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Abstract: In wireless rechargeable sensor networks (WRSNs), a novel approach to energy replen-
ishment is offered by the utilization of mobile chargers (MCs), which charge nodes via wireless
energy transfer technology. However, previous research on mobile charging schemes has commonly
prioritized charging efficiency as a performance index, neglecting the importance of quality of sensing
coverage (QSC). As the network scale increases, the MC’s charging power becomes unable to meet
the energy needs of all nodes, leading to a decline in network QSC when nodes’ energy is depleted.
To solve this problem, we study the problem of mobile charging sequence scheduling for optimal
network QSC (MSSQ) and propose an improved quantum-behaved particle swarm optimization
(IQPSO) algorithm. With the attraction of potential energy in quantum space, this algorithm will
adaptively adjust the contraction expansion coefficient iteratively, leading to a global optimal solution
for the mobile charging sequence. Extensive simulation results demonstrate the superiority of IQPSO
over the widely used QPSO and Greedy algorithms in terms of network QSC, especially in large-scale
networks.

Keywords: wireless rechargeable sensor networks; quality of sensing coverage; mobile charging
sequence scheduling; contraction expansion coefficient; improved quantum-behaved particle swarm
optimization

1. Introduction

Wireless sensor networks (WSNs) are widely applied in various fields due to their low
cost, scalability, self-organizing dynamics, and fault tolerance characteristics [1], such as
environmental monitoring [2], medical treatment [3], elderly care services [4], intelligent
transportation [5], and manufacturing systems [6]. Despite these benefits, the development
of WSNs is hindered by the limited battery capacity of the sensors [7]. Furthermore,
frequent battery replacement is often cumbersome, costly, dangerous, and unrealistic.

To address the problems mentioned above, researchers have made nodes passively
collect solar [8], wind [9], or thermoelectric [10] energy from the environment in energy
harvesting WSNs to prolong the network lifetime. However, these approaches could be
more stable and predictable. In recent years, with the advancement of wireless power
transfer technology, a new concept of wireless rechargeable sensor networks (WRSNs) has
emerged, where mobile chargers (MC) with a large capacity provide a highly reliable and
efficient energy supplement to the nodes. Therefore, the study of MC charging strategies in
WRSNs has recently gained significant attention [11–15].

In practical network applications, the quality of information (QoI) is essential in net-
work performance. Different performance indexes are used to evaluate network QoI for dif-
ferent applications, including quality of coverage [16,17] in environmental monitoring net-
works, tracking accuracy [8] in target tracking networks, and detection probability [18,19]
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in event detection networks. The energy consumption of nodes in the network is different.
If the MC charging sequence scheduling is unreasonable, the nodes will run out of energy
because they cannot be charged in time. It leads to the vulnerabilities in network sensing
coverage, information loss, and reduced reliability. Although the optimization of QoI
in WSNs has become more sophisticated [20], more research needs to be conducted on
WRSNs. As a critical factor in evaluating the network coverage performance, quality of
sensing coverage (QSC) is the foundation of network credibility. This paper studies the
novel problem of mobile charging sequence scheduling for network QSC (MSSQ); how to
optimize the mobile charging sequence of MC to maximize the network QSC.

In the MSSQ problem, the state of all nodes changes correspondingly based on the same
MC charging decisions made at different times, unlike in the traveling salesman problem.
Thus, the MSSQ problem can be formulated as an extended traveling salesman problem
(ETSP). Quantum-behaved particle swarm optimization (QPSO) is a novel optimization
algorithm based on swarm intelligence with the potential to find practical solutions to NP
complete problems due to the gravitational effect of quantum potential energy. To enhance
the convergence efficiency of the algorithm, we present an improved QPSO (IQPSO)
approach, which adaptively adjusts the contraction expansion coefficient during iterations
to optimize convergence speed while ensuring convergence.

The contributions of the paper are summarized as follows:
(1) In this paper, the impact of nodes’ sensing coverage contributions at different

times on network QSC is considered in WRSNs, and a novel mobile charging sequence
scheduling for network QSC (MSSQ) problem is studied.

(2) The MSSQ problem is formulated as an ETSP based on a new performance index
for network QSC, named the total sensing coverage and node survival rate (TSCNS), which
considers the sensing coverage performance and node survival rate.

(3) An effective IQPSO algorithm is proposed for MSSQ to obtain the suboptimal
mobile charging sequence faster, to avoid falling into local optima.

The rest of the paper is organized as follows: Section 2 introduces the related work.
The mobile charging WRSNs and sensing coverage models are described in Section 3.
The MSSQ problem is formulated mathematically in Section 4. The IQPSO algorithm for
MSSQ is presented in Section 5, along with its convergence property. Simulation results
are reported in Section 6 to demonstrate the performance of the IQPSO. Discussions are
presented in Section 7. Conclusions and the future work are given in Section 8.

2. Related Work

Wireless charging of WRSNs can be realized in two methods: fixed-point charging
and mobile charging. In the former, the fixed charger is placed in advance to replenish the
node’s energy [21]. Charging distance restricts the energy conversion efficiency compared
with the fixed-point charging method; therefore, related research on the mobile charging
scheduling problem has also made significant progress recently due to its flexible and
efficient charging characteristics in WRSNs, including offline and online methods.

