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Abstract: The connection of many devices has brought new challenges with respect to the centralized
architecture of cloud computing. The fog environment is suitable for many services and applications
for which cloud computing does not support these well, such as: traffic light monitoring systems,
healthcare monitoring systems, connected vehicles, smart cities, homes, and many others. Sending
high-velocity data to the cloud leads to the congestion of the cloud infrastructure, which further leads
to high latency and violations of the Quality-of-Service (QoS). Thus, delay-sensitive applications
need to be processed at the edge of the network or near the end devices, rather than the cloud, in
order to provide the guaranteed QoS related to the reduced latency, increased throughput, and high
bandwidth. The aim of this paper was to propose a two-stage optimal task scheduling (2-ST) approach
for the distribution of tasks executed within smart homes among several fog nodes. To effectively
solve the task scheduling, this proposed approach uses a naïve-Bayes-based machine learning model
for training in the first stage and optimization in the second stage using a hyperheuristic approach,
which is a combination of both Ant Colony Optimization (ACO) and Particle Swarm Optimization
(PSO). In addition, the proposed mechanism was validated against various metrics such as energy
consumption, latency time, and network usage.

Keywords: quality-of-service; optimization techniques; task scheduling mechanism; delay sensitivity;
cloud computing

1. Introduction

The modern era of the Internet of Things (IoT) has made our world connected in a
smarter way. Here, a thing can be a person with a wearable device, an animal with a biochip,
or any device with a built-in sensor that can be associated with an IP address to transfer the
data over a network. The IoT has become one of the most-important technologies of the 21st
Century by which we can connect our home appliances, workstations, cars, baby monitors,
and many other devices to the Internet and communicate with them. The IoT connects
billions of devices, human beings, and computing elements in order to make decisions
and act accordingly. The IoT has started a new industrial revolution worldwide known
as Industry 4.0, which has changed the entire manufacturing industry. The emerging
5G technology is the key to Industry 4.0. The high speed and low latency of 5G is very
effective for automation, healthcare, media, and entertainment. 5G will be responsible
for critical communication in real-time, which means that data can be accessed reliably
and securely in a wireless manner. The concept of the IoT has existed for a long time, but
the advancement of technologies such as low-power sensor technology, cloud computing
platforms, artificial intelligence, and machine learning has resulted in hands-on experience
for the IoT. Cloud computing platforms for storing, processing, and analyzing the data
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generated from a large number of connected devices became a great innovation for the IoT,
but this has brought many challenges with respect to their centralized architecture [1,2].
Due to the huge demand of IoT devices and location-aware services, applications are
generating amounts of data that are almost inconceivable [3]. It has been estimated that
the cloud alone may not be sufficient to handle the big data generated by IoT devices with
respect to time-critical or emergency situations. Thus, the concept of fog computing was
proposed by Cisco in 2012 to cope up with these situations [4]. This emerging paradigm
of fog computing lies between the cloud and end users (IoT devices) and aims to bring
storage, networking, and computation close to the end users. Fog computing extends the
cloud environment to the edge of the network. Although the cloud and fog use the same
types of mechanisms (virtualization, resource provisioning, task scheduling, and many
others) on the same kinds of resources (storage, computations, networking, etc.), still, there
are few differences between them. The fog environment is suitable for many services and
applications for which cloud computing does not support them well [4,5] such as: traffic
light monitoring systems, healthcare monitoring systems, connected vehicles, smart cities,
homes, and many others. Sending high-velocity data to the cloud leads to the congestion
of the cloud infrastructure, which further leads to high latency and violations of the QoS.

Thus, these delay-sensitive applications need to be processed at the edge of the network
or near the end devices, rather than the cloud, in order to provide the guaranteed QoS
related to the reduced latency, increased throughput, and high bandwidth. Fog computing
plays a very important role in supporting rapid decision-making during these time-critical
applications [6]. This study proposes a machine-learning-based resource scheduling in
a fog–cloud environment considering smart homes as a case study. Figure 1 shows the
fog–cloud architecture for smart homes. The fog computing architecture is divided into
three layers [7]: The end device (IoT) layer contains the end devices such as smart phones,
computers, vehicles, smart equipment, wearables, and smart home appliances. The second
layer is the fog layer (middle layer), which includes fog devices such as gateways, routers,
switches, and workstations. Finally, the third layer, i.e., the cloud layer, which is also known
as the upper layer, contains high-speed computers, servers, and data centers.

