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Abstract: The selection of a battery thermal management technique is important to overcoming safety
and performance problems by maintaining the temperature of batteries within a desired range. In this
study, a LiFePO4 (LFP) pouch-type battery having a capacity of 20 Ah was experimentally cooled with
both air and liquid (immersion cooling) techniques. Distilled water was selected as the immersion
fluid in the experiments, and the impact of discharge rate (1–4C), immersion ratio (50–100%), and
coolant fluid inlet temperature (15–25 ◦C) on the battery temperature were investigated during
the discharge period. The experiments revealed that maximum temperatures were reached at
approximately 45 ◦C and 33 ◦C for air and distilled water cooling techniques, respectively, at the
discharge rate of 4C. The average and maximum battery surface temperatures can be reduced by 28%
and 25%, respectively, with the implementation of the liquid immersion technique at the discharge
rate of 4C compared to the air technique. Moreover, the experiments demonstrated that the maximum
temperature difference could be lowered to 4 ◦C by means of 100% liquid immersion cooling at
the highest discharge rate, where they are approximately 11 ◦C and 12 ◦C for air and 50% for
immersion cooling, respectively. In addition, it was observed that the coolant fluid inlet temperature
has a significant impact on battery temperature for %100 liquid immersion.

Keywords: battery thermal management; immersion cooling; Li-ion battery; temperature distribution

1. Introduction

Recently, interest in electric vehicles has been increasing because of their advantages,
such as reduced pollution and noise, compared to vehicles having an internal combustion
engine. According to the International Energy Agency [1], 6.6 million electric cars were
sold in 2021, which corresponds to 9% of the global car market.

Batteries, electric motors and regenerative braking systems can be stated as the main
components of all-electric vehicles [2]. Batteries can be considered one of the most important
since they are directly related to their cost and range. Among the different battery options,
Lithium-ion (Li-ion) ones are used in electric vehicles since they have specifications such as
higher energy density, lighter weight, higher cycle life and lower self-discharge rates [3].
The high-power density demand of Li-ion batteries results in higher heat generation due to
reaction heat, electrode over-potential heat and Joule heat of internal electrical resistance
during both charging and discharging processes [4]. Since the generated heat adversely
affects battery performance, it is necessary to remove it from the battery surface. In the
literature, the optimum working temperature of Li-ion batteries is suggested in the range
of 20 ◦C to 40 ◦C, where the temperature difference on the battery surface should be
a maximum of 5 ◦C [5,6].

If the operating temperature of a battery exceeds these ranges, it is possible to en-
counter some problems related to safety, thermal runaway and capacity losses [7–10].

The heat generation of Li-ion batteries is generally measured by means of the calorime-
ter or determined with electrothermal models. In some studies on this subject [11–17],
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reversible/irreversible heat sources, internal resistance and entropy coefficient of battery
are evaluated, and new calorimeters have been designed to determine heat generation
rate for various operating conditions. In order to remove generated heat from the battery,
battery thermal management methods are used, and they are classified as air cooling, liquid
cooling, phase change material cooling and a combination of them [18]. Among them, air
and liquid (water and ethylene glycol) are generally used for cooling batteries. Air cooling
systems have advantages such as low cost, easy maintenance, low weight, simple design
and no leakage problem, but they have disadvantages such as low thermal performance,
higher fan power consumption and noise [19]. The cooling systems working with liquids
have advantages such as high thermal performance, high specific heat capacity of the fluid
and homogenous temperature distribution. The liquid cooling system can be designed as
direct or indirect according to whether or not there is direct contact between the battery and
the cooling fluid. In direct cooling, a dielectric liquid having higher thermal conductivity
and lower viscosity contacts the battery and higher heat transfer is obtained compared to
indirect cooling. Although indirect liquid cooling is preferred to avoid an electrical short
circuit and chemical erosion in application [20], one of the direct contact cooling methods,
called immersion cooling, can be used for the battery thermal management of electric vehi-
cles. In this method, batteries are immersed in dielectric and non-flammable fluids such as
mineral oils, hydrofluoroethers, esters and water/glycol mixtures, and the heat transfer
mechanism can be one- or two-phase flow depending on the fluid’s physical properties.
The use of this method significantly enhances heat transfer between fluid and battery and
leads to a lower surface temperature and a lower temperature difference compared to
indirect liquid and air cooling techniques. Moreover, the risk of thermal runaway can be
reduced with the application of immersion cooling [21].

