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Received: 18 January 2023

Revised: 16 February 2023

Accepted: 17 February 2023

Published: 22 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Evaluation of a Deep Learning Approach for Predicting the
Fraction of Transpirable Soil Water in Vineyards
Khadijeh Alibabaei 1,2,† , Pedro D. Gaspar 1,2 , Rebeca M. Campos 3 , Gonçalo C. Rodrigues 3,*
and Carlos M. Lopes 3

1 C-MAST Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior,
6201-001 Covilhã, Portugal

2 Deparment of Electromechanical Engineering, University of Beira Interior, Rua Marquês d’Ávila e Bolama,
6201-001 Covilhã, Portugal

3 Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia,
Universidade de Lisboa, 1349-017 Lisboa, Portugal

* Correspondence: gcrodrigues@isa.ulisboa.pt
† Current address: Steinbuch Centre for Computing, Zirkel 2, D-76131 Karlsruhe, Germany.

Abstract: As agriculture has an increasing impact on the environment, new techniques can help meet
future food needs while maintaining or reducing the environmental footprint. Those techniques must
incorporate a range of sensing, communication, and data analysis technologies to make informed
management decisions, such as those related to the use of water, fertilizer, pesticides, seeds, fuel,
labor, etc., to help increase crop production and reduce water and nutrient losses, as well as negative
environmental impacts. In this study, a Bidirectional Long Short-Term Memory (BiLSTM) model was
trained on real data from Internet of Things sensors in a vineyard located in the Douro wine-growing
region, from 2018–2021, to evaluate the ability of this model to predict the Fraction of Transpirable
Soil Water (FTSW). The model uses historical data, including reference evapotranspiration, relative
humidity, vapor pressure deficit, and rainfall, and outputs the FTSW for periods of one, three, five,
and seven days. The model achieved an RMSE between 8.3% and 16.6% and an R2-score between
0.75 and 0.93. The model was validated on an independent dataset collected in 2002–2004 from a
different vineyard located in the Lisbon wine-growing region, Portugal, and achieved an R2-score
of 87% and an RMSE of 10.36%. Finally, the performance of the FTSW in the vineyard prediction
model was compared with that of the Random Forest model, support vector regression, and linear
regression. The results showed that BiLSTM performed better than the RF model on the unseen data,
and the BiLSTM model can be considered a suitable model for the accurate prediction of the FTSW.

Keywords: agriculture; FTSW; deep learning; LSTM; BiLSTM; support decision-making algorithms

1. Introduction

Agriculture plays an important role in environmental degradation due to its extensive
use of fertilizers and pesticides, high water and energy consumption, homogenization of
the agricultural mosaic, and the loss of biodiversity [1–3]. The new concept of “smart farms”
refers to management techniques that use advanced technologies to improve food quantity,
quality, and safety while minimizing environmental impacts [4,5]. The purpose of smart
farming includes increasing farming sustainability and productivity, improving the knowl-
edge and skills of the agricultural workforce, optimizing costs, reducing waste, creating
smart agriculture information and Decision Support Systems (DSSs), reducing greenhouse
gas emissions, and developing resilience and adaptation to climate change [4–8].

Internet of Things (IoT) sensors and Machine Learning algorithms (ML) are technology
sectors related to smart farming [8]. The IoT is a worldwide network of physical items that
are outfitted with sensors and actuators that link to the Internet in real-time in order to be
detected, sensed, and controlled remotely [9]. The sensors are used to monitor soil water
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content, climate parameters, animal behavior, cultural practices, etc. ML is a subfield of
artificial intelligence that analyses data, learns from data, recognizes patterns, and makes
predictions with little human intervention. It is used to improve the intelligence of the
sensors and analyze the large datasets retrieved from the sensors. Ultimately, it can support
the design of DSSs [4,5,10].

A subclass of ML known as Deep Learning (DL) attempts to discover usable repre-
sentations of the unknown structure in the input distribution, often at many levels, using
the learned lower-level features as the input to the higher-level features [11,12]. Compared
to traditional ML models, DL algorithms have more hidden layers and can automatically
extract features from the input data. Specific applications of DL in agriculture manage-
ment include disease detection [13–15], fruit detection and yield prediction [16–18], weed
detection [19–21], soil management [22,23], and water management [24,25].

