variables. The most important ones are

1. the communication protocol between the external controller and the robot, thus, the
frequency of data exchange;

2. the accuracy of the robot controller in driving the motors via internal control loops
to follow the external speed reference signal; this characteristic may vary among
different manufacturers or robot models;

3. the acquisition frequency of external sensors for obstacle detection, which should be
as high as possible or at least comparable to the control frequency;

4. the complexity of the algorithm, which, if too high, can increase the computation time,
thus, reducing the speed of the control loop.

In this work, the use of a UR5e robot allowed easy integration with the external
controller at a frequency of about 350 Hz, a remarkable achievement when compared with
previous work (e.g., 250 Hz in [27]). However, so far, the position of the obstacle has been
generated virtually to eliminate any sensor error. Future integration of a real sensor system
could lower the control loop frequency, which should still remain high enough to ensure
smooth control of the robot, as experienced in [28] where a final control rate of about 70 Hz
revealed sufficient to have an efficient real-time control. In summary, the results show
that the algorithm is indeed implementable on the real system and processable even by a
standard PC, thus, having a low economic impact.

6. Conclusions

In this paper, an obstacle avoidance strategy for manipulators moving in dynamically
changing environments is implemented and tested. Starting from a theoretical framework
developed by the authors, a control and communication system is introduced to implement
the algorithm on a UR robot. Three test cases have been proposed, which have been
analyzed to verify the operation of the algorithm and compare the real behavior of the
robot with the simulations used to develop the algorithms. In the present work, obstacles
were generated virtually by software to decouple errors due to the control law from those
due to an external obstacle detection system. Now that the algorithms have been validated,
the next step in the study will be implementing a real sensor system, or different systems,
for obstacle detection. Further future work will envisage the implementation of mobile
manipulators consisting of a collaborative 7-DOF robot positioned on an omnidirectional
mobile base, using algorithms already simulated in previous works [29]. In this way, the
additional degrees of freedom of the system can be exploited to improve collision avoidance
and confer the robot an optimal motion in terms of smoothness and dexterity.

Appl. Sci. 2023, 13, 2944 16 of 17

Author Contributions: Conceptualization, G.P. and C.S.; validation, G.P.; investigation, F.N. and
M.F.; writing—original draft preparation, F.N.; writing—review and editing, G.P.; supervision, G.P.
and M.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Maddikunta, P.K.R.; Pham, Q.V.; Prabadevi, B.; Deepa, N.; Dev, K.; Gadekallu, T.R.; Ruby, R.; Liyanage, M. Industry 5.0: A survey

on enabling technologies and potential applications. J. Ind. Inf. Integr. 2022, 26, 100257. [CrossRef]
2. Nahavandi, S. Industry 5.0—A human-centric solution. Sustainability 2019, 11, 4371. [CrossRef]
3. Krüger, J.; Lien, T.K.; Verl, A. Cooperation of human and machines in assembly lines. CIRP Ann. 2009, 58, 628–646. [CrossRef]
4. Chemweno, P.; Pintelon, L.; Decre, W. Orienting safety assurance with outcomes of hazard analysis and risk assessment:

A review of the ISO 15066 standard for collaborative robot systems. Saf. Sci. 2020, 129, 104832. [CrossRef]
5. Zbigniew, P.; Klimasara, W.; Pachuta, M.; Słowikowski, M. Some new robotization problems related to the introduction of

collaborative robots into industrial practice. J. Autom. Mob. Robot. Intell. Syst. 2019, 13, 91–97. [CrossRef]
6. Hofbaur, M.; Rathmair, M. Physische Sicherheit in der Mensch-Roboter Kollaboration. Elektrotechnik Und Informationstechnik 2019,

136, 301–306. [CrossRef]
7. Yang, J.; Howard, B.; Baus, J. A collision avoidance algorithm for human motion prediction based on perceived risk of collision:

Part 2-application. IISE Trans. Occup. Ergon. Hum. Factors 2021, 9, 211–222. [CrossRef]
8. Safeea, M.; Béarée, R.; Neto, P. Collision avoidance of redundant robotic manipulators using Newton’s method. J. Intell. Robot.

Syst. 2020, 99, 673–681. [CrossRef]
9. Leonori, M.; Gandarias, J.M.; Ajoudani, A. MOCA-S: A Sensitive Mobile Collaborative Robotic Assistant exploiting Low-Cost

Capacitive Tactile Cover and Whole-Body Control. arXiv 2022, arXiv:2202.13401.
10. Weyrer, M.; Brandstötter, M.; Husty, M. Singularity avoidance control of a non-holonomic mobile manipulator for intuitive hand

guidance. Robotics 2019, 8, 14. [CrossRef]
11. Mauro, S.; Pastorelli, S.; Scimmi, L.S. Collision avoidance algorithm for collaborative robotics. Int. J. Autom. Technol. 2017,

11, 481–489. [CrossRef]
12. Liu, H.; Wang, L. Gesture recognition for human-robot collaboration: A review. Int. J. Ind. Ergon. 2018, 68, 355–367. [CrossRef]
13. Mukherjee, D.; Gupta, K.; Chang, L.H.; Najjaran, H. A survey of robot learning strategies for human-robot collaboration in

industrial settings. Robot. Comput.-Integr. Manuf. 2022, 73, 102231. [CrossRef]
14. Coupeté, E.; Moutarde, F.; Manitsaris, S. Gesture recognition using a depth camera for human robot collaboration on assembly

line. Procedia Manuf. 2015, 3, 518–525. [CrossRef]
15. Mohammed, A.; Schmidt, B.; Wang, L. Active collision avoidance for human–robot collaboration driven by vision sensors. Int. J.