Figure 1. Fog–cloud architecture for smart homes.

1.1. Motivation

To improve the service and operation layers in fog computing, practical scheduling al-
gorithms are required, which comprises one of the main challenges in the fog environment.
Three major scheduling issues in fog computing are resource allocation, task scheduling,
and workflow scheduling [8,9]. Firstly, resource allocation deals with the optimal allocation
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of tasks (T1, T2, . . . , Tn) over fog nodes (FN1, FN2, . . . , FNn) to improve resource utiliza-
tion, provide a faster response time, and reduce the energy consumption and overall cost.
Secondly, task scheduling helps with the optimal resource allocation by assigning tasks to
different resources considering the task’s input time, wait time, deadlines, and the cost of
performing the task as important parameters. Finally, workflow scheduling, which is also
known as task-dependent scheduling, is based on the distribution of tasks on heteroge-
neous fog nodes. In order to identify an efficient technique for resource management and
task scheduling, many researchers have built new algorithms. The quest to improve the
efficiency of task scheduling algorithms to minimize energy consumption has led to a novel
technique named the two-stage optimal task scheduling technique (2-ST), which could be
one of the most-promising techniques for the IoT industry and its related applications. The
IoT environment supports various real-time applications for time-sensitive data such as
healthcare, smart cities, smart homes, smart traffic management, and many others, and
it further deals with a large number of computing nodes or devices. However, due to
the long response time taken by computing devices with their integration with the cloud
environment, this technique provides the integration of fog computing and smart homes in
the IoT environment. The main aim of 2-ST in smart homes is to understand the topology of
the smart homes, provide optimal task allocation with less response time, make decisions,
and act accordingly.

1.2. Contributions

The main contributions of this study are as follows:

• The objective of the proposed machine-learning-based task allocation is to provide the
optimal allocation of fog nodes, improve network utilization, reduce the latency time,
and improve energy consumption.

• Delay-sensitive tasks such as smoke detectors and water leaks need to be prioritized
in the service queue, which would then be allocated first in the fog nodes.

• The naïve Bayes algorithm for task allocation and a hybrid algorithm for
task optimization were designed.

The remainder of this paper is organized as follows. Section 2 provides the recent
research and background of resource allocation and task and workflow scheduling. The
system architecture and methodology are discussed in Section 3. Section 4 describes the
evaluation metrics and performance parameters used in this study then discusses the
results and analyzes the proposed methodology, and finally, section 5 concludes the paper
along with the future scope and research directions.

2. Related Work

This section discusses a few related survey papers with respect to the scheduling
approaches in fog computing. The main aim of the scheduling approaches is to find the
optimal set of solutions with respect to the tasks, resources, and workflows on a set of
machines without compromising the desired QoS. Three main scheduling approaches are:
resource allocation, task scheduling, and workflow scheduling. The background literature
with respect to these approaches is discussed below [10,11]. In order to execute the tasks
and their corresponding jobs, optimal node allocation needs to be performed to satisfy
the resource requirements. Furthermore, an optimal and efficient execution of the tasks
can increase the energy efficiency, reduce the cost, and increase the accuracy, as well as
the resource utilization such as the memory, bandwidth, processor use, and many others.
Although there are many challenges in these scheduling approaches, different studies have
proposed efficient scheduling algorithms to increase the resource utilization and optimize
the performance metrics.

The most-recent survey in task scheduling by Islam et al. [12] presented a detailed
survey considering different simulation tools, case studies, and optimization metrics based
on context-aware scheduling approaches. Judy C. et al. [13] discussed the static approach
of workflow algorithms in order to reduce the task’s execution time and the total makespan
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cost of the fog–cloud system. The task scheduler was designed in order to decide the loca-
tion for the applications to run, i.e., either the fog or the cloud. The project was implemented
using Java by making use of integer linear programming and round robin classification.
Within the context of resource scheduling, Hoseiny et al. [14] presented a dynamic pro-
gramming approach for energy-efficient fog node selection in the fog environment. Energy
savings were achieved by implementing and validating the model in the iFogSim simulator.
Moreover, the authors used Software-Defined Network (SDN) policies to control the entire
network. The researchers used MATLAB as a simulation environment in [14–16] because
of the graphics user interface, the large databases for the built-in algorithms, and the easy
implementation, whereas iFogSim was used in [8,13,17,18] because of its ability to be used
in IoT-enabled smart homes, smart parking, healthcare, smart cities, and many more.

