
Citation: Hamid, O.H. Data-Centric

and Model-Centric AI: Twin Drivers

of Compact and Robust Industry 4.0

Solutions. Appl. Sci. 2023, 13, 2753.

https://doi.org/10.3390/

app13052753

Academic Editors: Qiang Zhang

and Yifeng Zeng

Received: 3 January 2023

Revised: 13 February 2023

Accepted: 16 February 2023

Published: 21 February 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Data-Centric and Model-Centric AI: Twin Drivers of Compact
and Robust Industry 4.0 Solutions
Oussama H. Hamid

Faculty of Computer Information Sys, Higher Colleges of Technology,
Abu Dhabi P.O. Box 41012, United Arab Emirates; ohamid@hct.ac.ae

Abstract: Despite its dominance over the past three decades, model-centric AI has recently come
under heavy criticism in favor of data-centric AI. Indeed, both promise to improve the performance
of AI systems, yet with converse points of focus. While the former successively upgrades a devised
model (algorithm/code), holding the amount and type of data used in model training fixed, the
latter enhances the quality of deployed data continuously, paying less attention to further model
upgrades. Rather than favoring either of the two approaches, this paper reconciles data-centric AI
with model-centric AI. In so doing, we connect current AI to the field of cybersecurity and natural
language inference, and through the phenomena of ‘adversarial samples’ and ‘hypothesis-only
biases’, respectively, showcase the limitations of model-centric AI in terms of algorithmic stability
and robustness. Further, we argue that overcoming the alleged limitations of model-centric AI may
well require paying extra attention to the alternative data-centric approach. However, this should
not result in reducing interest in model-centric AI. Our position is supported by the notion that
successful ‘problem solving’ requires considering both the way we act upon things (algorithm) as
well as harnessing the knowledge derived from data of their states and properties.

Keywords: artificial intelligence; adversarial samples; current AI; data-centric AI; deep learning;
Industry 4.0; machine learning; model-centric AI

1. Introduction

With the fourth industrial revolution, also referred to as Industry 4.0, a new wave
of automation set off carrying novel industrial applications that promise to redefine the
interaction between man and machine [1]. Businesses are increasingly shifting their ser-
vice models from traditional automation, in which the integration of software systems on
service platforms mainly depends on the outstanding programming skills of human soft-
ware developers and the deployment of appropriate application programming interfaces
(APIs) [2,3], to engineered systems that integrate sensing abilities, computational prowess,
control, and network utilities into cyber–physical objects that can connect to each other over
the ‘Internet of Things’ (IoT) [4].

Data are a conspicuous hallmark of Industry 4.0 technologies [5]. Examples range
from cloud computing [6], where large volumes of data can be stored, analysed, and pro-
cessed more efficiently and cost-effectively with the cloud, over edge computing [7], which
provides low end-to-end latency in real-time production operations [8] by allowing efficient
near-sensor data analysis [9], to digital twins [10], where simulations of multiple systems’
processes can be run on virtual environments, pulling data from IoT sensors and whatever
objects connected to the Internet [11].

Of particular importance in moving data around the grid are the fields of artificial
intelligence (AI) and machine learning (ML) [12]. Together, they can facilitate the creation
of sustainable solutions and scalable business models by taking full advantage of available
data volumes in a way that exceeds the use of the data generated within the concerned
business field [13,14] to include the data obtained from other fields and businesses [15].
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At its core, an AI system is mainly an algorithm (code) that solves a problem by
learning prototypical features (patterns) from large volumes of data. Data could be in any
of different forms (for example, text, audio, image, and/or video). ML is a subfield of AI
that characterises the system’s capacity to spot patterns that are otherwise undetectable by
humans [16]. It achieves this by using general-purpose procedures, which enable the AI
system to solve the problem at hand without being explicitly programmed to do so [17]. Yet,
for this to occur, the system needs to process data in a way that facilitates interpretation and
provides context [16]. Typically, this is made possible by letting human experts label the
data as part of the data preparation process, which includes collecting, curating, cleaning,
and transforming raw data before processing and analysing it. This subtask is known as
‘data annotation’.