Although immersion cooling was discovered a long time ago [22], it has recently been
used in data servers [23–26] and electronic equipment [27–30]. The immersion cooling of
Li-ion batteries can be considered an emerging subject; thus, there is a limited number
of studies on this subject. In studies on the immersion cooling of Li-ion batteries, the
performance of immersion cooling is evaluated by comparing temperature results with
other methods (such as indirect or air cooling). The experiments and numerical studies are
performed using dielectric fluids or mineral oils under the same operating conditions, and
the results are compared to distinguish the importance of immersion cooling.

The immersion cooling of cylindrical batteries has been studied by different re-
searchers [31–37]. Gils et al. [31] performed experiments using Novec 7000 during pool
boiling conditions and concluded that immersion cooling has superior thermal performance
compared to air cooling. Wang and Wu [32] constructed a battery module with 60 cells
and performed flow boiling experiments with HFE-7000. The results revealed that the
maximum temperature and difference are approximately 38 ◦C and 4 ◦C, respectively, for
a 5C discharge rate. Dubey et al. [33] numerically compared the performance of battery
modules cooled with cold plate and immersion (Novec 7500) techniques. The researchers
stated that the removal of heat from cells could be increased by approximately 32% at
the discharge rate of 3C with immersion. Luo et al. [34] experimentally and numerically
investigated the heat rejection performance of batteries and revealed that flow rate has
a significant impact on temperature. They also stated that the maximum temperature could
be kept under 50 ◦C by using a low mass flow rate where it is necessary to increase the flow
rate to obtain lower temperature differences. Jithin and Rajesh [35] compared the thermal
performance of three different dielectrics and air regarding temperature variation and
pressure loss. They observed that the battery temperature increment could be kept at 2.2 ◦C
during 3C, which is a very low value compared to other fluids tested. Trimbake et al. [36]
conducted experiments to cool batteries, and they stated that the temperature increments
of batteries working with mineral oil are 4.4 ◦C and 5.4 ◦C with the application of free and
submerged jets, respectively. Li et al. [37] performed immersion cooling experiments with
SF33 fluid and air to investigate the temperature variation for various discharge rates and
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revealed that the temperature increment of batteries working with SF33 fluid and forced
air are approximately 5 ◦C and 14 ◦C, respectively.

As another geometric type, the immersion cooling performances of pouch/prismatic-
type batteries have been performed by [38–48] in the literature. Chen et al. [38] experimen-
tally and numerically compared the cooling performance of various methods to investigate
their effectiveness. Both jacket and oil cooling can be good solutions for the battery tem-
perature rise problem. Hirano et al. [39] performed boiling experiments by submerging
batteries into hydrofluoroether fluid and adding porous surfaces between pouch-type
batteries to enhance heat transfer. They stated that the temperature of batteries could be
kept under 40 ◦C, which is the upper limit in the desired temperature operating range.
Chen and Li [40] conducted experiments to research the immersion cooling of batteries
submerged in water/ethylene glycol and evaluated the performance by comparing air
results. They concluded that the average and maximum temperatures could be significantly
decreased with the implementation of immersion cooling. Sundin and Sponholtz [41]
immersed a prismatic battery into AmpCool AC-100 dielectric liquid and showed that
the average battery temperature is reduced by approximately 6 ◦C with the immersion
method, and the temperature fluctuations of the battery cooled with dielectric liquid are
less than those cooled with air. Larranaga-Ezeiza et al. [42] presented that the average and
maximum temperatures can be decreased to 6.5 ◦C and 9.1 ◦C with the use of direct and
indirect cooling techniques, respectively. Patil et al. [43] experimentally and numerically
investigated the cooling of pouch-type Li-ion batteries and revealed that the highest tem-
perature at the positive tab could be decreased by 46% with the application of immersion
cooling instead of natural convection. Zhou et al. [44] constructed a battery pack and
showed that the temperature of the batteries could be kept at approximately 47 ◦C as
the maximum value in the considered operating ranges. Wang et al. [45] reported that
the maximum temperature and temperature difference of batteries could be decreased by
13.4 ◦C and 3.54 ◦C, respectively, with the use of transformer oil instead of air. Moreover,
the experiments showed that coolant flow rate does not have a significant impact on battery
temperature difference under the considered operating conditions. Bhattacharjee et al. [46]
showed that the battery temperatures are approximately 35 ◦C and 31 ◦C for air and liquid
velocities of 10 m/s and 0.01 m/s, respectively, for a discharge rate of 2C. In addition, these
results were compared with immersion results, and it was concluded that the immersion
method performed the best cooling since the battery temperature is approximately 28 ◦C.
Zhou et al. [47] researched the temperature distribution of pouch-type Li-ion batteries with
the immersion cooling method by using dimethyl silicone oil and compared the results with
natural air cooling. They stated that the specific heat and flow rate have a significant effect
on battery temperature compared to the thermal conductivity of the fluid. Li et al. [48]
clarified that the battery temperature could not be kept in desired value range with the
application of indirect and air cooling methods at high discharge rates such as 10C, so
it is necessary to use a direct cooling method. As a result of the study, they stated that
the immersion of batteries into FC-72 and HFE-7100 fluids could be a solution for battery
thermal management systems.