In recent years, several studies have attempted to create a DSS for irrigation manage-
ment using ML and DL algorithms. These algorithms provided estimates for irrigation-
related variables such as soil moisture content and evapotranspiration. In a study conducted
by Acharya et al. [26], ML algorithms including Multiple Linear Regression (MLR), Sup-
port Vector Regression (SVR), Boosted Regression Trees (BRTs), Random Forest Regression
(RFR), multiple regression trees (CART), and Artificial Neural Networks (ANNs) were
used to predict soil moisture in the Red River Valley of the North in North Dakota and
Minnesota, where corn, soybeans, wheat, sugar beets, barley, canola, and potatoes are
grown. The best results were obtained with the RFR and BRT algorithms. To predict
soil moisture measured by Soil Moisture Active Passive (SMAP) V3 satellite observations
using the LSTM method, Fang et al. [? ] used atmospheric influences, static physiographic
attributes such as the sand, silt, and clay fractions, bulk density, and soil capacity and
simulated soil moisture from the Noah hydrologic model [? ]. Using model simulations, the
approach largely removes biases and improves predicted soil moisture by achieving low
test root-mean-squared errors (0.035) and high correlation coefficients of more than 0.85.
Paul and Singh [29] predicted soil moisture for a period of 12 to 13 weeks in advance using
machine learning approaches such as linear regression, support vector machine regression,
Principal Component Analysis (PCA), and naive Bayes. These methods were applied to
four separate datasets from 13 different districts in West Bengal and to four different crops
(potato, mustard, rice, and cauliflower). The best model was Support Vector Machine
(SVM), followed by linear regression models, which outperformed the PCA and naive
Bayes models. In Adeyemi et al. [30], using historical data on soil moisture, rainfall, and
meteorological variables, a neural network was trained to predict volumetric soil moisture
content one day in advance. Three study sites with land covered in farmland, arable land,
and grassland provided the data for building LSTM models to predict soil moisture. An
R2-score greater than 0.94 was achieved in the model evaluation at each test site. Hajjar et
al. [31] proposed the use of two nonlinear regression models, Multilayer Perceptron (MLP)
and support vector regression, to estimate vineyard soil moisture from digital photographs.
Both models were trained using pixels encoded with the RGB color model extracted from
digital photographs of the soil, combined with the associated known soil moisture levels,
to predict moisture content from newly acquired images. In the analysis of the test data,
both approaches were successful in predicting soil moisture and provided good correlation
coefficients between observed and predicted soil moisture. An LSTM model was employed
by Zhang et al. [32] to predict groundwater level rise in agriculture. They used 14 years
of time series data, including information on water table depth, temperature, reference
evapotranspiration, rainfall, and water diversion. In terms of forecasting the depth of the
water table, the proposed model outperformed the Feed-Forward Neural Network (FFNN)
model in terms of the R2-score.

In other research, the timing and volume of irrigation are directly predicted. A Deep
Q-learning (DQN) model was applied by Chen et al. [33] to a rice irrigation decision
strategy based on short-term weather forecasts. Daily recorded weather information from
three stations during the rice growing season was used as the input of the model. The DQN
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irrigation approach showed a significant reduction in irrigation water volume, irrigation
time, and drainage water without yield loss compared to the results of the conventional
irrigation strategy. The DQN model was used by Alibabaei et al. [34] to schedule the
irrigation of a tomato crop in Portugal using climatic Big Data. Soil moisture estimation was
used as the state of the environment of the agent. The agent decided when and how much
to irrigate based on the predicted next state of the environment (estimate of soil moisture
and some climate factors for the next day). Compared to fixed and threshold irrigation, the
DQN model showed a reduction in irrigation water volume without affecting production.

Soil water-holding capacity is a key factor in crop growth and yield and plays a critical
role in Mediterranean rain-fed crops. Plant available soil water at a given rooting depth can
be estimated from the Fraction of Transpirable Soil Water (FTSW) calculated as the ratio
between the Available Soil Water (ASW) and Total Transpirable Soil Water (TTSW) [35,36].
The strong and stable relationship between the FTSW and vine leaf water potential allows its
use as an indicator of soil water deficit in vineyards [35]. Lebon et al. [37] used a soil–plant–
atmosphere system composed of simply defined subsystems and a geometric vine canopy
model for estimating the FTSW in the Alsace region, France. Simulations were performed
over four seasons and compared with the FTSW data measured with a neutron probe. In
general, the model provided a good estimate of the evolution of the FTSW, but it was very
sensitive to most canopy parameters and depended on their accurate determination or
simulation. In Alentejo, southern Portugal, Lopes et al. [38] used the FTSW to study the
effects of vineyard soil management practices combined with deficit irrigation strategies on
the vine water status and performance of the Tempranillo grape variety. The study showed
that the FTSW is a strong indicator of plant water status, enabling the discrimination of
the effects of soil management practices on water use. Phogat et al. [39] used the Pedo-
Transfer Function approach (PTF) to estimate Plant Available Water Capacity (PAWC) in the
Barossa region, South Australia. They obtained an accurate estimate of the PAWC (which is
usually time-consuming and expensive) using the Pedo-Transfer Function (PTF) approach,
suggesting that it is possible to obtain estimates of the PAWC at the regional scale from
easily measured data. Romas and Martínez-Casasnovas [40] investigated the variability of
soil water and its impact on the amount of soil water available to grapevines under various
rainfall patterns in the Penedés wine region, Spain. The Soil Water Assessment Tool model
(SWAT) was used to simulate soil water during the period of 2000–2012. The FTSW was
used as an indicator of water availability. The model enabled determining the effects of
soil water content in early and later maturing grape varieties, highlighting the importance
of considering water availability in varietal selection. Valdés-Gómez et al. [41] assessed
how well the Simulateur mulTIdisciplinaire pour les Cultures Standard (STICS) model
captures grapevine phenology, biomass production, yield, and soil water content in two
scenarios with different rainfall distributions and water management approaches. A good
estimate of the main stages of grapevine phenology and soil water content was obtained.
A comparison of the FTSW with grapevine leaf water potential measurements showed
that the vine water stress period was correctly estimated. The FTSW can be calculated
using soil moisture content data recorded by Internet of Things (IoT) sensors. However,
IoT sensors have some drawbacks, including the need for maintenance and the possibility
of data pauses. When IoT sensors fail or no sensor is available in the field, a model that
can predict the FTSW with minimal inputs is a good tool for estimating the missing data.
To the best of our knowledge, there is no study on the estimation of the FTSW using DL
models. This literature review highlights the various machine learning and deep learning
algorithms that have been applied to irrigation management, with a focus on predicting
the soil moisture, irrigation amount and timing, and soil water holding capacity. These
studies demonstrated the potential of these algorithms to improve irrigation management
and decision-making.