Shaaban et al. [18] and Gupta et al. [19] proposed a real-time architecture for the
dynamic distribution of health care tasks among computational nodes. A mobility-aware
heuristic model was proposed and validated using the iFogSim simulator to reduce the
makespan cost and increase the energy efficiency. Along with this, the authors also pre-
sented the idea of a realistic simulation model inside a hospital in Chicago. Furthermore, a
bio-inspired hybrid algorithm was proposed by Li et al. [20] and Baccarelli et al. [21] to
manage the resources at the fog layer. A modified particle swarm optimization was used to
achieve a good average response time and the optimal resource utilization and execution
time. The simulations were performed using the iFogSim simulator.

There are many works in the literature about task scheduling, resource allocation, and
workflow scheduling; most of them discuss the total cost, makespan, network delay, and
wait time, but very few articles were found regarding the energy consumption, network
utilization, and latency within the fog environment. Moreover, the recent literature on
task scheduling algorithms in fog computing is sparse; therefore, this article discusses the
partially explored algorithms used in the fog environment. Thus, the objective of this work
was to perform task scheduling using a modified particle swarm optimization in order
to achieve the optimal resource utilization while improving the three above-mentioned
parameters. The simulations were performed using the Java-based open-source simulation
tool iFogSim, which is one of the most-capable tools for the evaluation of resource manage-
ment policies with respect to the latency time, energy consumption, network utilization,
and overall operational cost.

Ali et al. in [22] proposed a fuzzy-based task scheduling technique to divide the
task between the fog and cloud layers. They distributed the task between the cloud and
fog layers by considering different processing units such as the storage, bandwidth, data
size, and computations. The objective of this study was to improve the efficiency of task
execution, but they did not mention which real-time application they were intending to
addresswith their proposal. Swarup et al. [23] proposed a deep-reinforcement-learning-
based algorithm to reduce the wait time of tasks in a virtual machine queue. A parallel
queuing approach was followed to ensure faster and optimal resource allocation. The main
challenge of rescheduling tasks with long wait times was not addressed in this article; thus,
we used the machine learning naïve Bayes classifier for task scheduling, and in the future, we
will address the issue of rescheduling tasks with long wait times [24–27]. Table 1 provides the
findings from the survey of the different static, dynamic, and hybrid scheduling approaches
and simulation environments used.
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Table 1. Comparison of the existing state-of-the-art solutions.

Author’s Name Type of
Algorithm Workflow Findings Simulation

Environment

Nguyen et al. [28] Static Task scheduling Tradeoff between total cost and makespan iFogSim

Jamil et al. [8] Static Task scheduling Reducing network delay, wait time, and
network usage iFogSim

Li et al. [17] Static Resource allocation Providing a fast convergence speed MATLAB

Sun et al. [15] Dynamic Task scheduling Optimal resource utilization and reducing
execution time Java

Abdelmoneem [18] Dynamic Resource allocation Reducing energy consumption in the fog
environment iFogSim

Wang [16] Hybrid Task scheduling
Reducing compilation time and energy
consumption and making the fog environment
more reliable

MATLAB

Rafique et al. [29] Hybrid Resource allocation Optimizing resource utilization and
minimizing processing cost and response time iFogSim

Guevara et al. [13] Static Workflow scheduling Reducing the task’s execution time and
makespan Java

Xu et al. [30] Hybrid Workflow scheduling Reducing the task completion time MATLAB

3. Proposed Model
3.1. System Architecture

In this section, we set up the system architecture for the optimal task allocation with
respect to smart homes. We considered a fog–cloud system, which consists of three layers,
the IoT sensor layer, the fog layer, and the cloud layer, as shown in Figure 2. The sensor
layer comprises intelligent sensor nodes located in different areas of the smart home
sending data to the fog layer for further processing. The fog layer contains special network
devices such as routers, switches, and virtual network functions, which have better storage
and computing capabilities. The last layer, i.e., the cloud layer, also known as the high-
performance layer, comprises a high-performance server with a large storage and high
processing power. The IoT layer forwards the data to the fog layer in terms of the task
requests. The fog layer further processes those tasks using the machine learning model
shown in Figure 2 and returns the results to the IoT layer. The set of tasks in the smart
home are in the form of sensors generating datasets such as a real-time camera, smoke
detector, humidity sensor, water leak sensor, motion sensor, electricity usage sensor, and
light sensor. The objective of the proposed machine-learning-based task allocation is to
provide the optimal allocation of the fog nodes, to improve the resource utilization, to make
the response time faster, and to improve the overall cost. Delay-sensitive tasks such as the
smoke detector and water leaks need be given priority in the service queue, which would
be allocated first on the fog nodes. To add these tasks into the priority queue, we propose
an intensity-based task allocation model, which works as follows:

• A virtual node is assigned to the fog layer for a smart home application in order to
check the intensity of every incoming task.

• This virtual node monitors every generated task from the intelligent devices of the
smart home.

• The virtual node will rank every task according to its intensity level (example: T1–>R1,
i.e., Rank 1 is given to Task 1).

• Here, intensity means how much computing resource (CR) a task will use, how much
delay (DL) a particular task can tolerate while performing the task, and how much
memory (M) space is required by every task. Rank 1 will be given to the task that requires
less computing resource, that requires less memory, and that is not delay-tolerant.
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• Tasks will be added to the priority queue according to their ranks and assigned
accordingly over the fog nodes; thus, this allocation policy results in the optimal
allocation of the tasks.

Figure 2. Proposed fog architecture for task allocation.

Table 2 provides the list of abbreviations used in this article. The proposed 2-stage
task scheduling algorithm (2-ST) will be run by a task scheduler, which is the heart of the
fog broker and sits in the fog layer.

Table 2. List of abbreviations.

Symbols Definition

T1, T2, . . . , Tn Number of tasks

R1 Rank 1 assigned to a particular task

CR Computing resource

DL Delay during execution

2-ST Two-stage task allocation

N1, N2, . . . , Nn Number of computing nodes

RT Response time

EC Energy consumption

TE and TS End time and
start time of execution

NU Network utilization

HPr Host power utilization

NS Network size

Li Latency of ith task



Appl. Sci. 2023, 13, 2939 7 of 15

3.2. Problem Formulation

The mathematical formulation of the task scheduling model is presented in this section.
The proposed architecture contains n independent tasks T = T1, T2, . . . , Tn, as depicted in
Figure 2.

EC = E× (Tc − Tr) + HPr (1)

Here, T denotes the number of tasks, and Ts and TE denote the start and end of the
execution. There are two states for the fog nodes: idle and busy. Whenever the fog node
is not processing any task, it is said to be in idle mode, and when it is executing any
task, it is said to be in busy mode. The fog device’s energy consumption is calculated in
iFogSim using Equation (3). The energy consumption of the fog nodes (EC) is calculated
using the current energy consumption E, the current time Tc, the updated time during the
last utilization Tr, and the host power utilization HPr. HPR is the host power in the last
utilization. Energy may be calculated using the total of all the hosts’ power during the set
length of time for any of the fog devices. The smart home case study deals with a large
number of sensor devices; therefore, network congestion caused by these devices is very
common, which can degrade the overall performance of the system. Thus, by allocating
the loads to several fog nodes, we minimized the network congestion in this system. The
network usage is calculated using Equation (4), where NU is the network utilization, n
is the total number of tasks, Li is the latency, and NS is the network size of the ith task.
Furthermore, the fitness function is calculated to check whether the model needs to be
trained again or should enter the optimization phase. The fitness function is provided in
Equation (5), and it depends on the latency and network usage of the network. High values
of the latency and network usage reduce the fitness function, and correspondingly, we
have to satisfy the fitness function. The grater the value of the fitness function, the better
solution is.

NU =
n

∑
i=1

Li × NSi (2)

FitnessFunction =
1

latency + NU
(3)

Figure 3 provides the entire data flow of the machine-learning-based optimal model
for task allocation. The set of tasks is generated by various IoT sensors used in the smart
home environment. Furthermore, Table 2 gives the proposed ML model for optimal task
allocation in smart homes and provides the number of tasks that we considered for training
the ML model, where the naïve Bayes multi-classifier was used for the training and testing
for the allocation of the tasks on the fog nodes. Before applying the naïve Bayes model,
tasks were ranked according to the ranking table given in Table 3. According to Table 3,
a task is ranked first if it does not tolerate any delay with respect to the services and it
occupies less memory space and consumes less computing resource. As naïve Bayes gives
the best results for classification, here, while training the machine learning model, we used
the constraints mentioned in the ranking table to correctly classify the task with different
ranks, and similarly, we again used naïve Bayes for the allocation of the VMs. Being a
probabilistic classifier, it predicts the allocation on the basis of the probability given in
Equation (6).

