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Abstract: For appropriate managing fields and crops, it is essential to understand soil properties.
There are drawbacks to the conventional methods currently used for collecting a large amount
of data from agricultural lands. Convolutional neural network is a deep learning algorithm that
specializes in image classification, and developing soil property prediction techniques using this
algorithm will be extremely beneficial to soil management. We present the convolution neural
network models for estimating water content and dry density using soil surface images. Soil surface
images were taken with a conventional digital camera. The range of water content and dry density
were determined considering general upland soil conditions. Each image was divided into segmented
images and used for model training and validation. The developed model confirmed that the model
can learn soil features through appropriate image argumentation of few of original soil surface images.
Additionally, it was possible to predict the soil water content in a situation where various soil dry
density conditions were considered.
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1. Introduction

Understanding the current state of soil is critical for appropriate crop management.
Climate change has a major impact on the agricultural soil environment [1]. Frequent
droughts and floods caused by climate change bring about drastic changes in soil moisture
and density. Soil moisture and soil dry density are factors that have a significant impact on
crop growth. Because evapotranspiration of crops varies according to soil moisture, it has a
great influence on crop growth [2]. Additionally, soil structure and compaction affect crop
growth [3].

Soil properties’ measurement methods can be divided into experimental methods
and sensors. Soil management using sensors is particularly widely used in the field of
precision agriculture [4]. Soil density is measured using an in situ density test. Current soil
moisture and density measurement methods are time-consuming and costly, limiting their
widespread use [5]. Remote sensing has brought advances in soil management. Remote
sensing has a great advantage because it can stably acquire data over a wide area [5].
However, since remote sensing data represent a wide area, it is difficult to use it for detailed
field management.

Recently, much research has been conducted on predicting soil properties using digital
imagery to rapidly determine the current condition of soils. Detailed digital images ac-
quired through precise instruments such as SEM and X-ray tomography make an extensive
analysis of the soil feasible. However, these instruments are time- and cost-consuming for
use in agricultural lands where numerous analyses are required. Therefore, there is a need
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to develop a method for determining the current condition of soil via a commercial-level
digital camera.

Deep learning is a machine learning technique that trains computers to learn through
multiple examples in the same manner that people do naturally. At this point, the machine
mimics humans by discovering a certain pattern in various pieces of information [6]. Deep
learning had issues in the past with poor accuracy and a prolonged training period, but
more recent technical advancements have addressed these issues by accelerating com-
putation and creating new algorithms, and it is now being used for analysis in several
industries. In particular, processing image data sets has traditionally been complex and
time-consuming, but as of recently, analysis can be completed quickly due to high-speed
computing using a computer’s graphics processing unit (GPU). In the field of image classi-
fication, convolutional neural network (CNN), one of the deep learning technologies, has
overcome the drawbacks of the pre-existing methodologies [7]. CNN was first introduced
by LeCun in 1989 and achieved success in the field of writing recognition [8]. Later, CNNs
were widely employed with the publication of LeNet [9]. Krizhevsky et al. [10] developed
AlexNet, a fundamental CNN-based image classification system that uses a convolutional
layer, pooling layer, and fully connected layer. The accuracy of CNN classification has
been improved by the development of representative models, notably GoogleNet [11],
ResNet [12], and DenseNet [13], which are widely used to handle various problems.

Since the introduction of deep learning, numerous studies have attempted to evaluate
soil properties using digital photographs and observed data. Veres et al. [14] conducted a
study using CNN to estimate the amounts of sand, pH, organic matter, calcium carbonate,
and phosphorus. Masri et al. [15] carried out a study using an extreme learning machine
(ELM) to estimate the soil’s sand content, pH, organic carbon content, phosphorus content,
and calcium content. These two investigations used spectral information as input data for
the model to predict various soil parameters, but they were unable to predict soil water
content or soil dry density. Based on satellite remote-sensing data, You et al. [16] forecasted
crop production using a CNN and a deep Gaussian process. Padarian et al. [17] developed
a CNN model to estimate soil organic carbon content using data from a digital elevation
model, including slope, topographic wetness index, yearly average temperature, and
annual rainfall. This study was successful in using images to predict soil characteristics and
showed that the argumentation of training data can increase model accuracy while reducing
overfitting. However, because the prediction unit is 100 m wide, there is a limit to applying
it to precise agricultural land management. Srisutthiyakorn [18] validated the applicability
of multiple artificial neural networks and CNNs to predict soil permeability using X-ray
CT scan images. The above studies applied various deep learning methods to analyze
soils, but the scale of the predicted results is too large for use in detailed management of
agricultural lands. In particular, most of these studies do not properly take soil dry density
into account.