The hypothesis behind this research was that LSTM can detect the relationship be-
tween historical, weather data (temperature, relative humidity, rainfall, wind speed, vapor
pressure deficit, solar radiation), reference Evapotranspiration (ETo), and the dependent
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variable, FTSW, in a vineyard and that these relationships can be utilized to effectively
forecast the FTSW for the future or for other vineyards with comparable climate, soil type,
and management. The objectives of this study were (1): to assess the ability of the LSTM
model to predict the FTSW in conjunction with observed data from IoT sensors deployed
in a commercial vineyard in Portugal with minimal inputs, (2) to evaluate the prediction
result for another vineyard in a completely different situation with an independent dataset.

The remainder of this paper is organized as follows. An explanation of the models and
methods used in this work, the dataset used, and the training configuration is provided in
the Materials and Methods Section 2. The results of the proposed model when applied to
the validation datasets are presented in Section 3. The summary of the work can be found
in Section 4.

2. Materials and Methods
2.1. Recurrent Neural Network

The Recurrent Neural Network (RNN) is a type of neural network designed to process
sequential data in a temporal dataset [42]. Long dependence relationships can be captured
and stored using RNN models. Unlike other deep learning algorithms, RNN models use a
look-back period, which is the number of previous time steps used to predict the next time
step. The hidden RNN layers consist of RNN units, which, in turn, consist of RNN cells,
with the number of cells in each unit corresponding to the look-back period. The number of
hidden layers and units comprises the hyperparameters that should be set before training
the model. The output of the cell Ct is determined by Equation (1):

ht = σ
(
Wxt xt + Wht ht−1 + bt

)
(1)

where xt is the input of the cell, ht−1 is the output of the cell Ct−1, Wxt is Wht−1 , and bt
are the weights and biases that should be trained and adjusted during the training of the
model to minimize the loss function. The sigmoid function σ is used to add nonlinearity to
the model.

The RNN model has the disadvantage that, for large inputs, the gradient of the loss
function can approach zero during training, which means that the weights of the first layer
cannot be updated. Long Short-Term Memory (LSTM) is an artificial RNN architecture that
allows gradients to flow unchanged, avoiding the vanishing gradient problem in classical
RNN cells [43].

In the LSTM layer, there are several gates such as the forget gate, the input gate, and
the cell memory. These gates help to retain the useful information from the previous output
layer and forget the information that is no longer useful to remember [44]. The LSTM
cell must first decide which data in the cell to ignore using the forget gate. The forget
gate outputs numbers between 0 and 1, where 1 denotes complete preservation of this
information by parsing the output of the last cell, ht−1, and the input of the current cell, xt.

ft =σ(W f [ht−1, xt] + b f ) (2)

σ =
1

1 + e−x (3)

Equation (4) is used by the input gate it to determine which values to update while
shielding the unit from unrelated inputs. Then, using Equation (5), the activation function
tanh creates a vector of new candidates C̃t to add to the state.

it =σ(Wixxt + Wihht−1 + bi) (4)

C̃t =tanh(Wzxxt + Wzhht−1 + bz) (5)

tanh =
(ex − e−x)

(ex + e−x)
(6)
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The unneeded information of the previous unit is then forgotten by multiplying the
forget gate ft by Ct−1, while it is multiplied by C̃t to preserve the new valuable information
(Equation (7)).

Ct = ft � Ct−1 + it � C̃t (7)

What information is used in the cell to produce the output of the LSTM unit is
determined by the output gate ot through Equation (8).

ot = σ(Wo[ht−1, xt] + bo) (8)

Finally, the output of the unit is determined by Equation (9).

ht = ot � tanh(Ct) (9)

The weights (W) and biases (b) of the gates are changed during the LSTM training
process to ensure that the loss function reaches the minimum value.

A Bidirectional LSTM (BiLSTM) is a sequence-processing model consisting of two
LSTM layers, one of which processes inputs forward and the other backward. Figure 1
shows a bidirectional LSTM layer.

Figure 1. Bidirectional LSTM layer. Reprinted from ref [44].

2.2. Random Forest

A supervised learning technique called Random Forest (RF) uses ensemble learning
with decision trees as the framework [45]. The ensemble learning method combines
predictions from different machine learning algorithms to provide predictions that are more
accurate than those from a single model. Ensemble approaches in statistics and machine
learning use numerous learning algorithms to achieve better predictive performance. In
the RF algorithm, several decision trees are built throughout the training time in a Random
Forest, and the prediction of each tree is the mean of the results. In the case of regression,
decision trees start at the root of the tree and follow splits based on the outcomes of the
variables until they reach a leaf node. Figure 2 shows the Random Forest algorithm.

There are several hyperparameters that should be established before training the
RF model. The hyperparameters include the bootstrap method for sampling data points
(with or without replacement); the max depth, i.e., the maximum number of levels in each
decision tree; the max features, i.e., the number of features to be considered in the search for
the best split; n_estimators, i.e., the number of trees in the forest; the min samples leaf, i.e.,
the minimum number of data points allowed in a leaf node; and the min samples spilled,
i.e., the minimum number of data points placed in a node before the node is split.
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Figure 2. Random Forest’s structure. Adapted from ref [46].