P(VMi|tk = compatible =
p(tk = compatible|VMi)(VMi)

p(tk = compatibility)
) (4)

For all VMs, P(tk = compatible) is constant and obtained according to Equation (7).
If (resource capacity of VMs > resource capacity of task):
P(tk = compatible) = 1.
Else:

P(tk = compatible =
Res.cap.o f allVM− Res.cap.o f task

Res.cap.o f task
) (5)
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Table 3. Fog node parameters.

Fog Node Parameters Values

Number of fog nodes 4

Processing capacity 11 MIPS

RAM 8 KB

Bandwidth 1024 Mbps

Storage 92 KB

Idle power consumption 0.36 Watt

Execution power consumption 0.44 watt

Figure 3. Data flow of the 2-stage task scheduling algorithm for optimal task allocation.

The model is trained until it satisfies the fitness function given in Equation (5), and
once it satisfies the fitness function, the optimal task allocation is performed using the
hybrid heuristic algorithm [16]. The hybrid heuristic algorithm is a combination of ACO
and PSO, and the idea behind their combination is that PSO has a fast search speed and
ACO provides high accuracy; thus, their combination contributes to the optimal task
allocation in the fog environment. The working of the proposed 2-ST hybrid algorithm can
be easily understood by looking at Algorithms 1 and 2. In particle swarm optimization,
the position of each particle represents a task’s possible scheduling, and according to the
task allocation decisions si j(t), the position of particle i can be simplified as si j, si j ε 0, 1,
i = 1, 2, . . . , n; j = 1, 2, . . . , m. Similarly, the speed of particle i can be simplified as vi j, vi j ε
[vmax, vmax], i = 1, 2, . . . , n; j = 1, 2, . . . , m.

The inertia weight w determines the search ability of the particles in the global and local
search, which follows the premise that the greater w is, the stronger the global searching
ability of the algorithm. Otherwise, the local search ability of the algorithm is stronger.
To improve the intelligence of the particle swarm optimization algorithm, many methods
have been proposed regarding inertia weighting, such as a linearly decreasing weight, the
weight decrease of the linear differential equation, and so on. This paper combined the
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inertia weight with the number of iterations, and the solution formula of the inertia weight
is shown below.

w = wmax − (wmax)−wmin
kmax

k < 0.7× kmax

= wmin + (wmax − wmin × rand)k ≥ 0.7× kmax
(6)

where wmax is the maximum inertia weight, wmin is the minimum inertia weight, k is
the number of iterations, and kmax is the largest number of iterations. The inertia weight
changes dynamically with the increase of the iterations, which guarantees that the algorithm
has the opportunity to gain a larger inertia weight value later in the search and is prevented
from falling into the local optimum. This approach is used to maintain a balance between
exploration–exploitation for this hybrid approach of optimization.

The entire proposed mechanism can be easily understood by looking at Algorithm 1.

Algorithm 1 Optimal task allocation algorithm.
Input value: Task (T1, T2, . . . , Tn)
Output: Optimal task allocation
Step 1: DOTi = new received task
Step 2: All nodes In = I = 1, 2, . . . , N

Assign rank for Ti
Step 3: Priority queue = Ti
Step 4: Sort priority queue according to ranks
Step 5: Allocation of VM <– allocationusingNaiveBayes()
Step 6: Calculate fitness function
Step 7: Fitness optimization using hybrid heuristic algorithm

The smart home environment as an example was considered in this study, and Figure 4
shows a few tasks that could be considered in this scenario, for example: alarm generation,
processing of the humidifier, lights on/off, surveillance video, and many others. A few
tasks would be delay-tolerant, and a few would be non-delay-tolerant. These tasks will
be allocated to the fog nodes. Suppose in the above scenario that the smoke detector is
a non-delay-tolerant task and considered as a Rank 1 task. Similarly, the water pump
turning on/off is also a non-delay-tolerant task, so the ranking table plays an important
role here. Such tasks will be allocated to the fog nodes with specified resources. The
proposed 2-ST hybrid algorithm is used for optimal task allocation using Algorithms 1
and 2. Algorithm 1 is used for training the machines using the naïve Bayes algorithm for
the rank determination and allocation of the VMs. If a particular task allocation meets the
criteria of the fitness function, then this allocation will proceed to the hybrid algorithm
using ACO and PSO.