2.1. Mobile Charging Methods

The offline method assigns the determined charging sequence to MC according
to the specified path when the network state is known. Wei et al. [14] constructed a
multi-objective optimization MC charging path planning model, under which MC can
supplement energy and collect data simultaneously. They proposed a multi-objective ant
colony optimization algorithm to minimize the average data transmission delay. In order
to optimize the charging timeliness of nodes, Jiang et al. [12] defined a secondary perfor-
mance index of charging waiting time and used it to evaluate MC charging performance.
In order to maximize the mobile charging efficiency, Mo et al. [13] transformed the
multi-MC coordination problem into a mixed integer linear programming problem to
minimize the MC energy consumption and ensure that each node will not run out of
energy. In the multi-node charging scheme, MC moves to the clustered charging location
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and charges all nodes within the charging range. Although the charging efficiency of
MC for a single node is reduced under this scheme, the overall charging efficiency is
significantly improved [22]. Han et al. [23] presented an uneven cluster-based mobile
charging algorithm, which determines the nodes to be charged through the uneven
network clusters to reduce the number of off-working nodes. Sun et al. [24] took the
critical path as the core factor and proposed a decomposition strategy to identify the
interacting variables based on the CP. Finally, they combined the grouping strategy and
cooperative evolutionary algorithm and proposed a new algorithm, to optimize the
power allocation strategy in the system. Using multiple MCs for multi-node charging,
Xu et al. [25] determined each MC’s independent closed charging path by designing the
problem of minimizing the maximum charging delay to accelerate the charging speed
and reduce the number of dead nodes.

The offline method assumes that the energy consumption of networks changes period-
ically. However, this method is challenging to implement in practical applications because
the network state is dynamic. In the online method, when the residual energy of the node
is lower than a certain threshold, it will immediately send a charging request to the MC.
MC adjusts the charging action according to the real-time state of WRSNs. He et al. [26]
used a simple and effective nearest-job-next with preemption algorithm to determine the
MC’s charging decision according to the nodes’ position in the request queue. In the
same year, Lin et al. [27] proposed a double warning threshold with double preemption
algorithm, which uses two warning thresholds to adjust the charging priority of different
nodes. In addition, Lin et al. [28] presented a primary and passer-by scheduling algorithm,
which considers the urgency and proximity of balanced charging and ignores the effect of
selecting inefficient nodes. Considering the influence of network topology changes, node
failures and other uncertain factors on the charging performance, Lin et al. [14] proposed a
temporal spatial charging scheduling algorithm for large-scale WRSNs which calculated the
node’s dead time according to the node’s energy state and adjusts the charging sequence
according to the dead time.

2.2. Network QoI Optimization

Most strategies reduce network energy consumption by scheduling nodes to ensure
network QoI under limited network energy [20]; research on QoI optimization in WSNs
is limited. Moreover, Gaudette et al. [7] optimized and controlled each node’s sensing
range to maximize the network QSC. Liu et al. [8] proposed a new multi-step prediction-
based adaptive dynamic programming method for cooperative target tracking. For the
research of target coverage, Xiong et al. [18] presented a two-stage lifetime enhancement
method. In the directional rechargeable network, Zhu et al. [16] redeployed the network
distribution when the sensing angle and energy of the directional node were limited.
Xu et al. [19] proposed a maximizing cooperative detection probability algorithm for
barrier coverage to maximize the detection probability of the network.

In summary, there is a gap in the existing research on the optimization of mobile
charging sequences for network sensing coverage performance. In this paper, from the
perspective of the known state of WRSNs, we propose an IQPSO algorithm to find the
optimal mobile charging sequence ensuring the maximum network QSC .

3. System Models

Figure 1 gives an example of the schematic diagram of the mobile charging WRSN
model, including one sink node (SN), charging station (CS), MC and a set of N rechargeable
randomly deployed nodes S = {s1, s2, . . . , sN}. The positions of the nodes (xsi , ysi ) are fixed
and known 1 ≤ i ≤ N. CS is responsible for replenishing energy for MC. SN collects the
real-time information of all nodes and formulates the mobile charging sequence. According
to the established charging scheduling sequence, MC starts from the CS, moves near to the
node for charging one by one according to the schduling decision, then returns to the depar-
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ture when all nodes have been charged. We assume that the network deployment scenarios
are barrier-free, and accessible. Symbols in this paper are summarized in Nomenclature.

Figure 1. Schematic diagram of the mobile charging WRSN model.

Definition 1. Charging time step, CTS: the time step when MC is ready to charge or has finish-
ing charging.

The following describes the model assumptions and conventions from three aspects: nodes, MC,
and network sensing coverage.

Assumption 1. Sensor Node: Each node has the same function and can predict their own power
consumption and residual energy according to their data acquisition frequency and data transmission
rate [12], which is expressed as Vcs = {v1

cs, v2
cs, . . . , vN

cs} and Er = {e1
r , e2

r , . . . , eN
r }. In this paper,

nodes will stop working if they run out of energy and resume working after being charged.

At the m CTS, the real-time residual energy of the WRSNs is expressed as:

Er(m) = Er(m− 1)−Vcstw(m− 1), (1)

where tw(m) is the total working time of MC, including the MC moving time,
tl(m − 1), and charging time, tc(m − 1), at the (m-1) CTS, which is represented by
tw(m) = tl(m− 1) + tc(m− 1). Assume that Φ is the MC sequence. At the m CTS, sΦ(m)

is selected to charge, and we know that tl(m) = d(m)/vm and tc(m) = em − eΦ(m)
r (m)/vc.