2.3. Support Vector Regression

A supervised learning approach called Support Vector Regression (SVR) is used to
predict discrete values. Finding the best-fitting line is the basic idea of SVR. In SVR, the
hyperplane with the largest number of input points is the line that best fits the data. A set
of mathematical operations that accept data as the input and shape them into the desired
form is called kernels in the SVR model. They are typically used to locate a hyperplane in a
higher-dimensional space. The most-commonly used kernels are the, Radial Basis Function
(RBF), nonlinear, polynomial, and linear. Depending on the dataset, any of these kernels
can be used.

Like RF, there are several hyperparameters involved in training an SVR model. The
width of the tube around the predicted function is determined by the value of Epsilon (hy-
perplane). Gamma determines the degree of the desired curvature of a decision boundary,
and C is a hyperparameter for error control in SVM.

2.4. Datasets Used

The trained dataset was collected from 2018 to 2021 at a commercial vineyard (Colinas
do Douro) located in the Douro Superior wine-growing region, Portugal (40.49 N; 6.59 W),
at an elevation of 463 to 477 m and a slope of 9%. The vines were spaced 1.0 m within
and 2.4 m between east–west-oriented rows and trained on a vertical shoot positioning
with a pair of movable wires. Shoots were trimmed at a height of 1.0 m. The climate is of
the Mediterranean type with continental influence, presenting very hot and dry summers.
The soil is of schist origin with a sandy loam texture, a pH (KCl) of 5.6, and 0.39% of
organic matter.

An in situ (Enviroscan) probe composed of four capacitance sensors located at 20, 40,
60, and 80 cm depths and a GPRS communication unit were used to assess soil moisture.
An automatic weather station was established near the vineyard to measure the minimum,
maximum, and average temperature, as well as the minimum, maximum, and average
relative humidity, wind speed, rainfall, and solar radiation. The weather station platform
also delivers the ETo (estimated by the Penman–Monteith equation [47]). During the
experimental period (2018–2021), the mean air temperature ranged between −2.12 ◦C
and 33.92 ◦C and the mean total annual rainfall was 763.2, 417.2, 602.8, and 514.8 mm,
in 2018, 2019, 2020, and 2021, respectively. The vineyards of Colinas do Douro are
drip-irrigated. The irrigation strategy used is sustainable deficit irrigation consisting of a
periodical application of 5.5 mm per irrigation event. Figure 3 shows the monthly rainfall,
ETo, and temperature (average minimum, maximum, and average) at Colinas do Douro
from 2018 to 2021. Further details of the climate data can be found in Table 1.
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(a) (b)

Figure 3. Monthly rainfall and ETo (a) and monthly average temperatures (b) recorded at the weather
station of Colinas do Douro from 2018 to 2021.

Table 1. Climate data details of the weather station of Colinas do Douro from 2018 to 2021. The
temporal resolutions of all the variables is daily.

Variables

Year
2018 2019 2020 2021

Mean Std Mean Std Mean Std Mean Std

Temp (◦C)
Avg 14.97 7.59 14.86 7.05 15.58 7.16 14.87 6.79
Max 21.79 9.38 22.09 8.84 22.56 9.24 21.96 8.65
Min 9.43 5.9 8.95 5.64 9.8 5.35 8.96 5.54

RH(%)
Avg 64.72 17.88 63.14 17.43 65.08 19.03 63.97 16.15
Max 85.05 12.06 84.6 11.86 85.83 13.75 85.57 10.18
Min 41.2 20.34 38.73 20.77 41.32 21.59 39.82 19.32

WS (m/s) Avg 1.63 1.16 1.64 1.23 1.52 1.1 1.43 1.06
Max 4.3 2.21 4.14 2.17 3.98 2.11 3.8 2.04

VPD (kPa) Avg 0.9 0.85 0.89 0.73 0.93 0.9 0.86 0.72
Min 0.23 0.27 0.21 0.22 0.23 0.29 0.2 0.2

Rainfall (mm) Sum 2.1 5.2 1.14 5.22 1.65 5.11 1.41 4.23

ETo (mm) Daily 3.1 2.03 3.26 2.09 3.13 2.09 3.11 2.03

The abbreviations stand for the following: Max: Maximum, Min: Minimum, Avg: Average, Std: Standard
deviation, Temp: Temperature, RH: Relative Humidity, VPD: Vapor Pressure Deficit, WS: Wind Speed, ETo:
reference Evaporation.

The ratio between the Available Soil Water at a given time (ASW) and the Total
Transpirable Soil Water (TTSW) of a certain crop in a given soil is called the Fraction of
Transpirable Soil Water (FTSW) [48]. The ability of the crop to absorb moisture from the
soil is usually less than the theoretical volume of soil water calculated by the field capacity
minus the permanent wilting point. Therefore, at a given date, the ASW was calculated
as the difference between the soil water content on the day of the measurements and the
lower limit of water uptake, reached at the end of the season of the driest year (achieved in
2020; Table 1), before the first rainfall. The FTSW was calculated as the ratio of the ASW to
the TTSW [35]. The TTSW up to an 80 cm soil depth was estimated as the soil water reserve
held between the field capacity and the lower limit mentioned above. Table 2 and Figure 4
show the details of the calculated FTSW from the soil moisture recorded by the sensor and
the calculated FTSW at Colinas Do Douro, respectively.
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Table 2. Soil moisture data details for each season (from April to October) from Colinas do Douro.
VSM indicates Volumetric Soil Moisture content.