Recent growth in the use of electric vehicles has brought up an issue with battery
temperature management since the temperature of batteries affects electric vehicles’ range
and lifespan of batteries. Although indirect liquid cooling methods have been generally
used for solving problems about this issue in applications, it is well known that the direct
liquid cooling (immersion) method presents higher heat transfer performance compared to
the indirect method. It can be understood from the literature survey that the immersion
method can be a good option for battery thermal management systems. In the literature,
there is a limited number of research on immersion cooling of prismatic Li-ion batteries and
heat transfer oils and hydrofluoroethers are selected as working fluids. In this study, an
experimental investigation has been conducted to present the effect of immersion cooling
on the temperature distribution of the LiFePO4 (LFP) pouch-type battery. Firstly, natural air
convection tests were performed, and then immersion cooling experiments were conducted
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by using distilled water as the fluid because of its higher specific capacity. The experi-
ments were conducted for various discharge rates (1–4C), immersion ratios (50–100%) and
coolant fluid inlet temperatures (15–25 ◦C). The variation of average and maximum surface
temperatures with a depth of discharge/time was researched for considered operating
conditions. In addition, maximum temperature differences were determined at the end of
the discharges. Although studies on immersion cooling with dielectric water have been
presented in the literature for electronic equipment applications, experimental studies on
pouch-type batteries cooled with di-electric water are so limited. Because of this reason, it
is expected that this study will fill the gap on this issue.

2. Experimental Setup and Procedure

An experimental setup was established in order to investigate the temperature dis-
tribution of Li-ion batteries discharging in air and distilled water for both 50% and 100%
immersion ratios. It should be noted that heat transfer between fluids and battery can be
considered natural convection since neither a circulation fan nor pump was used in the test
box. In the experiments, a LiFePO4 battery with a nominal capacity of 20 Ah was used, and
its parameters are given in Table 1.

Table 1. The parameters of the battery.

Parameter Value

Nominal capacity 20 Ah

Nominal voltage 3.3 V

Charge cut-off voltage 3.65 V

Discharge cut-off voltage 2 V

Cathode material LiFePO4

Anode material Graphite

Weight 496 g

Dimensions 7.25 × 160 × 227 mm

Firstly, ten T-type thermocouples are attached to one side of the battery (T1, T2, T3,
T4 and T5) and the other side of the battery (T6, T7, T8, T9 and T10) for temperature
measurements, and they are attached to the battery tabs. Besides thermocouples and
charge/discharge cables, serpentine copper tubes, water inlet and outlet pipes are mounted
to cover the test section. Then, charge/discharge cables are attached to battery tabs, as
shown in Figure 1a. After connecting them, the battery is mounted to a test box with
a plexiglass case supported by thick sheet metal, and it is insulated with EPS foam to avoid
heat transfer between the test box and the environment. It should be noted that plexiglass
material is used to determine the level of immersion. The photo of the test box during
insulation can be seen in Figure 1b.