We can see that d(m) is the Euclidean distance between sΦ(m−1) and sΦ(m), and D(m) is the
set of distances between all nodes.

3.1. Mobile Charging Model

Definition 2. Charging cycle: the process of MC leaving the CS to perform the charging task and
then returning is called a charging cycle.

Assumption 2. MCs: MCs can only charge one node at the same time and leave when the node
is fully charged. MC charging power, moving speed, and energy consumption per unit moving
distance are all fixed values. The maximum Em satisfies the required energy to complete the mobile
charging sequence.

At the m CTS, the MC chooses sj to charge, so the real-time MC residual energy,
eMC(m), is expressed as

eMC(m) = eMC(m− 1)− (em − ej
r(m− 1))− vltl(m− 1). (2)
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3.2. Sensing Coverage Model

Assumption 3. Node deployment: incomplete or redundant sensing coverage of the network will
reduce network QSC. In this paper, to avoid network over-sensing coverage redundancy, the area of
cooperation sensing by three covered nodes will not be covered by the fourth node again.

The distribution of network nodes leads to complex intersecting coverage of multiple
nodes. Under different CTS, the entire sensing coverage area of the WRSN changes due
to node energy exhaustion and replenishment. This paper provides an accurate real-time
sensing coverage area calculation scheme. A few variables are introduced first to facilitate
the introduction of this scheme. M ij is the triangle formed by the intersection of si or sj and
two nodes. M ijk is the triangle formed by the intersection of si, sj, and sk within the three
intersecting sensing areas. hi

Mijk is the edge corresponding to si in M ijk. ai
Mijk is the triangle

area enclosed by si and hi
Mijk.

_

h
i

Mijk is the circular arc of hi
Mijk. aMij and aMijk are the areas of

M ij and M ijk, respectively. ai
Mij is the triangular area enclosed by si and hi

Mijk. a_
h

i

Mijk

is the

sector area enclosed by si and
_

h
i

Mijk. ∠Sij is the si top angle in M ij and ∠Sijk is the si top
angle in M ijk.

Definition 3. Area of Cooperative Sensing, AoCS: the sensing coverage area covered by multi-
ple nodes in the WRSN is defined as the AoCS, and the set is expressed as Ac =

{
a1

c , a2
c , . . . , aN

c
}

.
The specific calculation method of the AoCS is shown in Algorithm 1.

Definition 4. Area of Independent Sensing, AoIS: the area independently covered by the node
after removing the ac is called the AoIS, and the set is AI =

{
a1

I , a2
I , . . . , aN

I
}

.

The total AoIS of the network is expressed as aTI =
N
∑

j=1
aj

I =
N
∑

j=1

(
am − aj

c

)
, am = π(Rm)

2.

Under the m CTS, nodes may stop working if they run out of energy, so the WRSN real-time total
sensing area (TSA) changes, denoted as aTSR(m). The specific calculation is shown in (3)–(6),
where ai

v represents the si average AoCS.

ai
v(m) =


lQi

∑
k2=1

ai,Qi(k2)
c (m)−

lqi

∑
k1=1

ai,qi(k1)
c (m)

/2−


lqi

∑
k1=1

ai,qi(k1)
c (m)

/3 (3)

aTC(m) =
N

∑
i=1

ai
v(m). (4)

ai
I(m) = am −


lQi

∑
k2=1

ai,Qi(k2)
c (m)−

lqi

∑
k1=1

ai,qi(k1)
c (m)

. (5)

aTSA(m) = aTC(m) + aTI(m) =
N

∑
i=1

ai
v(m) + am −


lQi

∑
k2=1

ai,Qi(k2)
c (m)−

lqi

∑
k1=1

ai,qi(k1)
c (m)


 (6)
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Algorithm 1 Real-time AoCS Calculation.

1: INPUT: Er(m), D(m), Rm
2: Outputs: Ac(m)
3: For i = 1 : (N − ls(m))
4: Find Qi, qi, lQi and lqi
5: If Qi = ∅
6: ai

c(m) = 0
7: Else
8: For j = 1 : lQi
9: Calculate the ∠Sj,i of sj

10: aMij = Rm
2sin(∠Sji) cos(∠Sji);

11: ai,j
c = πRm

2((∠Sj,i)/360◦)− aMij
12: If sj is not in qi

13: ai,j,k
c = 0;

14: Else
15: Find another three-intersecting node sk
16: If double-count
17: ai,j,k

c = 0
18: Else
19: Center angle ∠Sj,i,k of ai,j,k

c in sj can also be calculated

20: So as ∠Si,j,k and ∠Sk,i,j; hi
Mijk, hj

Mijk and hk
Mijk can also be obtained

21: ss = (hi
Mijk + hj

Mijk + hk
Mijk)/2

22: aMijk =
√

ss(ss− hi
Mijk)(ss− hj

Mijk)(ss− hk
Mijk)

23: Take hi
Mijk as an example

24: hi
Mijk =

√
(2Rm

2 − cos∠Sijk)/2Rm
2

25: The three-intersection triangle and sector area of si

26: ai
Mijk = hi

Mijk(sin(∠Sijk/2)Rm)/2; a_
h

i

Mijk

= π(Rm)
2(∠Sijk)/360◦

27: aj
Mijk, ak

Mijk, a_
h

j

Mijk

and a_
h

k

Mijk

can also be solved

28: ai,j,k
c = aMijk + a_

h
i

Mijk

+ a_
h

j

Mijk

+ a_
h

k

Mijk

− ak
Mijk − ai

Mijk − aj
Mijk

29: End
30: End
31: End
32: End

33: ai
c =

lQi
∑

j=1
(ai,j

c − ai,j,k
c )

34: End

4. Problem of Mobile Charging Sequence Scheduling for Network QSC

In this section, we describe the MSSQ problem and prove that MSSQ is NP-complete.