Currently, there are two different views within the ML community on how to improve
the performance of AI systems: model-centric AI and data-centric AI. In model-centric
AI, developers of an AI system successively upgrade a devised model (algorithm/code),
while holding the volume and type of data collected fixed. Conversely, one can hold the
model fixed and continuously improve the quality of data until reaching a high level of
overall performance in terms of dealing with noise in the data. This is the data-centric
AI approach (Figure 1). Due to the fact that the training processes in both approaches
run in a continuous, iterative fashion, some refer to them as ‘model-cycle’ and ‘data-cycle’
approaches, respectively, [18].

Over the past three decades, model-centric AI was dominantly used in both research
and industry. In research, for example, more than 90% of the published AI research projects
utilised a model-centric approach [19]. Recently, however, voices are getting louder in
the promotion of data-centric AI. Reasons for this change of heart range from the lack of
sufficiently large datasets [20] to the need for highly customised solutions [21].

The concept was introduced by Andrew Ng, founder of ‘DeepLearning.AI’ (an educa-
tional platform) and Adjunct Professor at Stanford University. In a live stream presentation
on 24 March 2021, Ng showcased the use of a data-centric approach in the detection of
foreign-particle defects in steel sheets, which resulted in a considerably higher performance
of the baseline model of an AI system devised to detect steel defects, compared with the
almost no-improvement outcome when a model-centric approach was applied to the base-
line model [19]. Furthermore, Ng showed that the application of the data-centric approach
to other tasks such as solar defect detection and surface inspection confirmed its superiority
over the model-centric approach in both model accuracy and speed of learning [19]. Strik-
ingly, when asked whether to improve the code or the data in order to enhance the accuracy
of the devised model in the steel inspection problem, the majority (≈80%) of approximately
2000 voters in the live stream presentation chose improving the data.

Rather than the typical ‘either/or’ approach, this work supports a ‘both/and’ one.
Though a study aiming at illustrating the relative potency of data-centric AI would benefit
from experimental procedures, in which data-centric AI is tested against its model-centric
counterpart. Doing this, however, is beyond the scope of our goal planning for the current
study. Specifically, within the AI/ML community, we observe a kind of ‘paradigm shift’ in
the way AI/ML models are devised. Within this constellation, more and more researchers
are calling for replacing the model-centric approach with a data-centric alternative. They
support their position with experimental findings from the applications they work on.
That goes well when the aim is to show the potency of the new approach (i.e., the data-
centric AI). Yet, in times of paradigm shifts, success stories from isolated experimental
research works provide no proof supporting the supremacy of one approach over the
other alternatives. Rather, one should show the supremacy of the supported approach
(data-centric AI) over other alternatives (model-centric AI) through experimental results in
every possible application. However, no research study can afford this.
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Figure 1. Cycles of model-centric AI and data-centric AI (source: [17]).

Indeed, what advocates of data-centric AI are demonstrating through their experimen-
tal findings is merely the limitation of model-centric AI. Though we share this view with
them, our central argument in the current work remains that rather than championing any
of the two alternatives, we opt for a ‘both/and’ approach. We argue that overcoming the
limitation of model-centric AI does, indeed, require paying extra attention to the alterna-
tive data-centric AI approach. However, this should not result in reduced interest in the
model-centric approach, for it provides us with the anchor necessary to assess the quality
of an AI system over the course of upgrading the dataset.

Our Contribution

This paper has been significantly extended from previous work [17]. In the current
work, we use a comparative analysis methodology, where data-centric AI and model-
centic AI are compared and contrasted (Table 1). As elements of the compare-and-contrast
approach, the paper takes Andrew Ng’s live stream presentation on 24 March 2021 [19] as
frame of reference. Moreover, grounds for comparison are given through the increasing
number of works by other researchers, who suggest to shift from model-centric AI to
data-centric AI. The main thesis in this work is: “whereas model-centric AI suffers from
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performance limitations, developing both approaches in a complimentary interplay would
benefit current AI more than focusing on improving datasets only (albeit important).
The main contributions of the present paper are as follows:

1. We compactly review and discuss the deep learning technique, highlighting its role in
driving current AI hype (Section 2.1);

2. We connect current AI to the fields of cybersecurity and natural language inference,
and through the phenomena of ‘adversarial samples’ and ‘hypothesis-only biases,’
respectively, showcase the limitations of model-centric AI in terms of algorithmic
stability and robustness (Sections 3.2 and 3.3);

3. We further motivate a data-centric AI approach by elucidating the effect of the ongoing
growth of the IoT, supporting our approach with the latest relevant data (Section 4);

4. We reconcile data-centric AI with model-centric AI, providing further arguments for
the ‘both/and’ view instead of the evidently suboptimal alternative of the ‘either/or’
perspective (Section 6).