The schematic representation and photo of the established experimental setup can be
seen in Figure 2a,b, respectively. The red/blue, black and brown lines in Figure 2a show
water coolant circuit, connection cables and thermocouple wires, respectively. It should be
noted that the inside temperature of the test section is also measured by means of T-type
thermocouples, and inlet and outlet temperatures of water are measured by using Pt100
sensors. All thermocouples and Pt100 sensors are connected to the data acquisition system.
The temperature measurement devices were calibrated in a water bath using a reference
temperature sensor. In addition, a serpentine copper tube is added to the test section to
condition it. Moreover, the test section is insulated with insulation material in order to
avoid heat transfer between the test section and the ambient. The water coolant circuit is
established by using a water bath (chiller), turbine-type flow meter, pump and Pt100 sensors
to obtain constant coolant water inlet temperature. It is a closed loop, and the desired
inlet temperature of cooling water is adjusted by means of a water bath. Uncertainties for
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measured parameters are given in Table 2. In all experiments, initial temperatures of air,
distilled water and battery surface are 25 ◦C and at atmospheric pressure.
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Table 2. Uncertainties for measured parameters.

Measured Parameter Uncertainty

Pt1oo ±0.1 ◦C

Thermocouple ±1.0 ◦C

Data acquisition system ±0.6 ◦C

Flow meter ±1%

Power supply ±0.1%

The working principle of the experimental setup is summarized as follows:

• Before each experiment, the battery is charged using an electronic power supply at
3.65 V under constant current and constant voltage (CC/CV) mode.

• The experiments are started by discharging the battery at a desired charge (1C, 2C, 3C
and 4C) rate by using an electronic load; the voltage and current values of the battery
are recorded during the experiment.

• Then, the cooling water is circulated by means of a frequency-controlled water circula-
tion pump, and its temperature is measured with a data acquisition system at the inlet
of the test section.

• After the test section, its temperature is measured again with the data acquisition
system, and it is directed to the water bath. The cooling water, which is conditioned
by using a water bath, is directed to a flowmeter for flow rate measurement.

• During the experiments, the temperature measurements are recorded by means of
a data acquisition system every 10 s.

• The arithmetic mean and the highest and the lowest values of the thermocouple measure-
ments are determined as the average, maximum and minimum temperatures, respectively.

• Each experiment ends when the voltage is 2 V which is called cut-off voltage. It is
known that the lower values of this voltage lead to capacity reduction problems.

3. Results and Discussion

The variation of voltage during discharge rates of 1C–4C is represented in Figure 3.
It should be noted that all discharge rates end at the cut-off voltage corresponding to
2 V. Figure 3 depicts that both the nominal voltage and discharge time values diminish
with increasing discharge rate. It can be understood from the figure that the operation
voltage has a sharp decrease with the increment of current. Battery discharge durations are
recorded as 3550, 1750, 1140 and 840 s for 1C, 2C, 3C and 4C, respectively.
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Figure 4 shows the effect of fluid type and immersion ratio on average battery surface
temperature for various discharge rates, the cooling water temperature of 25 ◦C and flow
rate of 1 L/min. The average battery surface temperature is determined by the estimation
of the arithmetic mean of the ten temperatures. The results revealed that the average battery
temperature rises during discharge, and this situation can be explained by an exothermic
chemical reaction. The results showed that the average battery surface temperature could
be kept in the desired temperature range (between 20 ◦C and 40 ◦C) with the use of distilled
water for both 50% and 100% immersion. The air cooling is not sufficient, especially for 4C
discharge rate. The highest average battery surface temperatures are 32 ◦C, 35.94 ◦C and
42.91 ◦C for 100% water immersion, 50% water immersion and air at the end of 4C discharge
rate, respectively. The lowest average battery temperature result was obtained with the
application of 100% water immersion because of the higher heat transfer performance of
distilled water compared to air. The average battery surface temperature reduces by 13%,
19%, 28% and 25% with the applications of 100% water immersion compared to air for 1C,
2C, 3C and 4C, respectively. In addition, it can be seen that there is a sharp increase in
average battery temperatures with higher discharge rates.

Figure 5 demonstrates the variation of maximum battery surface temperatures with the
depth of discharge for different fluid types, immersion ratios and various discharge rates,
respectively. It can be revealed that there is nonhomogeneous temperature distribution
on the battery surface during discharge, and it rises with an increment of discharge rate.
According to Figure 5, the maximum battery surface temperatures are 33.32 ◦C, 42.28 ◦C
and 45.61 ◦C for 100% water immersion, 50% water immersion and air at the end of 4C
discharge rate, respectively. The maximum battery surface temperatures are observed for
the positions of T1, T2 and T1 for 100% water immersion, 50% water immersion and air at
the end of discharge. It should be noted that the maximum temperatures are observed in
the location near the tabs. It can be concluded that the 100% immersion technique can keep
battery temperature in the desired range for all considered discharge rates, whereas the
other techniques are only appropriate for lower discharge rates (1–2C). Temperature curves
depict that the maximum temperature of the battery is significantly affected by immersion
since half of the test section is filled with distilled water. Moreover, this situation can also
be observed at the minimum temperatures, and the results are given in Table 3.
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Table 3. The minimum temperatures at end of discharge for different operation conditions.