4.1. Problem Formulation

With the increasing of the number of nodes, more nodes may stop working if they
run out of energy, because the charging capacity of MC cannot meet the network’s total
energy consumption. At this time, the network topology changes, and the coverage
vulnerability makes the sensing information incomplete, thus reducing the network
QSC. How to guarantee the maximum network QSC in unit charging cycle under the
condition of the limited charging capacity of MC is the goal of the MSSQ problem. We
redefine a new performance index for network QSC as sensing coverage and node sur-
vival rate (SCNS), which is explicitly expressed as SCNS(Φ(m)) = δ1

aTSA(m)
atm

+ δ2
N−ls(m)

N ,
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where δ1 = 0.8 and δ2 = 0.2 are two performance parameters, atm is the total area of
sensing coverage of the network. We abstract the MSSQ problem as a multi-objective
optimization problem with nonlinear discrete variables. The primary goal is to maxi-
mize the network sensing range, and the second is to improve the node survival rate.
Therefore, maximizing network QSC is to maximize the sum of SCNS in unit charging
cycle. The MSSQ problem is formulated as

Maximize TSCNS(Φ) =
N
∑

m=1
SCNS(Φ(m))

s.t. 0 ≤ ei
r ≤ em

0 ≤ tc(m)vc ≤ em

. (7)

There are two constraints in MSSQ problem: the residual and supplemented energy of
the node should be greater than 0 and not exceed the node capacity. The largest total SCNS
(TSCNS) we get, the optimal mobile charging sequence Φ∗ we find.

4.2. Proof of NP-Completeness

MSSQ is a multi-objective optimization problem with nonlinear discrete variables and
an ETSP. TSP describes how a traveler starts from a specific city and designs a travel route
to minimize the total travel distance back to the departure city after reaching all cities. This
paper analyzes the particular case of MSSQ (MSSQ-P) through fixed conditions. We prove
that the decision version of MSSQ-P is NP-complete, and MSSQ can also be proved.

Theorem 1. The decision version in MSSQ-P is NP-complete.

Proof. By simplifying the MSSQ, we prove that the decision version of MSSQ-P is NP-
complete. Given a complete set of nodes Gb = (Eb, Vb), Vb contains a CS and N nodes
to be charged, Eb is weighted and expressed as the distance traveled between two nodes.
The decision version of the TSP needs to find the shortest Hamiltonian loop C′ to cover
all nodes in Vb and to minimize the total weight of all links. Based on the above decision
version, we construct instance Gb−p = (Eb−p, Vb−p) of MSSQ-P. Vb−p contains a CS and
a set of N nodes. The link weight between two nodes in Eb−p is less than or equal to
1, with dimension of N, representing the real-time SCNS generated by MC charging
action under different CTS. In MSSQ-P, MC’s capacity meets the network’s overall energy
demand, and the charging power reaches the maximum value of vc−max (nodes can be
fully charged instantly). MC needs to charge all nodes in one charging cycle. Assuming
that the energy consumption of nodes remains unchanged and that the node charged has
sufficient endurance (the working time of the node is much longer than that of the charging
cycle), the node in MSSQ-P only needs to be charged once. The purpose of MSSQ-P is
to determine that there is a mobile charging sequence Φ∗p to maximize the TSCNS. If the
TSCNS of MC is N, Φ∗p can get the optimal network QSC, the network is fully covered and
there is no off-working nodes. Therefore, the optimal solution of MSSQ-P is the solution of
ETSP, so we can prove that MSSQ-P is NP-complete.

Next, we need to prove the existence of the MSSQ-P solution. However, in WRSNs
applications, the computation complexity of building the optimal mobile charging sequence
for N nodes is O(N2). When the state of the network node changes, the generated optimal
mobile charging sequence Φ∗p may no longer be optimal. For example, assuming that
the optimal mobile charging sequence is Φ∗p = {s1, s2, . . . , sN}, we can construct another
Φ′p = {sN , s2, . . . , s1}. When eN

r << e1
r and vN

cs >> v1
cs, sN is likely to stop working in Φ∗p,

the network QSC decreases. At this time, the TSCNS of Φ′p is greater than Φ∗p.

5. The IQPSO Algorithm for MSSQ

Particle swarm optimization (PSO), a traditional heuristic algorithm, is usually
used to solve NP-complete problems. Because the velocity of particles in the PSO
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algorithm is always limited, particles cannot reach any point in the whole feasible
space during the search process. Therefore, the PSO algorithm cannot converge to
the optimal global solution, which is the defect of the PSO algorithm. To avoid the
above situation, researchers put particles into quantum space and proposed the QPSO
algorithm. At this time, the particle motion is described by the attraction generated by
the quantum potential energy. Particles under quantum attraction can appear at any
point in space with a certain probability. The optimal global solution can be obtained
with a certain probability. Therefore, the QPSO algorithm has successfully solved various
optimization problems [29–31].