2. Related Work
2.1. Deep Learning: A Model-Centric Key Driver of Current AI

Historically, John McCarthy (1927–2011) was the first to coin the term ‘Artificial
Intelligence’ in 1956. He defined it as the “science and engineering of making intelligent
machines, especially intelligent computer programmes” [22]. Today, much of the hype around
AI is attributed to a particular technique called deep learning (DL) [23] which is a modified
version of artificial neural networks (ANNs) (Figure 2).

Figure 2. Current AI. The 3rd AI hype, in which previous computer-aided detection/diagnosis for
medical images is augmented by deep learning, is preceded by two cycles of AI hype; source: [24].

In an accelerated pace of enhancing AI/ML prowess, DL was repeatedly reported to
have accomplished human-level performance in a variety of applications. Examples range
from object classification [25], over beating world-class players in Go and Poker [26,27],
to detecting cancer from X-ray scans [28], and translating text across languages [29]. Although
the theoretical foundations of DL were laid in the early 1940s, it was not until 2012 that
researchers from AI/ML community and other related disciplines celebrated it as a technique
most mimicking the human brain. This occurred when Geoffery Hinton, a British Canadian
cognitive psychologist and computer scientist, along with two of his students, won the annual
ImageNet contest, in its third version, with remarkably higher performance and accuracy than
previous state-of-the-art algorithms [30].
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2.1.1. ANN: Learning by Adjusting Weights

In a typical artificial neural network (ANN), learning occurs by adjusting the ‘weights’,
w, that amplify or damp signals, x, carried by each connection between any two nodes in
the ANN (Figure 3). A number of hidden layers, each constituting a module that is roughly
analogous to some processing centres in the human brain, are used to backpropagate
gradients. At each layer, we first compute the total input z = ∑ wx to each unit, which
is a weighted sum of the outputs of the units in the layer before. Then, a nonlinear
function f (.) is applied to z to obtain the output of the unit. For simplicity, bias terms
were omitted. The nonlinear functions used in artificial neural networks include the
rectified linear unit (ReLU) f (z) = max(0, z) along with the conventional sigmoids, such as
the hyperbolic tangent, f (z) = (exp(z)− exp(−z))/(exp(z) + exp(−z)) and the logistic
function, f (z) = 1/(1 + exp(−z)) [31].

Figure 3. Artificial neural network with two hidden layers (schematic).

2.1.2. Learning over Multiple Levels of Abstraction

Compared with traditional ANNs, a DL network learns data representations over
multiple levels of abstraction [31]. This is achieved by deploying significantly more layers
of simple, nonlinear modules (neurons) that transform the internal representation of certain
aspects of input data in one layer into another internal representation at a higher level of
abstraction. A backpropagation algorithm works its way back down through the layers,
fine-tuning the weights of the neural network in proportion to how much each individual
weight contributes to the overall error.

Usually, the number of layers in a DL network ranges from 5 to 20 layers, hence
the term ‘deep’. Today, however, neural network models in commercial applications often
use over 100 layers.

Different from classical ML techniques, which require careful engineering and consid-
erable domain expertise (by human experts) in order to extract relevant aspects of input
data into a suitable internal representation (also known as feature vector), DL models can
operate without the need for any explicit human intervention in the feature extraction step.
Specifically, a DL algorithm learns features from data implicitly by using general-purpose
procedures. Indeed, it is due to this capacity that DL was linked to the way the human
brain learns to solve problems. Importantly, it has been proved that with a non-polynomial
activation function, any continuous function can be approximated to any degree of accu-
racy [32], which makes ANN mathematically equivalent to universal computers, a result
known as the universal approximation theorem.