Comput. Integr. Manuf. 2017, 30, 970–980. [CrossRef]
16. Bekhtaoui, W.; Sa, R.; Teixeira, B.; Singh, V.; Kirchberg, K.; Chang, Y.j.; Kapoor, A. View invariant human body detection and pose

estimation from multiple depth sensors. arXiv 2020, arXiv:2005.04258.
17. Liu, C.; Wang, L. Fuzzy color recognition and segmentation of robot vision scene. In Proceedings of the 2015 8th International

Congress on Image and Signal Processing (CISP), Shenyang, China, 14–16 October 2015; IEEE: Piscataway, NJ, USA, 2015;
pp. 448–452.

18. Zhang, W.; Zhang, C.; Li, C.; Zhang, H. Object color recognition and sorting robot based on OpenCV and machine vision.
In Proceedings of the 2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies
(ICMIMT), Cape Town, South Africa, 20–22 January 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 125–129.

19. Guzov, V.; Mir, A.; Sattler, T.; Pons-Moll, G. Human poseitioning system (hps): 3d human pose estimation and self-localization in
large scenes from body-mounted sensors. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 4318–4329.

20. Scoccia, C.; Palmieri, G.; Palpacelli, M.C.; Callegari, M. A collision avoidance strategy for redundant manipulators in dynamically
variable environments: On-Line perturbations of off-line generated trajectories. Machines 2021, 9, 30. [CrossRef]

21. Palmieri, G.; Scoccia, C. Motion planning and control of redundant manipulators for dynamical obstacle avoidance. Machines
2021, 9, 121. [CrossRef]

22. Scalera, L.; Giusti, A.; Vidoni, R.; Gasparetto, A. Enhancing fluency and productivity in human-robot collaboration through
online scaling of dynamic safety zones. Int. J. Adv. Manuf. Technol. 2022, 121, 6783–6798. [CrossRef]

23. Chiriatti, G.; Palmieri, G.; Scoccia, C.; Palpacelli, M.C.; Callegari, M. Adaptive obstacle avoidance for a class of collaborative
robots. Machines 2021, 9, 113. [CrossRef]

24. Kebria, P.M.; Al-Wais, S.; Abdi, H.; Nahavandi, S. Kinematic and dynamic modelling of UR5 manipulator. In Proceedings of
the 2016 IEEE international conference on systems, man, and cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 004229–004234.

http://doi.org/10.1016/j.jii.2021.100257
http://dx.doi.org/10.3390/su11164371
http://dx.doi.org/10.1016/j.cirp.2009.09.009
http://dx.doi.org/10.1016/j.ssci.2020.104832
http://dx.doi.org/10.14313/JAMRIS/4-2019/42
http://dx.doi.org/10.1007/s00502-019-00743-2
http://dx.doi.org/10.1080/24725838.2021.2004265
http://dx.doi.org/10.1007/s10846-020-01159-3
http://dx.doi.org/10.3390/robotics8010014
http://dx.doi.org/10.20965/ijat.2017.p0481
http://dx.doi.org/10.1016/j.ergon.2017.02.004
http://dx.doi.org/10.1016/j.rcim.2021.102231
http://dx.doi.org/10.1016/j.promfg.2015.07.216
http://dx.doi.org/10.1080/0951192X.2016.1268269
http://dx.doi.org/10.3390/machines9020030
http://dx.doi.org/10.3390/machines9060121
http://dx.doi.org/10.1007/s00170-022-09781-1
http://dx.doi.org/10.3390/machines9060113

Appl. Sci. 2023, 13, 2944 17 of 17

25. Elshatarat, H.; Biesenbach, R.; Younus, M.B.; Tutunji, T. MATLAB Toolbox implementation and interface for motion control of
KUKA KR6-R900-SIXX robotic manipulator. In Proceedings of the 2015 16th International Conference on Research and Education
in Mechatronics (REM), Bochum, Germany, 18-20 November 2015; IEE: Piscataway, NJ, USA, 2015; pp. 12–15.

26. Maru, V.; Nannapaneni, S.; Krishnan, K. Internet of things based cyber-physical system framework for real-time operations.
In Proceedings of the 2020 IEEE 23rd International Symposium on Real-Time Distributed Computing (ISORC), Nashville, TN,
USA, 19–21 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 146–147.

27. Kot, T.; Wierbica, R.; Oščádal, P.; Spurnỳ, T.; Bobovskỳ, Z. Using Elastic Bands for Collision Avoidance in Collaborative Robotics.
IEEE Access 2022, 10, 106972–106987. [CrossRef]

28. Scimmi, L.S.; Melchiorre, M.; Mauro, S.; Pastorelli, S.P. Implementing a vision-based collision avoidance algorithm on a UR3
Robot. In Proceedings of the 2019 23rd International Conference on Mechatronics Technology (ICMT), Salerno, Italy, 23–26
October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.

29. Neri, F.; Scoccia, C.; Carbonari, L.; Palmieri, G.; Callegari, M.; Tagliavini, L.; Colucci, G.; Quaglia, G. Dynamic Obstacle Avoidance
for Omnidirectional Mobile Manipulators. In Proceedings of the The International Conference of IFToMM ITALY, Naples, Italy,
7–9 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 746–754.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2022.3212407

	Introduction
	Obstacle Avoidance Algorithm
	Mode I: 6-DOF Perturbation
	Mode II: 4-DOF Schoenflies Perturbation
	Mode III: Perturbation with Fixed Orientation

	Implementation
	System Architecture
	Test Cases

	Results
	Test Case 1
	Test Case 2
	Test Case 3

	Discussion
	Conclusions
	References