In the QPSO algorithm, α is a parameter named ’contract expansion’ coefficient [31]
in updating the average optimal position of particles through quantum potential energy,
which is concerned with the convergence of the QPSO algorithm. Therefore, for the MSSQ
problem, we propose an IQPSO algorithm. In IQPSO, as the number of iteration steps
increases, we adaptively adjust α according to the iterations to improve the performance of
the QPSO algorithm.

5.1. Proposed IQPSO Algorithm

In the N-dimensional target search space, the IQPSO algorithm X̃ = {X1, X2, . . . , Xo}
consists of o particle swarms, which represents the possible suboptimal mobile charg-
ing sequence of MSSQ problem. At the k step, the position of the i-th particle is
Xi(k) = {xi,1(k), xi,2(k), . . . , xi,N(k)}. In IQPSO algorithm, the particle does not have
velocity vector, and the best position of the personal particle i is expressed as pi =
{X1, X2, . . . , Xo}. At the k step, the pi(k) of the i-the particle is

pi(k) =

{
Xi(k) ∆TSCNS ≥ 0
pi(k− 1) ∆TSCNS < 0

, (8)

where ∆TSCNS = TSCNS(Xi(k)) − TSCNS(pi(k − 1)). The position with the largest
TSCNS searched in particle represents personal experience represented by pbest, and set
pbest = pi changing with particle optimization process. At the k step, the global best
position of the population Gb is

m1 = arg max
1≤i≤o

{TSCNS(pi(k))}

Gb(k) = pm1(k)
, (9)

where m1 ∈ {1, 2, . . . , o} is subscript of the global optimal particle position in the population.
The global best position should be calculated before each update of the particle’s position.
Thus, only the TSCNS of the current personal position of each particle needs to be compared
with the global best position, if the pi is better, update the Gb. To get the evolution equation
of particles, the following settings are needed

pi,j(k) = ϕj(k)pi,j(k) + (1− ϕj(k))Gb j(k), (ϕj(t) ∈ U(0, 1)). (10)

The IQPSO algorithm assumes that there is a one-dimensional potential well at the
local attraction of each dimension and that every particle in the group has quantum behavior.
Luo et al. [32] demonstrated that the interaction of individual and public search of each
particle is pulled towards its local attractor qi = {qi,1, qi,2, . . . , qi,N} to ensure convergence.
The probability density function of each particle flight position can be derived from the
Schrodinger equation. The next step of the IQPSO iteration is described

Xi,j(k + 1) = qi,j(k)± (hj(k)/2) ln(1/β), (β = rand(0, 1)) (11)

where hj(k) is delta potential well characteristic length, the average position of all the

particles is expressed as rj(k), defined as hj(k) = 2α|rj(k)− Xi,j(k)|, rj(k) = 1
o

o
∑

i=1
pi,j(k),



Appl. Sci. 2023, 13, 2840 9 of 17

where α is a parameter named the ‘contraction-expansion’ coefficient [31]. It is the only
parameter need to be set artificially, which is concerned with the convergence performance
of the algorithm.

The improved methods for α include the fixed value and linear variation methods.
In this paper, we adaptively adjust α according to the iterative steps within the upper and
lower bounds to ensure that the algorithm obtains better global and local search ability in
the whole iteration. When α = 1.78, IQPSO can achieve better global convergence; when
α < 0.5, IQPSO is difficult to converge. So α ∈ [0.5, 1.8] is choosen, the adaptive formula of
α with the number of iteration steps is

αk+1 =

{
1.8−ω(αk − 0.5) cos(kπ/K), i f αk > 1.2
0.5 + ω(αk − 0.5) cos(kπ/K), i f αk ≤ 1.2

(12)

where K is the maximum iterative step size, ω is the adaptive adjustment coefficient, which
is formulated as

ω =

{
1, i f αk+1 > 1.2

0.88, i f αk+1 ≤ 1.2
(13)

In addition, different from the traditional way of closest integer and binary conversion,
we use the swap operator in [31] to optimize the mobile charging sequence in this paper.

The swap operator (SO) is defined as SO(m1, m2), m1, m2 ∈ [1, N], which can swap
the node sm1 and node sm2 in Φ. So, Φ′ = Φ⊕ SO(m1, m2), Φ′ is a new mobile charging
sequence, ⊕ is the function of changing Φ to Φ′ via SO. Multiple SO compose a subset of
swap operators (SSO), where SSO = (SO1, SO2, . . . , SOw), w is the number of SOs.