Variables
Temporal Year
Resolution 2018 2019 2020 2021

Max Min Max Min Max Min Max Min

VSM (%)

20 cm Daily 31.56 10.85 31.82 11.16 32.52 10.86 32.40 11.18
40 cm Daily 28.96 10.89 28.06 10.64 29.75 10.62 29.83 12.01
60 cm Daily 31.68 11.05 27.39 10.96 31.93 11.24 29.99 12.27
80 cm Daily 33.43 12.56 27.53 12.56 33.29 12.79 28.29 13.43

VSM (mm) summed Daily 209.11 81.15 190.04 84.52 217 79.33 202.19 85.66

(a) (b)

(c) (d)

Figure 4. Calculated FTSW of the four seasons for Colinas do Douro from 2018 to 2021. (a) FTSW in
2018 season, (b) FTSW in 2019 season, (c) FTSW in 2020 season, and (d) FTSW in 2021 season.

Test Dataset

Model validation was performed using an independent dataset collected during three
growing seasons (2002 to 2004) in a 15-year-old ‘Cabernet Sauvignon’ (Vitis vinifera L.)
rain-fed vineyard, grafted on 110 R rootstock, located at Quinta de Pancas, Alenquer,
western Portugal ((39.06 N; 9.03 W). The vines were spaced 1.0 m within and 2.5 m be-
tween east–west-oriented rows and trained on a vertical shoot positioning with a pair
of movable wires. Shoots were trimmed twice, between bloom and veraison, at a height
of 1.0 m. The soil presented 24.3% of clay, 20.2% of silt, 55.5% of sand (sandy clay–loam
soil), and 0.7% of organic matter. The climate is of the Mediterranean type with Atlantic
influence. The weather data were recorded by an automatic weather station located within
the experimental vineyard. During the experimental period (2002–2004), the mean air
temperature ranged between 10 ◦C and 23.6 ◦C and the mean total annual rainfall was
885.3, 941.8, and 564.4 mm, in 2002, 2003, and 2004, respectively. The experimental design
was a randomized complete block with three soil management treatments. However, for
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validation purposes, only data from one treatment—soil tillage in the inter-row combined
with herbicide under the vines—was used, which is comparable to the tillage method used
at Colinas do Douro. Soil moisture was assessed with a portable capacitance probe (Diviner
20001: Sentek Environmental Technologies, King Town, Australia). Readings were made
periodically between bud break and harvest in 12 access tubes (3 per replication), placed
along the row between two contiguous vines, at increments of 0.1 m from the soil surface
to a depth of 1.0 m. For each access tube, soil moisture data were computed for an 80 cm
depth, and the average was used as the input for the test dataset. The total average soil
available water, up to an 80 cm depth, was 124 mm, calculated as the difference between
the field capacity and the lowest soil moisture value reached at the end of the season of the
driest year (2003), before the first rainfall. For more details, see [49].

Similar to Colinas do Douro, the difference between the soil water content at field
capacity and the minimum soil water content was used to determine the TTSW for each
access tube, and the amount of ASW was calculated as the difference between the soil water
content on the day of measurements and the minimum soil water content. The ratio of the
ASW to the TTSW was used to calculate the FTSW [48]. Figure 5 show the FTSW calculated
from the soil water content data for Quinta de Pancas.

(a) (b)

(c)

Figure 5. Calculated FTSW for Quinta de Pancas from 2002 to 2004. (a) FTSW in 2002 season,
(b) FTSW in the 2003 season, and (c) FTSW in 2004 season.

As the daily ETo value was missing from the Quinta de Pancas dataset, the data
were estimated by the Hargreaves–Samani method [50,51]. This method estimates the ETo
using only the observed maximum and minimum temperatures and the estimation of the
extraterrestrial radiation, expressed by

ETo = 0.0135 × kRs × 0.408Ra × (Tempavg + 17.8)× (Tempmax − Tempmin)
1/2 (10)

where ETo is the reference evapotranspiration (mm day−1); Ra is the extraterrestrial radi-
ation (MJ m−2 day−1); 0.0135 is a factor for conversion from the U.S. to the international
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system of units; kRs is the radiation adjustment coefficient (◦C−0.5). The empirical coefficient
kRs was originally taken to be 0.17 ◦C−0.5 [50].

2.5. Data Preprocessing

Data normalization aims to convert the values of the dataset into a normal form
without distorting the variations in the ranges of values. For many machine learning
estimators, this is a typical requirement. In this paper, the missing data were removed from
the dataset, and normalization was applied. This involved transferring the data to a new
scale using Equation (11).

xnew =
xold − xmean

σ
(11)

where xmean and σ are the mean and standard deviation of the input data.

2.6. Training Configuration

Several BiLSTM models with two BiLSTM layers were trained to estimate the FTSW.
These models differed from each other in the number of input variables, the model look-
backs (input size), and the length of the output.The length of the output was set to 1, 3, 5,
and 7 days for the FTSW forecast, and the number of look-backs was set to 3, 5, and 7 days
of the historical data.