Figure 4. Example of task allocation using the 2-ST hybrid algorithm.



Appl. Sci. 2023, 13, 2939 10 of 15

Algorithm 2 The 2-ST hybrid algorithm.
Input value: Task (T1, T2, . . . , Tn)
Output: Optimal task allocation
Step 1: Calculate the fitness value of particles and looking for individual optimal solution
Step 2: Look for global optimal solution, and update particles’ velocity and positions
Step 3: Check for termination condition; if no, then (1), else (5)
Step 4: Initialize population, and check for ant number set
Step 5: Increment ant number
Step 6: Transition probability used by nodes to choose net node
Step 7: Local update of pheromone
Step 8: Traverse all ants; if no, go to (6), else update global pheromone
Step 9: Check for termination condition; if no, (5), else allocate tasks.

4. Performance Analysis and Evaluation Matrix

This section discusses the simulation setup, performance parameters, and the analysis
of the results of our proposed ML model for the task allocation in a smart home architecture.
We conducted the simulations using iFogSim [19], which provides a complete cloud–fog en-
vironment for simulating cloud and fog applications. The environment and simulation setup
for a smart home are described as follows: the smart home area was set to 200 × 200 m along
with 4 fog devices, and the number of IoT sensors was 7. These fog devices communicate
with the fog gateways using WiFi technology. We assumed that every fog node has its own
processing (in MIPS), memory, and transmission capacity. For the evaluation of the smart
home architecture in iFogSim, we needed to define the fog devices and set the values of a few
parameters. There were 2 types of computational devices in the smart home fog environment.
The first was the fog nodes for the processing of the data generated from the IoT sensors, and
the second was the IoT sensors for the data generation. Table 3 provides the details of the fog
nodes. The fog nodes’ data were taken from [20,21]. Table 3 provides the parametric details
of the IoT sensors. The simulations were carried out on a Dell computer (Intel core i5-12400,
256 GB hard drive) with the Windows 10 professional operating system. Table 4 provides the
details of the sensors we used in the smart home environment.

Table 4. Smart home IoT sensors’ features.

IoT Sensors’ Parameters Values

Number of IoT sensors 7

RAM 1 KB

Processing capacity 4 MIPS

4.1. Simulation Setup

The numerical simulation was performed over both adversarial and legitimate models
by publishing both ideal and intruder devices on the network. The intruders may steal
or hack the consumer device for their own purposes or jam the network to perform a
distributed denial of service attack. The trust values and communication track of both
legitimate and fake devices were recorded after every specific interval of time as S(t). Let
N(I) represent the number of ideal consumer electronic devices communicating in the
network and N(M) denote the number of devices hacked by the intruders in the network.
Table 5 illustrates the types of sensors and the units of measurement.

Three performance parameters, latency, energy consumption, and network usage,
were considered for the comparison of the two-stage task scheduling (2-ST) algorithm
with the hybrid heuristic algorithm [12] in both the fog and cloud environment. Fog
nodes are intermediate nodes and helpful for providing the minimum latency period for
time-sensitive data, rather than processing the data in the cloud. Fog computing supports
latency-sensitive real-time applications, and thus, the latency is considered one of the
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important performance parameters. Secondly, the energy consumption reduces the power
utilization of the fog nodes, which further reduces the overall electricity bill for the smart
home environment. Energy consumption was also compared for both the cloud and the
non-cloud environment and is discussed in Section 5. The last performance parameter
considered in this study was the network usage. An increase in the number of smart devices
in the smart home leads to network congestion, but the concepts of resource management
and task management play very important roles in the allocation of tasks on the different
fog nodes in order to reduce the network congestion.

Table 5. IoT sensors’ parameters.

Sensor Data Unit of Measurement

Humidity % age

Motion sensor On/off

Smoke Obscuration in dBA

Water leak sensor Buzzer on/off

Electricity usage sensor KWH

Light sensor Lumens; on/off

4.2. Results and Discussion

This study discusses the proposed two-stage optimal model for task scheduling within
the fog environment with an application to smart homes. The smart home case study deals
with a time series solution, which further reduces the latency time, minimizes the usage of
the network bandwidth, has a quick response time, and has many other benefits.