Conventional experimental methods and existing studies had practical limitations in
performing accessible, rapid, and detailed soil water content and soil dry density monitor-
ing of agricultural land. Therefore, this study focuses on developing a digital-image-based
soil property prediction model that can be implemented in agricultural land. The study was
conducted on high-resolution soil surface images taken with a commercial-level camera for
which the results of previous studies were limited. CNN was used as the analysis method
for soil surface images. Soil water content (WC) and soil dry density (ρdry) were deter-
mined as the objectives among the soil properties. Four major agricultural land soils were
investigated. Image segmentation was performed for the argumentation of the training
data in the CNN model. Image segmentation was performed in three cases. The CNN
model was constructed for each case, and the accuracy was compared.
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2. Materials and Methods
2.1. Soil Surface Image Acquisition

Soil samples were prepared in molds, and digital images of the soil surface were ac-
quired in an indoor studio. Four agricultural land soils collected in Korea were used for the
study: sandy loam (SL), loam (L), silt loam (SiL), and silty clay loam (SiCL). Soil conditions
for the soil sample were determined by considering general upland soil circumstances.

Figure 1 shows the process of soil sample preparation. The soil molds were cylindrical
acrylic molds, 150 mm in diameter and 50 mm in height. After oven (Changshin Science
C-DOD3) drying at 110 ± 5 ◦C for 24 h, the WC of the oven dry soil was adjusted to 5, 10,
15, 20, and 25%. The wet soil was placed in a mold with a collar in a disturbed state. Each
soil sample was compacted at four ρdry conditions of 1.1, 1.2, 1.3, and 1.4 t/m3. The height
of the sample after compaction was 50 mm, equal to the height of the mold.
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Figure 1. Soil sample preparation process for digital image acquisition of soil surface layer.

Digital images were taken under controlled lighting. The correlated color temper-
ature (CCT) measured at the soil sample location was 6400 K. The focal length of the
digital camera (Canon EOS 100d) was fixed at 35 mm. The size of the digital image was
5184 × 3456 pixels. The photograph was taken in the vertical direction of the soil sample,
and the distance between the soil surface and the image sensor of the camera was 240 mm.
Under these conditions, one original image represented an area of 93.3 mm × 62.2 mm
with a resolution of 0.018 mm/pixel. Each soil sample was prepared three times under the
same conditions. Therefore, 60 digital images were taken for one soil under 5 conditions of
WC, 4 conditions of ρdry with 3 repetitions.

2.2. Data Preparation for the CNN Model

Figure 2 shows the input data preparation process for the CNN model. The 60 digital
images for each soil texture were divided into a training set and a test set in a 2:1 ratio.
Therefore, it was divided into a training set of 40 images and a test set of 20 images for
each soil texture. Each digital image was divided into square-shape-segmented images.
When the resolution of the segmented image is high, it has many features of the original
image, but the number of images used for training becomes smaller. Conversely, when
the resolution of the segmented image is low, the number of images used for training is
increased although it has fewer features of the original image. Therefore, to improve the
learning efficiency and accuracy, the CNN model was trained using segmented images in
various resolutions, and the results were compared. The resolution of the segmented image
was selected as 216 × 216, 432 × 432, and 864 × 864 pixels, respectively.

2.3. Convolutional Neural Network

In this study, a representative CNN-based image classification model based on
AlexNet [10] was constructed. The model contains three convolutional layers and two fully
connected layers. The program code was written in Python and used TensorFlow. CUDA
and cuDNN were also used to enable GPU-based learning. The accuracy and learning
efficiency of the CNN model can vary greatly depending on the value of the hyperparame-
ter [19–21]. The most common method for selecting hyperparameters is trial and error or
manual search [22–25]. Therefore, among the hyperparameters, epoch, batch size, learning
late, and feature were determined for each model through trial and error.
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In a CNN model, classification results can be obtained for each segmented image.
Since a CNN model is categorical, the output value is a categorical result. Therefore, WC
was output as one of five categories: 5, 10, 15, 20, and 25%. ρdry was also output as one of
four categories: 1.1, 1.2, 1.3, and 1.4 t/m3.

The classification results and the quantitative results were determined using the
categorical results of the CNN model. The method for determining the classification results
of the original digital image by the CNN model is shown in Figure 3. The category with
the highest frequency among all segmented images was determined as the classification
result of one original image.
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The quantitative prediction result of the original digital image by the CNNmodel is
determined by Equation (1).