Hyperparameters’ Selection

The hyperparameters are the variables that determine how the network is trained (e.g.,
learning rate) or the parameters that determine the structure of the model (e.g., the number
of hidden layers). The process of determining the best combination of hyperparameters
to maximize model performance is known as hyperparameter tuning (or hyperparameter
optimization). It has been demonstrated that changing the number of nodes per layer
in LSTM models has a more significant effect on the results than altering the number
of layers [52]. To predict the simulated soil moisture, the network designs of LSTM and
BiLSTM with two, three, and four LSTM layers and one and two BiLSTM layers were
investigated in [44]. The BiLSTM model with two layers was utilized for prediction because
it achieved the best accuracy in the above-mentioned study.

The search for the hyperparameters is an optimization problem. The goal is to find
the hyperparameters such that they maximize the loss function. There are several methods
for solving this problem, such as greedy search [53], random search [54], and Bayesian
optimization [55]. In greedy search, a search space must be selected, i.e., a region in
which each point represents a different model configuration and each dimension represents
a hyperparameter. The algorithm evaluates each position in the grid to find the best
hyperparameters. The disadvantage of this method is that the space is discrete and the
algorithm’s search in each space is time-consuming. To address the time-consuming
drawback of greedy search, the random greedy search algorithm randomly selects a value
from the search space, but the values are still randomly selected and may result in a
hyperparameter that is not the best. Bayesian optimization is used to solve the optimization
problem when the objective function is a black box, such as the lossfunction in DL models.
Tuning the hyperparameters using Bayesian optimization can reduce the time required
to find the best parameter set and improve the generalization performance in the test set.
Moreover, the space can be chosen as a continuous space. The other hyperparameters in
this study were the number of units in each BiLSTM layer, the learning rate, the learning
rate decay, the batch size, and the dropout size. The Bayesian optimization algorithm [55]
was used to select these hyperparameters. The set of hyperparameters is shown in Table 3.

Table 3. Hyperparameters selected by the Bayesian optimization algorithm.

Model Batch Size Dropout Size Learning Rate Decay No. of Units

FTSW prediction model 40 0.09313 0.003968 0.003456 158
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3. Results and Discussion

The permutation feature importance technique [56,57] was used to calculate the im-
portance of the features. The training set for this method is used to train a model, and
the validation set is used to measure the increase in the prediction error after a feature
is permuted in the validation set, destroying the link between the feature and the true
outcome [45]. Since the model depends on the feature for prediction in this scenario, a
feature is considered “important” if permuting its values results in an increase in the model
error. Figure 6 shows the importance of each feature using the BiLSTM model and permuta-
tion feature importance technique. The daily ETo was the most-important feature because
the permutation of this feature caused the largest increase in the MSE from 0.3 to 1.75.

Figure 6. Feature importance using the BiLSTM model and the permutation feature importance
technique.

The feature with the highest importance (ETo) was selected as the main independent
variable. Then, the other features were added to the group of independent variables one
by one in order of importance, and the Variance Inflation Factor (VIF) value for this group
of variables was calculated. The VIF [58] with a threshold of five was used to remove the
multicollinear variables. The variable is retained as a predictor if the VIF value is below
the threshold; otherwise, it is removed from the group. Following these processes, the
historical data selected as the input to the FTSW forecast model were the month, average
RH, minimum VPD, rainfall, and daily ETo.

Since the VPD (min) was not present in the Quinta de Pancas dataset, a model without
this variable was also trained to evaluate the performance of the model on the Quinta de
Pancas dataset. In general, with various input variables and various input and output
lengths, fifteen BiLSTM models were trained (see Table 4).

Table 4. Different inputs of the model and different input and output sizes used to train the
BiLSTM model. Look-back indicates the number of days used to predict the FTSW, while irr
indicates irrigation.

Input Variables Input Length (Look-back) Output Length

Month, ETo, RH (avg), rainfall 3, 5,7 1

Month, ETo, rainfall RH (avg), VPD (min) 3, 5, 7 1

Month, ETo, rainfall, RH (avg), VPD (min), irr 3, 5, 7 3, 5, 7
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3.1. Training of the FTSW Prediction Model

Figure 7 shows the R2-score and RMSE during training of the BiLSTM model with
input including the VPD (min) and irrigation amount and seven days of look-back.

Early stopping [59] (an optimization strategy intended to lessen overfitting without
sacrificing model accuracy) was used. The validation loss of the model was tracked during
training, and if it did not improve after a certain number of iterations, the training was
stopped. Figure 7 illustrates that the validation loss stopped improving at around Step 110,
but the training loss continued to improve.

The model with an output length of seven days required more time to complete the
training compared to the model with an output length of one day.

Figure 8 shows the R2-score and RMSE during the training of these BiLSTM models
with seven days of look-back and the output size. Figures 7 and 8 show that overfitting
during training was more likely when the output size was greater than one and that the
model overfit the training set without the early stopping optimization.

(a) (b)

Figure 7. (a) R2-score and (b) RMSE during training of the BiLSTM model with the output of one
day, seven days of look-back, and the VPD as the input to the model.

(a) (b)

Figure 8. (a) R2-score and (b) RMSE during training of the BiLSTM model with an output length of
seven days, seven days of look-back, and the VPD as the input to the model.

3.2. Performance of the FTSW Prediction Model on Colinas do Douro Dataset

The performance of the models was evaluated using the Root-Mean-Squared Error
(RMSE) and the R2-score. Table 5 shows the performance of the model with different
look-backs and a forecast of the FTSW for the last day. The model performance improved
when look-backs were increased from one to seven days, with a 14–15% increase in the
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R2-score and a 5.85–7.31% decrease in the RMSE on the Colinas do Douro test set. Therefore,
one of the important parameters affecting the BiLSTM model is the look-back of the model.