Fog computing is one the most-suitable environments for providing all these benefits to
smart homes. The concepts of resource management and task scheduling help to distribute
the tasks and resources among other fog nodes in order to improve the performance of
the network and services. Thus, the proposed 2-ST approach is very efficient in the smart
home scenario as compared to the hybrid approach proposed by Wang et al. [12] for both
fog and non-fog environments. The efficiency of the smart home scenario within the fog
environment is calculated in terms of energy consumption, latency, and network usage.
Figure 5 shows the energy consumption in Joules for the proposed 2-ST model and its
comparison with the hybrid approach for both the fog and the cloud environment. The
corresponding figure shows the reduced energy consumption for an increased number of
tasks within the smart home fog environment. Due to the decentralized nature of cloud
computing, it provides the best performance with respect to the data storage and processing,
but brings an increase in the latency, energy consumption, and network utilization. Thus,
cloud computing is not the best solution for time-critical applications such as smart homes,
smart cities, healthcare, and many others.

In contrast to the aforementioned benefits and drawbacks of cloud computing, a new
layer has been added into the existing cloud architecture, named the fog layer, and thus,
a new environment came into existence with its own benefits, known as fog computing.
One of the main advantages of the fog environment is the latency time, and Figures 6 and 7
show the same along with a comparison of the proposed and hybrid approaches for the
fog and cloud environment. The fog layer is responsible for bringing resources near the
IoT sensors for the actions or tasks to perform, which further reduces the load on the cloud
server and reduces the latency time during task execution.



Appl. Sci. 2023, 13, 2939 12 of 15

Figure 5. Energy consumption in J for different tasks within the smart home environment.

Our proposed 2-ST, i.e., the two-stage optimal task scheduling approach, reduced
the energy consumption, latency time, and network utilization significantly compared to
the hybrid approach for both the fog and cloud environment. The results clearly showed
that the energy consumption, network utilization, and latency time increased with the
increase in the number of tasks and sensors within the smart home. The comparison
between the hybrid and 2-ST approach showed small differences with respect to the energy
consumption, but a great difference with respect to the latency time. Similarly, the network
usage also showed a significantly large difference between the 2-ST and hybrid approach
for the cloud environment, as well as the fog environment. Thus, overall, the results showed
that the proposed 2-ST approach performed the best for the smart home scenario.

Figure 6. Latency comparison of the 2-ST and hybrid approaches for both the cloud and fog environment.
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Figure 7. Network utilization of both the cloud and fog environment using the 2-ST and hybrid
approaches for task scheduling.

5. Conclusions

Cloud computing does not provide efficient results in terms of bandwidth, energy
consumption, network usage, latency, and many other performance parameters for time-
critical applications. Therefore, fog computing assists the cloud environment to overcome
the performance drawbacks of cloud computing by bringing resources near the edge of
the network and distributing the load among different fog nodes. The distribution of
the load in the fog environment is a significant challenge, which involves several task
scheduling, resource scheduling, and job scheduling algorithms. This study proposed a
two-stage optimal task scheduling (2-ST) approach for the distribution of tasks executed
within a smart home among several fog nodes. To solve the task scheduling effectively, this
proposed approach uses a naïve-Bayes-based machine learning model for training in the
first stage and optimization in the second stage using a hyperheuristic approach, which is a
combination of both ACO and PSO. The proposed approach was validated by performing
simulations in iFogSim, and the corresponding results showed better performance in terms
of energy consumption, latency time, and network usage. In this study, we tried to use
machine learning and optimization algorithms together to perform the task scheduling
algorithms for a small-scale smart home environment. The reason for combining ACO
and PSO was that PSO provides computational efficiency and an easy implementation,
while ACO is used to solve different problems like ours, in which we had to compute
intensive tasks and delay-sensitive tasks. The results showed a significant improvement,
and therefore, we will use this combination for large databases in our future work. Along
with this, a future work in the context of of this study is also to extend it to the prediction of
future network usage, bandwidth consumption, and energy consumption by predicting the
user’s behavior on the basis of his/her daily routine within the smart home environment.
This study was tested on small and static datasets described in Tables 4 and 5. Therefore,
the proposed methodology can be tested on large and dynamic datasets.
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