X =
∑n

i=1 Xi

n
(1)

where X is a quantitative result of CNN-model, Xi is the result of i-th segment image, and
n is the number of segmented images. To determine the quantitative result, the categorical
result of each segment image was averaged from one original image. The accuracy of the
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quantitative results determined under various soil conditions was evaluated through root
mean square error (RMSE). The calculation method of RMSE is shown in Equation (2).

RMSE =

√
∑N

i=1
(
Xi − Yi

)2

N
(2)

where Xi is i-th X, Yi is the actual observation value of i-th soil image, and N is the number
of observations. Since there were three CNN models depending on the resolution of the
segmented image, the accuracy of each model was evaluated through RMSE.

3. Results
3.1. Quality of Original and Segmented Images

Figure 4 shows the gray value according to the soil conditions of 240 original images.
As WC gradually increased, the gray value tended to decrease overall. When WC was high,
the gray value was maintained or partially increased. This was because as soil was almost
saturated, subsequent moisture came out to the soil surface and reflected light [26]. As ρdry
increased, the gray value appeared to increase. This was because the distribution of voids,
which are relatively dark regions, decreased as the soil was compacted [27]. This tendency
was maintained well in SL, L, and SiL with high sand content. SiCL with high clay content
was found to have no significant difference in gray value change with increasing ρdry under
low WC conditions.
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Figure 4. Gray value of original soil surface images according to soil texture, soil water content and
soil dry density.

Sample segmented images for WC and ρdry prediction are shown in Figures 5 and 6.
As WC increased, the brightness of the image decreased and the saturation increased.
Additionally, the higher the WC, the more the soil became agglomerated. As ρdry increased,
the distribution of voids in the surface layer decreased. No significant color difference
according to the resolution of the images was observed.
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Figure 6. Sample segmented soil surface images under different soil dry density conditions. Each
image is a cropped image with 3 different sizes from the original soil surface image with resolution of
5184 × 3456 pixels. Soil texture is loam.

Figure 7 shows the histogram of the sample original image and the histogram of the
segmented image by resolution. There were no significant differences in the peak and shape
between the histograms of the original and segmented images. Therefore, the segmented
images represented the color distribution of the original image well. However, outliers
were observed when the resolution of the segmented images was small.
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Figure 8 shows the distribution of the average gray value of the original and segmented
images. The smaller the segment size, the higher the variance of the gray value, and the
more outliers. As shown in Figure 4, the color of the soil was observed differently depending
on WC and ρdry. Therefore, if the variance of image color increased, the prediction of WC
and ρdry may have been adversely affected. However, since a CNN model learns by finding
the features of the image by itself, it may succeed in predicting based on other features of
the image as well as soil color.
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Figure 9 shows the difference of void distribution among the segmented images. The
distribution of voids is a factor closely related to soil dry density. The original image used
to analyze the void distribution in Figure 9 had a texture of SL and a soil condition of
25% WC and ρdry of 1.3 t/m3. To confirm the void distribution of the original image, the
original image was converted to grayscale, and thresholding was performed with the Otsu
thresholding method to obtain a binary image divided into soil solid and void. In the binary
image, it was assumed that white represented soil solid and black represented a void. In the
original image, 37% of the entire area was evaluated as a void. Comparing voids for each
resolution, the more it was divided, the larger the variation of voids. Comparing (a) and (b)
of Figure 9, each segment included soil solid and void evenly in (b), but it was not even in
(a). Similar to the color of an image, the high variance of the void distribution in segmented
images could adversely affect the accuracy of the model. However, segmented images with
small resolution could show high model accuracy because the amount of training data was
relatively large.
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Figure 9. Difference in void distribution among segmented images. (a) is the binary image divided
216 into 384 segmented images of 216 × 216 pixels. (b) is the binary image divided into 24 segmented
217 images of 216 × 216 pixels. Black pixels in (a,b) represent the void. The solid red line in the
graph is the average gray value of the original image, and the number of segmented images for each
resolution was 384, 96, and 24, respectively.

3.2. Output of CNN Model

Figures 10 and 11 show an example result CNN model for prediction of WC and
ρdry. In Figure 10, one original image was divided into 384 segmented images with
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216 × 216 resolution and input to the model, and 384 classification results were obtained
accordingly. Since it was a WC prediction model, the classification result was output as
one of five classifications: 5, 10, 15, 20, and 25%. In the case of Figure 10, WC of the
original soil was 25%, and 336 out of 384 segmented images were classified as 25%, and
48 were classified as 20%. Here, 25% of WC, which accounted for 336 of 384, was the WC
classification result using the CNN model. The quantitative result of WC prediction was
24.4% by Equation (1).
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(a) Classification result with a resolution of 432 × 432 segmented images.; (b) original image overlaid
with classification result.