If SSO1 and SSO2 act successively on the Φ to get another Φ′′, we can combine the
SSO1 and SSO2 to get a new one, which is SSO′′=SSO1⊗ SSO2, where ⊗ means merging
two SSO. At this time, Φ′′ = Φ ⊕ SSO′′. The subset with the least swap operators is
named the subset of the basic swap operator (SBSO). Based on the above, the changes of
SBSO can be extended. We assume SBSO = Φ�Φ′, the SBSO is expected to find, which
can change charging sequence from Φ to Φ′. � means the function of finding SBSO from
Φ to Φ′. Applying the SO algorithm to IQPSO, (10) is updated as

pi,j(k) = ϕj(k)pi,j(k) + (1− ϕj(k))⊕ Gg j(k)± α|1
o

o

∑
i=1

rj(k)� Xi,j(k)| ln[1/β]. (14)

For the MSSQ problem, the execution process of the IQPSO algorithm is as follows:
(1) initialize parameters such as particle swarm o, the maximum number of iterations K
and minimum error emin of algorithm termination; (2) calculate the TSCNS of each particle
and set it as the personal best value to find the current best position pi(k) of each particle;
(3) according to pi(k) get the global best position Gb; (4) update the current pi(k) and Gb
by comparing with the historical information; (5) update particles’ positions; (6) repeat
2–5 until emin is met or k = K; (7) output global best TSCNS and Gb. The pseudocode is
shown in Algorithm 2.
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Algorithm 2 IQPSO algorithm for the MSSQ.

Require: Φ(0), D, Ei, Vcs, em, vm, vc, o, K, emin
Ensure: optimal Φ∗ and TSCNS(Φ∗)

1: for k = 1 : K do
2: for i = 1 : o do
3: Initialize positions randomly Xi(k)
4: Update the pi(k) according to the TSCNS(pi(k)) and TSCNS(Xi(k)) via (8)
5: end for
6: Update the global best position Gb(k) via (9)
7: To get the evolution equation of particles pi(k) from (14)
8: From (12) to (13), adaptively choosing α(k) according to the iteration steps
9: Calculate the new position of particles X̃(k + 1) according to (11)

10: if emin <= emin then
11: Break
12: end if
13: end for
14: Φ∗ = Gb(K)

5.2. Iqpso Convergence Analysis

The principle of the IQPSO algorithm is the same as that of QPSO; therefore, the proof
of the convergence of QPSO is given in [31], and we will not repeat it here. In this part, we
analyze the computational complexity of IQPSO.

Theorem 2. The computational complexity of IQPSO is O(N2oK).

Proof. The calculation of TSCNS within a charging cycle needs to be for the charge of N
nodes. The time complexity of the IQPSO is O(N2). The IQPSO takes O(N2o) times to
traverse the largest TSCNS of all particles in the inner, while the loop needs to be executed
o times. Since the outer loop requires at most K iterations, the computational complexity of
IQPSO is O(N2oK)).

In addition, we used Matlab2021b simulation software to verify the IQPSO algorithm
convergence. The simulation settings in this paper are based on [33], and the specific
parameters are shown in Table 1.

Table 1. Simulation settings.

Parameters Value

L 100
N 80
vc 40
vi

cs 0.2–1.8
em 144
vm 5
vl 1
Em 23,040
Rm 6
ei

in 43.2–51.84
K of the QPSO and IQPSO 40
o of the QPSO and IQPSO 100

As shown in Figure 2a, the x-axis is the number of iteration steps and the y-axis
represents the performance index. The IQPSO is proved to be convergent, converging to
the maximum TSCNS value of 58.69 in about 12 steps. The maximum TSCNS value of
the QPSO is 58.63 in about 19 steps; therefore, the convergence performance of IQPSO is
better than that of QPSO. Similarly, as shown in Figure 2b, IQPSO before iterating 12 steps
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has a large error fluctuation to increase the iteration step size and thus converges to the
maximum TSCNS faster.

(a) (b)

Figure 2. Iterative process of the IQPSO. (a) Performance index. (b) Error.

In order to make our conclusion more convincing, we have performed 20 comparison
simulations, and the results are shown in the following Tables 2 and 3. The position distri-
bution and initial residual energy of 80 nodes in 20 simulations are randomly set; therefore,
the results are different each time. Finally, we averaged the results of 20 comparison simu-
lations to obtain the performance indexes (60.25 and 59.16) and the convergence steps (12
and 17.6) of the IQPSO and QPSO algorithms, respectively. It is clear that the IQPSO is
better than QPSO in convergence performance, especially for the convergence speed.

Table 2. Comparison of convergence speed.

1 2 3 4 5 6 7 8 9 10

IQPSO 9 12 15 8 11 14 13 11 10 15
QPSO 15 19 17 15 17 19 19 15 13 19

11 12 13 14 15 16 17 18 19 20

IQPSO 11 18 15 12 8 12 16 8 10 12
QPSO 21 22 16 17 18 15 19 16 19 21

Table 3. Comparison of TSCNS.

1 2 3 4 5 6 7 8 9 10

IQPSO 55.30 58.08 65.64 63.22 62.58 58.52 58.93 62.53 61.15 63.68
QPSO 54.35 57.22 63.13 62.72 61.88 58.42 58.89 61.86 59.26 63.01

11 12 13 14 15 16 17 18 19 20

IQPSO 59.02 60.37 61.48 55.79 61.98 59.82 59.29 58.55 59.99 59.05
QPSO 58.61 59.28 60.88 55.70 60.11 57.02 58.90 57.89 58.34 56.64

6. Comparative Performance Analysis

In this section, to evaluate the performance of the IQPSO algorithm, we will con-
duct three sets of fifty simulation tests. We analyzed the impact of the IQPSO algorithm
performance on the network QSC; the average network coverage rate and the number of
off-working nodes under different network scales; the MC charging powers; and the MC
moving speeds, respectively. The simulation results are taken as the average of 50 tests to
make the simulation results more persuasive.