Discharge Rate Air 50% Immersion 100% Immersion

1C 29.5 27.6 26.6

2C 32.5 27.7 27.3

3C 35.8 29.7 28.1

4C 41 30.8 31.6

Figure 7 represents the effect of coolant inlet temperature on the average surface tempera-
ture of batteries for various discharge rates. The comparison for air cooling results is given in
Figure 7a, and it can be concluded that inlet coolant temperature has no significant effect on av-
erage battery temperatures working in an air medium. Because of the low specific heat capacity
of air, it is difficult to condition working fluid efficiently. The results for 50% immersion cooling
experiments show that average surface temperatures are slightly lowered with the reduction of
cooling water inlet temperature, as seen in Figure 7b. Because of direct contact between distilled
water and the cooling tube, the decrease in average temperature can be significantly observed
in the 100% immersion experiments. For all discharge rates, the average temperature gradually
increases for the coolant temperature of 25 ◦C, but the temperature curves are different for
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the coolant temperature of 15 ◦C. Figure 7c demonstrates that the average temperature of the
battery initially decreases and then increases at the discharge rate of 1C. It takes the lower value
of 20.5 ◦C and rises to 21.2 ◦C at the end of discharge. In addition, the average temperature of
the battery initially decreases to 23.3 ◦C and 24 ◦C and then increases up to 24.1 ◦C and 25.11 ◦C
for 2C and 3C, respectively.
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Since the increment of heat is produced by the battery, the battery temperature linearly
increases with the depth of discharge up to 29.6 ◦C at the end of discharge for 4C and
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100% immersion. As a result, the coolant inlet temperature has a significant impact on the
average battery temperature for 100% immersion.

Figure 8a,b depicts the maximum temperature differences with the application of
air, 50% immersion 100% immersion cooling for different discharge rates and coolant
water inlet temperatures, respectively. Both figures show that the maximum temperature
difference of the battery working in 100% immersion is under 5 ◦C, which is the desired
value for battery performance. In addition, air and 50% immersion cooling are adequate
at the discharge rates of 1C and 2C since they are lower than 5 ◦C; however, it is obvious
that it is difficult to keep the maximum temperature difference in desired value for 3C
and 4C. This result shows that 50% immersion shows the highest maximum temperature
gradients, which will potentially accelerate the degradation and limit the performance of
the cells when cells are discharged at high C-rates. Such a case may happen due to leakage
or evaporation of coolant in real applications and should be actively monitored.
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4. Conclusions

In this research, the effect of the immersion ratio on operation parameters of a pouch-
type battery is experimentally investigated using air and distilled water as working fluids.
The surface temperature variations of the battery were determined for different discharge
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rates, immersion ratios and coolant fluid inlet temperature for distilled water. The results
are compared with air natural convection results to reveal the impact of immersion cooling.
The main findings of this research can be stated as follows:

• The battery surface temperatures increase with an increment of discharge rates for
both air and distilled water cooling conditions because of the exothermic chemical
reaction occurring in the battery.

• The highest average battery surface temperature is observed for air cooling exper-
iments due to the low specific heat capacity of air. This situation is valid for all
discharge rates, and the highest increment average battery surface temperature is
obtained at 10.9 ◦C for air at the 4C discharge rate compared to 100% water immersion.

• 100% immersion cooling has a significant impact on battery surface temperature since
it can reduce average battery temperatures by up to 28% for tested working conditions.

• The lowest battery average surface temperature is recorded with the application of
100% distilled water immersion because of direct contact with fluid, and it increases
by approximately 5 ◦C for different discharge rates in the range between 1–4C.

• The 50% immersion ratio has no significant effect on minimum battery temperature
compared to 100%one for all discharge rates.

• The coolant inlet temperature has no significant impact on battery surface temperature
except 100% immersion.

• The maximum temperature differences can be significantly reduced with the applica-
tion of immersion cooling.

• The experimental results revealed that immersion cooling could be a good solution
for battery thermal management systems, and their performance can be improved by
using dielectric fluid having higher specific heat capacity and thermal conductivity.
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