An example of the results of ρdry prediction using the CNN model was the same as
in Figure 11. In the example, for ρdry prediction, one original image was segmented
into 96 images of 432 × 432 resolution and then input into the model for obtaining
96 classification results. In Figure 11, 21 of the 96 segmented images were classified as
1.1 t/m3, 43 as 1.2 t/m3, 29 as 1.3 t/m3, and 3 as 1.4 t/m3. Here, 1.2 t/m3, which accounted
for 43 of the totals 96, was the classification result of the ρdry using the CNN model.

3.3. Accuuracy of Soil Water Content and Soil Dry Density Prediction

The classification accuracy of CNN model is summarized in Table 1. For WC prediction,
the 216 × 216 resolution model had the highest classification accuracy. The 432 × 432 model
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also successfully classified WC under various ρdry conditions with a total accuracy of 97.5%.
The 864 × 864 model showed total accuracy of 78.75%, which is relatively low compared
to that of other models. WC is highly correlated with soil color [28–33]. We confirmed
that color differences due to resolution were not significant in the segmented images of
the training set. Therefore, the 216 × 216 resolution model with a larger training set size
was considered to have the highest accuracy. Specifically, the model’s strong point was its
ability to predict WC with high accuracy under various soil dry density conditions.

Table 1. Classification results by the convolutional neural network model.

Model. Texture

Accuracy (Correct/Total)

216 × 216
Resolution

432 × 432
Resolution

864 × 864
Resolution

WC prediction

SL 100% (20/20) 90% (18/20) 95% (19/20)
L 100% (20/20) 100% (20/20) 35% (7/20)

SiL 100% (20/20) 100% (20/20) 85% (17/20)
SiCL 100% (20/20) 100% (20/20) 100% (20/20)

Overall accuracy 100% (80/80) 97.5% (78/80) 78.75% (63/80)

Dry density
prediction

SL 75% (15/20) 60% (12/20) 50% (10/20)
L 70% (14/20) 65% (13/20) 50% (10/20)

SiL 65% (13/20) 75% (15/20) 65% (13/20)
SiCL 60% (12/20) 37.5% (6/16) 40% (8/20)

Overall accuracy 67.5% (54/20) 60.5% (46/76) 51.3% (41/80)

The ρdry model also showed the highest accuracy with the 216 × 216 resolution model,
similarly to the results of the WC prediction model. The resolution of each image was
0.018 mm/pixel. Thus, a 216 × 216 pixel-segmented image represented an actual area of
approximately 3.9 mm × 3.9 mm. The CNN model was deemed to have learned the void
features by itself and predicted ρdry even for small area-segmented images. The classifi-
cation result of the ρdry prediction model showed relatively low classification accuracy
compared to that of the WC prediction model. This was expected to appear due to the
difference in the natural properties of WC and ρdry. WC has a strong correlation with
soil color, while ρdry is governed by the distribution of voids. There was no significant
difference in soil color in the segmented images, but the distribution of voids could be
prominent in some segmented images and barely appear in others. Accordingly, it was
considered that the classification accuracy of ρdry was relatively low.

Figures 12 and 13 show the quantitative results by the CNN models. In Figure 12,
the RMSEs of the WC quantitative results were 0.18 to 0.30, 0.89 to 2.07, and 1.11 to 3.48%,
respectively. Same as the classification accuracy, the accuracy of the 216 × 216 resolution
model was the highest. Compared to that of the 216 × 216 resolution model, the
432 × 432 resolution model showed a large deviation in predicted values, resulting in
a relatively high RMSE. In the case of the 864 × 864 resolution model, the RMSE increased
compared to that of the 432 × 432 resolution model, and many outliers were observed.
Therefore, it was considered desirable to use a 216 × 216 resolution model.