6.1. Experimental Details

In this paper, the simulation parameters are shown in Table 1, some details are sup-
plemented. To increase the proposed algorithm’s adaptability to different WRSNs, we
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assumed that 80 nodes are randomly and uniformly distributed in a fixed 100 m × 100 m
2D monitoring plane, and the initial residual energy of each node ei is randomly generated
between 30%em–60%em. The energy consumption of each node, vcs, is randomly generated
between (0.2–1.8) J/s. In addition, the MC moving speed is 5 m/s, the charging power is
40 J/s, and the energy consumption rate of the moving unit distance is 1 J/m. We have con-
ducted a 50-h simulation test on four NVIDIA GeForce GTX 2080 servers for the verification
of the proposed algorithm and different comparison simulations.

6.2. Baseline Algorithms

In this part, the proposed algorithm’s performance will be compared with two typical
heuristic algorithms: the QPSO and Greedy algorithms [34]. The survival rate of the net-
work nodes and the selection of nodes with larger AoIS will affect network QSC; therefore,
regarding the Greedy algorithm, we designed Greedy-E and Greedy-A algorithms.

(1) The QPSO algorithm is an iterative optimization algorithm. The particle represents
a possible charging sequence. Particles have quantum behavior, and their action is affected
by potential quantum gravity. The QPSO algorithm updates the charging sequence by
tracking the individual and global optimal performance indicators found by itself and
the population.

(2) The MC executes a greedy charging strategy in the Greedy algorithm according to
a specific network index. In the Greedy-E algorithm, MC always charges nodes according
to the order of the remaining energy of the node.

(3) Different from the Greedy-E, the MC of the Greedy-A algorithm sorts the AoISs of
the nodes to be charged in real-time from large to small and continuously selects the node
with the largest real-time AoIS to charge.

6.3. Comparison of Network Scales

On the premise that the MC charging power remains unchanged, increasing the
number of nodes will directly affect the charging decision. In this part, we will analyze the
changes in the network QSC, the average coverage rate, and the number of off-working
nodes for N = {30, 50, 70, 90, 110, 130} within the fixed monitoring range (as shown in
Figure 3).

Figure 3. Different network scales.

As shown in Figure 4a, the network QSC gradually enhances with the increase in N.
When N ≤ 50, the suboptimal mobile charging sequences obtained by the four algorithms
are almost the same. The MC charging power approximately meets the overall network
demand. At N = 30, both the IQPSO and QPSO algorithms can achieve full network
coverage in the charging process (Figure 4b). The WRSN works continuously, so the
TSCNS of IQPSO and QPSO can reach 30. As N continues to increase, the charging power
of the MC does not meet the overall consumption of the network, increasing the number of
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off-working nodes, as shown in Figure 4c. At N = 70, the number of off-working nodes
of the IQPSO and QPSO algorithms are highly similar, but it has obvious advantages in
optimizing the network QSC and average coverage rate. δ1 > δ2, thus the MC pays more
attention to the network sensing coverage than the number of off-working nodes and
the IQPSO algorithm will charge the nodes with a larger AoIS and ignore the cost of the
large number of off-working nodes. Therefore, the mobile charging sequence optimization
performance in IQPSO is superior to the other heuristic algorithms in different scale
networks. The more extensive the network, the more obvious the advantages.

(a) (b) (c)

Figure 4. Effect of different network scales. (a) Performance index. (b) Coverage rate. (c) Number of
off-working nodes.

6.4. Comparison of Charging Powers

The charging efficiency of MC is mainly affected by its charging power. If a single MC
is used to ensure the sustainable work of all nodes, it has very high requirements. In this
part, we will analyze the changes in the network QSC, the average coverage rate, and the
number of off-working nodes for vc = {10, 20, 40, 60, 80, 100}.

It can be intuitively seen from Figure 5a that the network QSC enhances with the
increase in vc. As shown in Figure 5b, when vc ≥ 100, in the IQPSO and QPSO algorithms,
the MC can realize ’full-charge instantly’, and the network will consistently achieve perfect
sensing coverage. When vc ≤ 40, the charging power is severely limited, and the nodes with
insufficient remaining energy or off-working nodes cannot be charged in time. Compared
with the other three algorithms shown in Figure 5c, with the decrease in vc, the number
of off-working nodes increases linearly. The minimum number is 20 and the maximum is
64. At this time, the IQPSO algorithm can find the approximate optimal mobile charging
sequence with obvious advantages. When the vc increases to a certain extent, its charging
strategy gradually approaches Greedy-A.

(a) (b) (c)

Figure 5. Effect of different MC charging powers. (a) Performance index. (b) Coverage rate.
(c) Number of off-working nodes.
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6.5. Comparison of MC Moving Speeds

The moving speed also has an important influence on the charging efficiency. The faster
the vm, the shorter the waiting time of nodes. In this part, we will analyze the changes
in network QSC, the average coverage rate, and the number of off-working nodes for
vm = {1, 3, 5, 7, 9, 11}.