2.2. Data: Sustainable Fuel of Current AI

Several factors explain why just in the past decade DL could evolve into what it practically
became and achieved a lot of what AI researchers hoped to see in the early days of developing
the technology. Most importantly, DL works well with sufficiently large volumes of data. Such
data stem from various sources in the ‘Global Datasphere’ and is continuously alternating
in textual, visual, and acoustic forms. The Global Datasphere consists of cloud data centres,
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enterprise infrastructure such as cell towers and branch offices, and endpoints such as PCs,
smartphones, sensors, social media, wearable devices, etc.

DL algorithms need data to train a model that can check statistical similarities between
the currently considered instances and previously probed ones, so as to uncover hidden
patterns (unsupervised learning) and make future predictions (supervised learning) about
unseen instances [33]. The more granular, voluminous, and diverse the used data, the higher
the performance and accuracy of the underlying algorithm. In the past, neither data nor
the infrastructure required for storage and data transfer were available and mature as they
are today.

According to International Data Corporation (IDC), a market intelligence company
specialised in measuring created, consumed, and stored data each year, Global Datasphere
would continue to expand almost exponentially (Figure 4). For example, while the volume
of data created and replicated in 2010 did not exceed a lean value of 1 zettabyte (ZB), it
reached a value of 64.2 ZB in 2020 [34]. It is expected that more than 180 ZB will be created
in 2025 (1 ZB = 1012 gigabytes).

Figure 4. Annual size of data creation, consumption, and storage according to IDC. The stars denote
forecast values. Data adapted from [35] with reference to [36].

3. Limitations of Model-Centric AI

Model-centric AI assumes ML solutions that mainly focus on optimising model archi-
tectures (algorithm/code) along with the underlying hyperparameters. Data within this
approach are created almost only once and are kept the same over the life cycle of the AI
system’s development. Despite numerous success stories, model-centric AI has been placed
under considerable strain. On top of it comes a narrow scope of business applicability
along with the inherent vulnerability of DL/ML techniques to adversarial samples (also
known as adversarial examples). The following subsections elaborate on this.

3.1. Narrow Business Applicability

The fact that training a DL algorithm requires utilising huge volumes of data causes
the underlying model to suffer from an irreparable limitation [37–39]. Specifically, it works
well in businesses and industries where consumer platforms with hundreds of millions of
users can freely rely on generalised solutions. In such settings, a single AI system would
satisfy the majority of users, while outliers would be negligibly ineffective. Examples
for such businesses and industries include the advertising industry, where companies
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such as Google, Baidu, Amazon, and Facebook possess mounds of data (not rarely in a
standardised format), which they can deploy in creating their model-centric AI systems.

Industries such as manufacturing, agriculture, and healthcare, which require tailored
solutions rather than one-size-fits-all recipes, cannot be served by standardised solutions
similar to the ones provided by a single AI system. Instead, they should conceptualise their
approach so as to ensure their model (algorithm) learns what it should learn by having
comprehensive data that cover all important cases and are labeled consistently.

3.2. Vulnerability to Adversarial Samples

Adversarial samples are instances with small, deliberate feature perturbations that
cause a DL/ML model (algorithm) to make false predictions [40]. Experts are particularly
concerned about this phenomenon, for it questions the stability and robustness of DL
networks with respect to noisy inputs [41]. To explain, consider a deep neural network algo-
rithm (model) designed to perform object recognition tasks. If the algorithm can generalise
well, then the network is supposed to be stable and/or robust to small perturbations to its
input. This is because small disruptions in an input image would not change the categories
of the objects appearing in that image. Surprisingly, though, when small, indiscernible
perturbations are deliberately added to the test images of some objects, the network tends to
change its predictions arbitrarily [41].