Table 5. The performance of the BiLSTM model to predict the FTSW one day ahead with different
input variables.

Input Variables Look-Back
(Days)

Colinas do Douro

Validation Set Test Set

R2-Score RMSE (Normalized) R2-Score RMSE

Month, ETo,
RH (avg), rainfall,

3 0.75 0.6 0.75 16.6

5 0.81 0.56 0.81 14.4

7 0.87 0.54 0.90 10.75

Month, ETo, rainfall
RH (avg), VPD (min)

3 0.77 0.50 0.79 15.39

5 0.83 0.53 0.85 12.78

7 0.92 0.41 0.93 8.98

Month, ETo, rainfall,
RH (avg), VPD (min), irr

3 0.75 0.51 0.79 15.34

5 0.87 0.46 0.86 12.53

7 0.96 0.31 0.94 8.03

Moreover, the performance of the BiLSTM model with the VPD (min) in its input
features increased by 3–4% in the R2-score compared to the model trained without these
two variables as the input.

To examine the effect of irrigation amount on the FTSW estimation, a model was
trained to include irrigation as an input to the model. As shown in Table 5, the R2-score
increased in the range of 1%. Since the number of irrigations in the Colinas do Douro was
low (between four and eight times in the period from 2018 to 2021), the influence of this
variable on the performance of the model was also low.

Figure 9 compares the observed value of the FTSW with the predicted values for the
models with a look-back (input size) of seven days and an output length of one and seven
days. The yellow line shows the best fit, and when the points in the scatter plot are closer
to the line, better performance was obtained. As can be seen in Figure 4a,b, the points on
the scatter plot for the model with the VPD as input were closer to the best-fit line than for
the model with the VPD as the input, so better performance was obtained when the VPD
was used as the input to the model.

Table 6 shows the performance of the model trained with different look-backs and
lengths of output. The model performed better when the look-back was extended, similar
to the case where the output length was one, and the performance of the BiLSTM model
with the VPD (min) in its input features was better than that of the BiLSTM without this
feature. As shown in Tables 5 and 6, the model with an output length of one had a better
performance compared to the models with an output size of three, five, and seven days.
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(a) (b)

(c) (d)

Figure 9. Comparison between the observed and predicted values of the FTSW. The results of the
model with the Vapor Pressure Deficit (VPD) as the input are shown in (a,c), while the results of
the model without this variable as the input are shown in (b,d). A perfect fit is represented as a
yellow line.

Table 6. The performance of the BiLSTM-trained model to predict the FTSW with different look-backs
and lengths of the output.

Input Variables Look-Back Output

Colinas do Douro

Validation Set Test Set

R2-Score RMSE R2-Score RMSE

Month, ETo, RH (avg), rainfall, irr

3 3 0.61 0.60 0.58 21.37

5 5 0.80 0.46 0.74 16.77

7 7 0.32 0.89 0.90 10.35

Month, ETo, RH (avg), rainfall, irr
VPD (min)

3 3 0.69 0.57 0.64 19.68

5 5 0.44 0.80 0.81 14.54

7 7 0.31 0.88 0.92 9.19
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3.3. Performance of the FTSW Model on Quinta de Pancas Dataset

As was mentioned, the ETo for Quinta de Pancas was calculated using Equation (10).
First, Equation (10) was evaluated using the Colinas do Douro dataset, and the validation
yielded an RMSE of 1.10 mm and an R2-score of 0.92%. The evaluation was performed to
ensure that the formula can estimate the ETo with reasonable error.

Figure 10 shows the monthly accumulated rainfall and estimated ETo using Equation (10)
for Quinta de Pancas from 2002 to 2004. Note that the recording of the climate data for this
dataset was not continuous. The value of zero for the ETo in the plot shows these missing
data. A comparison of Figures 3 and 10 shows that the maximum monthly ETo totals at
Colinas do Douro were in the range of 175–200 for each season and between 140 and 155
for Quinta de Pancas.

Figure 10. Monthly sum of rainfall and estimated ETo for Quinta de Pancas from 2002 to 2004.

After ETo estimation, the BiLSTM model was used to predict the FTSW for Quinta de
Pancas. Table 7 shows the performance of the FTSW prediction model for Quinta de Pancas.
Compared to Colinas do Douro, the R2-score decreased by 6% and the RMSE increased
by 1.39%. Part of this decrease may be due to the error in the estimation of the ETo (see
Table 7), but in general, the model was able to predict the FTSW at Quinta de Pancas with a
reasonable prediction performance.

Table 7. Performance of the trained BiLSTM model to predict the FTSW one day ahead on the Quinta
de Pancas test dataset.

Location RMSE R2-Score

Quinta de pancas 10.22 0.87

Colinas do Douro 8.43 0.93

Figure 11 compares the observed values of the FTSW with the value predicted by the
BiLSTM model. The points in the scatter plot must move to the yellow line to obtain a good
approximation. The fact that the points lie along the line shows that the model represented
the relationships very well, as can be observed.
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Figure 11. Comparison between observed and predicted values of the FTSW at Quinta de Pancas.