It can be seen from Figure 6a that compared with the other three algorithms, the IQPSO
algorithm can still learn the suboptimal mobile charging sequence to ensure the optimal
network QSC. With the increase in vm, although the fluctuation in network QSC obtained by
the four algorithms is relatively stable, the average network coverage rate and the number
of off-working nodes both increase and decrease slowly. As shown in Figure 6b,c, in the
IQPSO algorithm, the average network coverage and the number of off-working nodes are
superior to the other three algorithms. In this paper, the network energy consumed during
MC moving accounts for less than em. As vm increases from one to eleven, tl shortens and
the energy consumed by the nodes decreases. The average network coverage rate and the
number of off-working nodes increase and decrease gradually, eventually becoming stable.
If vm continuously increases, tl → 0, and the energy consumed by the nodes can be ignored.
Therefore, in the MSSQ problem, vm has little impact on network QSC.

(a) (b) (c)

Figure 6. Effect of different MC moving speeds. (a) Performance index. (b) Coverage rate. (c) Number
of off-working nodes.

7. Discussion

The results of this study demonstrate the effectiveness of the proposed IQPSO
algorithm in improving QSC in WRSNs, especially for large-scale networks. This is
an important study, as previous research on mobile charging sequence optimization in
WRSNs has primarily focused on the charging efficiency as a performance index, ignor-
ing the importance of network QSC. Moreover, previous research on the network QSC
optimization has been studied in energy-harvesting WSNs and has yet to be considered
in WRSNs with mobile charging.

The limitations of this study include the following: (1) IQPSO is an off-line optimiza-
tion algorithm that can only be implemented in WRSNs where the state is known and
highly predictable. It cannot effectively find the suboptimal mobile charging sequence
for WRSNs with dynamic changes in the actual state. (2) This paper does not consider
other factors affecting network QSC, such as node mobility or MC carrying capacity.
Future work should address these limitations by designing an online optimization algo-
rithm based on the network dynamic characteristics and considering the impact of other
factors on network performance.

Compared with other studies, the uniqueness of this study is that the impact of the
mobile charging sequence on network QSC is considered. The results found that the IQPSO
algorithm is superior to other common algorithms regarding its global search ability and
convergence speed.

The results of this study have practical implications for the design of MC mobile
charging in WRSNs. Optimizing the mobile charging sequence can ensure that all nodes
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are charged efficiently and that the network maintains a high level of network QSC in
practical applications.

8. Conclusions

Considering the impact of mobile charging sequences on network QSC, this paper
studies the novel MSSQ problem and proposes an IQPSO algorithm. In addition, we pro-
pose a new performance index for the network QSC that considers both sensing coverage
and the survival rate of nodes. The proposed IQPSO algorithm adaptively adjusts the
contraction expansion coefficient to obtain better global search capability and improve the
convergence speed of the algorithm effectively. Through extensive simulation experiments,
the IQPSO algorithm can achieve excellent performance improvements in network sensing
coverage, especially in large-scale WRSNs. The state in real WRSN applications changes dy-
namically according to the real-time demand; therefore, designing online mobile charging
scheduling algorithms for the optimal network QSC is an important research trend.

Author Contributions: Conceptualization, J.L., T.X. and W.X.; methodology, J.L.; software, J.L. and C.J.;
validation, J.L. and C.J.; formal analysis, J.L.; investigation, J.L. and J.W.; data curation, J.L. and C.J.;
writing—original draft preparation, J.L.; writing—review and editing, T.X. and W.X.; supervision, T.X.
and W.X.; project administration, W.X. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the National Natural Science Foundations of China
(NSFC) under grant 62173032, the Foshan Science and Technology Innovation Special Project under
grant BK22BF005, and the Regional Joint Fund of the Guangdong Basic and Applied Basic Research
Fund under grant 2022A1515140109.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

WRSNs Wireless rechargeable sensor networks
WSNs Wireless sensor networks
MC Mobile charger
QSC Quality of sensing coverage
QoI Quality of information
MSSQ Mobile charging sequence scheduling for network QSC
ETSP Extended TSP
QPSO Quantum-behaved particle swarm optimization
IQPSO Improved quantum-behaved particle swarm optimization
SN Sink node
CS Charging station
CTS Charing time step
AoCS Area of cooperation sensing
AoIS Area of independent sensing
TSR Total sensing range
SCNS Sensing coverage and node survival rate
TSCNS Total SCNS
MSSQ-P Particular case of MSSQ
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Nomenclature
Rm Radius of nodes coverage (m)
ei

r Residual energy of si (J)
vi

cs Energy consumption of si (J/s)
tl Time of MC moving (s)
vm Speed of MC moving (m/s)
d Distance between nodes (m)
ai

c AoCS of si (m2)
ai

v Average AoCS of si (m2)
aTI Total AoIS of all nodes (m2)
ai,j

c AoCS of si and sj (m2)
ls Number of off-working nodes
Qi ai,j

c set matrix of si
lQi Dimension of Qi
N Number of nodes in WRSNs
Em MC carrying capacity (kJ)
ei

in Initial energy of si (kJ)
tw Time of MC working (s)
tc Time of MC charging (s)
vc Charging power of MC (J/s)
em Capacity of nodes energy (kJ)
aTC Total AoCS of all nodes (m2)
am Maximum sensing coverage area of each node (m2)
ai,j,k

c AoCS of si, sj and sk (m2)
Φ MC mobile charging sequence
qi ai,j,k

c set matrix of si
lqi Dimension of qi
vl MC’s energy consumption per unit moving distance (J/m)
aTSA Total sensing area (m2)
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