In Figure 13, the RMSEs of the prediction results were 0.055 to 0.082, 0.054 to 0.090,
and 0.044 to 0.107 t/m3, respectively. Similar to the WC model, the accuracy of the
216 × 216 resolution model was the highest. Although the classification accuracy of ρdry
prediction was low, relatively stable prediction results were derived when RMSE was
calculated by calculating quantitative values. Therefore, it was considered that it was
preferable to use a quantitative result rather than a classification result for the prediction
of ρdry.
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4. Discussion

In this study, a CNN model was adopted as a method to predict WC and ρdry using
soil surface images. Study results showed that the CNN model successfully performed
the training and could predict WC and ρdry through soil surface images. The segmented
images came in three sizes: 216 × 216, 432 × 432, and 864 × 864 pixels, which represented
3.9 × 3.9, 7.8 × 7.8, and 15.6 × 15.6 mm2, respectively. Because color differences due to
segmented image size were not large, the prediction of WC became more accurate the larger
the amount of training data. Even in the case of ρdry prediction, the overall accuracy was
high if there was a lot of training data, but it was not overwhelmingly superior as in the
WC model. In the case of soil texture of L and SiL, the accuracy of the 864 × 864 resolution
model was the best, and in the case of soil texture of L and SiCL, the accuracy of the
216 × 216 resolution model was the highest. This was expected because the difference in
void distribution between segmented images was larger than that of color.

According to Brewer’s [34] pore-size classification, soil pores are divided into macro-
pores, mesopores, micropores, etc. Macropores are pores with an equivalent diameter
of 0.075 mm or greater. Macropores are pores in which crop roots can easily grow and
are those that are most significantly reduced by compaction [35,36]. Thus, macropores
have the highest correlation with soil dry density. Macropores are divided into subclasses
according to size, such as coarse (>5 mm), medium (2–5 mm), fine (1–2 mm), and very
fine (0.075–1 mm). By comparing the size of macropores and segmented images, those
segmented images with a 216 × 216 resolution can be represented on the image up to
fine macropores. However, the ρdry prediction model of 216 × 216 resolution showed a
higher overall performance than other models did. This was because the 216 × 216 model
had four times more training data than the 432 × 432 model and 16 times more than the
864 × 864 model did. Thus, although the 216 × 216 model was the most accurate in the
current results, it is expected that the accuracy of other models would become better with
additional training data. Furthermore, as the size of the segmented image increases, the
model is expected to become more general, as more features of pore distribution can be
included in the image.

We examined whether a general CNN algorithm could learn the features of soil surface
images and consequently predict soil properties. As new deep learning algorithms are
continuously being developed, the accuracy of soil image analysis and feature prediction
techniques using deep learning is predicted to increase. However, as in the results of this
study, the amount of training data has a great influence on accuracy. Most surface images
of soil on the internet cannot be used as training data because the shooting conditions are
different and there are no data on soil characteristics. Therefore, securing a good soil image
database for deep learning is considered a priority for future research.

We proposed a CNN model that can predict soil moisture and soil dry density with a
soil surface image. The advantage of the proposed method is that it is accessible because it
uses a commercial-level camera, which is currently the most widespread sensor. Addition-
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ally, there is no need to purchase a specific purpose sensor. This can be a great strength in
the field of agricultural land and field-scale water resource management.

The results of this study enable detailed agricultural land observation compared to
remote sensing, which aims to observe large areas. However, it is difficult to manually
acquire surface soil images of many points of interest. Tractors, which are essential in
farmland, have recently been equipped with camera systems for autonomous driving and
field management [37]. If a camera for surface soil observation is added to the tractor’s
camera system, a larger area can be monitored using the results of this study. In addition,
since this study targeted surface soil images, there is a practical limitation for observing in
deep soil layers. Accordingly, verification using deep soil surface images obtained after
removing the surface layer or images obtained using borehole imaging will be necessary in
future studies.

5. Conclusions

This paper proposes CNN models to predict WC and ρdry using surface images of
soil and presents a digital image processing procedure for training data construction. The
original image was segmented with various resolutions and used as training data for
the CNN model. Proper image segmentation increased the number of training data and
enabled prediction of WC and ρdry even with few original images. The results showed
excellent classification and quantitative results in predicting WC. Classification accuracy in
ρdry prediction was relatively low, but quantitative results showed that ρdry was predicted
well. In the segmented image, the range of colors and voids that could significantly affect
WC and ρdry increased compared to that in the original image, but the CNN algorithm
learned features in the soil surface by itself and successfully predicted WC and ρdry.

The resolution of the original images used in this study was fixed at 0.018 mm/pixel.
It is expected that the accuracy of the model would vary with the resolution of the original
image. Increasing the distance per pixel may represent a larger area but may not clearly
reveal detailed features of the soil surface. Future research should take this into account
when determining the appropriate resolution for deep learning training data.

Additionally, the most fundamental form of the CNN algorithm was applied in this
study. The reason for this was to determine whether the most common form of the CNN
algorithm could learn the features of soil images. The results showed that learning was
successful. Therefore, it is predicted that the application of various CNN algorithms
currently being developed will greatly increase the accuracy of the model. However, as
mentioned above, the construction of a good soil surface image database must precede.
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