3.4. Comparison of FTSW Prediction Using the LSTM Model Performance with Other Models

The LSTM model with a seven-day look-back and a one-day output length was
compared with the RF, SVR, and Linear Regression (LR) models. To achieve the optimal
performance of the RF and SVR models for the dataset, the hyperparameters of the RF
model were selected using a random grid search. The hyperparameters selected for RF and
SVR are listed in Table 8. Note that Sqrt indicates that the maximum number of features is
equal to the Square root of the number of features.

Table 8. Hyperparameters selected for RF and SVR using random grid search.

SVR RF
Hparam Value Hparam Value

C 1.83 n_estimators 118
kernel RBF bootstrap False

bootstrap False
gamma scale max depth 110
epsilon 0.26 max_features Sqrt

- - Min samples leaf 2
- - Min samples split 2

Table 9 shows the performance of BiLSTM, RF, SVM, and LR on the Colinas do Douro
and Quinta de Pancas test datasets. In general, the BiLSTM model performed better on
both sets of test data. This was expected given that evapotranspiration directly affects
soil moisture [60,61] and that the BiLSTM model prioritizes this variable. RF achieved the
second-best performance, and the most-valuable performance was achieved with LR. Since
the relationship between the FTSW and the other independent variables is not linear, LR
was expected to achieve the best performance.

Moreover, the R2 score of the BiLSTM model on Quinta de Pancas decreased by
8% compared to the R2 score of the BiLSTM model on Colinas do Douro, while this
deterioration for RF and SVR was more than 16%. Therefore, the BiLSTM model performed
better on the unobserved data and generalized better to the unseen data.
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Table 9. Comparison of the performance of the trained BiLSTM model with RF in predicting the
FTSW one day ahead on the Quinta de Pancas and Colinas do Douro validation sets.

Model
Quinta de Pancas Colinas do Douro

RMSE R2-Score RMSE R2-Score

BiLSTM 10.36 0.87 8.3 0.93

RF 16.8 0.67 12.88 0.85

SVR 19.43 0.58 14.15 0.82

LR 22.5 0.43 18.68 0.69

To better assess the results, the two best models, i.e., BiLSTM and RF, were compared
in terms of feature selection and model variance. First, these two models were compared in
terms of feature importance. The permutation feature importance technique was used for
both models to investigate which feature was more important in predicting the FTSW by
each model. Figure 12a,b show the importance of each feature with the LSTM model and RF,
respectively. As the figure shows, in the BiLSTM model, the most-important feature was the
ETo and then the month, but in RF, the month was selected as the most-important feature
and the ETo as the third-most-important feature for predicting the FTSW. The ETo had the
strongest correlation (−0.56) with the FTSW, and LSTM correctly captured this correlation,
noting that it was the most-important feature between the independent variables. This fact
showed that LSTM was more reliable at predicting the FTSW than RF.

(a) (b)

Figure 12. (a) shows the importance of the input features for predicting the FTSW with the BiLSTM
model, and (b) shows the importance of the input features for predicting the FTSW with the RF model.
The shift of a feature causing the most changes in the RMSE shows the importance of the feature.

Moreover, in both models, the irrigation amount was more important than rainfall.
The reason was that, during the irrigation period (summer period), the variations in the
FTSW were mainly caused by the water added by irrigation, as rainfall was very low or
even absent. Figure 13 shows an example (2019) of the irrigation events (black triangles),
rainfall, and the FTSW (0–80 cm). As can be seen in the figure, the irrigation events had a
greater impact on the soil moisture than rainfall.
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Figure 13. Irrigation event (black triangles), rainfall, and the FTSW (0–80 cm) in 2019 at Colinas
do Douro.

Figure 14 shows the boxplots for the fifth, twenty-fifth, seventy-fifth, and ninety-fifth
percentiles for the observed and predicted FTSW with BiLSTM and RF using the Colinas
do Douro dataset. While the whiskers cover the values from the 5th to the 95th percentile,
the boxes indicate the 25th and 75th percentiles. The mean of the measured data in the
test phase is represented by the solid line within each box. As you can see from the figure,
the FTSW predicted by the RF model was within the box between 20 and 80%, but the
boundaries of the box for the observed FTSW and those predicted by the BiLSTM are almost
identical (between 15 to 85). Moreover, in both models, the mean of the predicted FTSW
was close to the mean of the observed values.

Figure 14. Boxplots showing the dispersion of the observed and predicted FTSW during the testing
phase for the RF and BiLSTM models. The box shows the interquartile range (25–75th from the 5th to
95th percentile). The solid line within the box indicates the mean.

4. Conclusions

The FTSW is a variable that can help farmers schedule irrigation and reduce water
waste. In this study, the propensity of the BiLSTM model to forecast the FTSW for vineyards
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was investigated. The data from two different vineyards, Colinas do Douro and Quinta
de Pancas, were used as the training and test datasets, respectively. Using the feature
importance method and eliminating the collinearity between variables, the ETo, the month
of the year, the VPD (min), the RH (avg), rainfall, and irrigation were selected as the inputs
to the model. The model achieved an R2-score ranging from 87% to 94% on the test set.

The performance of the BiLSTM model for FTSW prediction was compared with the
RF, SVR, and LR models. The degradation of the R2-score of the Colinas do Douro and
Quinta de Pancas test series in RF and SVR was twice that of the BiLSTM model, showing
that the BiLSTM could better generalize on the unseen data.

The results showed that BiLSTM was able to find nonlinear relationships between
historical climate and soil moisture data and was able to generalize the results for grape-
growing terroirs. To use the model more broadly for other environments with different
conditions, it should be re-trained with the new data.
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