Attackers exploit this security gap by adding small, nonrandom, and imperceptible
perturbations to benign samples—in some benchmark datasets, such as ImageNet [42],
the differences between the benign samples and the adversarial ones were indistinguishable
by the human eye [43]. Through this procedure, attackers aim to manipulate the DL/ML
and cause it to perform false predictions [44]. Worryingly, this has severe implications
with respect to adopting AI technologies in daily life applications. For instance, in the
field of autonomous cars, most attacks target image-based classifiers, among which DL
networks represent the most prominent approach since 2015 [45]. Here, adversaries may
attack a self-driving car’s system by prompting the underlying DL/ML model to ignore
a ‘stop’ sign (e.g., due to the noise caused by placing pictures over the original stop
sign or varying viewing conditions), consequently leading to a fatal crash [46]. Another
critical field, in which adversarial samples may affect the comprehensive deployment of
AI technologies in real-life applications is that of healthcare. Here, medical doctors and
other related actors (such as insurance companies) rely on medical imaging systems to
determine whether patients must undergo certain medical procedures. In order not to
jeopardise patients’ health and at the same time reduce the costs of treatment, concerned
decision makers (medical doctors and insurance companies) try to minimise the number
of unnecessary surgical procedures by deploying state-of-the-art DL systems, so as to
analyse the relevant input data of patients, including, for example, dermoscopy images in
dermatology, X-rays in radiology, and/or ophthalmic images, and make corresponding
decisions [47,48]. Injecting adversarial samples into healthcare systems that use DL would
result in an outcome that does not truly describe the underlying case and, hence, would
have serious implications both for health and in terms of public and private costs.

3.3. Low Generalisation Capacity

Quite often, model-centric AI algorithms achieve high performance by utilising anno-
tation artefacts. These are unnoticed patterns of context-free associations that come about
through applying certain cognitive heuristics by human annotators [49,50]. Their effect,
however, becomes obvious when the model is trained on a dataset that contains instances
of such artefacts.

In natural language inference (NLI), for instance, large-scale datasets emerge from
pairing a given sentence (premise) with three new ones (hypotheses), such that the given
premise either entails, contradicts, or is logically neutral with respect to the generated
hypothesis [49]. The hypotheses are generated by human subjects in a crowd-sourcing
process. It has been observed that human annotators usually adopt cognitive strategies and
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heuristics when authoring hypotheses, so as to save mental and time resources [51]. As a
result, many of the NLI datasets contain annotation artefacts or biases; therefore, when
used in training AI/ML algorithms, the underlying model performs surprisingly well in
a dataset that contains these artefacts but fails to generalise to datasets that do not have
similar artefacts. This low generalisation capacity of model-centric AI is due to the fact
that the model has learned only the hypotheses (hypothesis-only bias [49,50]) but not the
relationship between these hypotheses and their premises [52].

4. From Model-Centric AI to Data-Centric AI

Before AI researchers and ML practitioners began to deploy the term ‘data-centric
AI’ in their scientific communications, they had years of practice in preparing datasets
for training and testing their ML models. It can easily be assumed that substantial efforts
were made at this stage of data preparation, in order to obtain high-quality data instances
(data points). Yet, it frequently occurred that some instances were mislabelled, ambiguous,
or fully irrelevant. Such data instances were considered invalid and hence had to be
excluded from the datasets. However, in case the number of invalid data instances in a
dataset is relatively small (in comparison with the dataset’s size), keeping these points
within the dataset would have a negligible impact on the performance of an ML model,
and researchers could deal with this situation without fearing further consequences [53].

There are the reasons why businesses and industries may need to focus on ensuring
high-quality datasets when building their AI systems, rather than dealing with this part of
the development life cycle of the system as a one-time activity.

4.1. Limited Data

Above all, the lack of sufficiently large datasets that are comprehensive both in type
and volume is especially paramount. Unlike Internet companies (such as Google and
Baidu), manufacturing industries are often limited in the quantity of data they possess.
Usually, they run their training models on datasets with 102–103 relevant data points [54].
Thus, a model trained on no more than 103 relevant instances to detect some fault (or a
rare disease) would struggle when deploying techniques that were built for hundreds of
millions of data points.

4.2. Solution Customisation

There is also a need for highly customised solutions. Consider, for example, a man-
ufacturing business with more than one product. A single one-size-fits-all AI system for
fault detection across all products would not work well, as each manufactured product
would require a distinctly trained ML system.

4.3. Characteristics of Data-Centric AI

Data-centric AI embraces a continuous evaluation of the devised AI model in combina-
tion with data updates (Table 1). Typically, during the production stage, a devised AI model
will be trained on a dataset only once before the process of software development can be
ended with the deployment of the desired functionality (Figure 1A). However, because data-
centric AI assumes successive improvements in data [17], in particular, in businesses and
industries that cannot afford to have millions of data points (e.g., manufacturing, agricul-
ture, and healthcare [20]), the underlying model (represented through the implemented
algorithm) will inevitably access novel instances of data points that are completely different
from those encountered during the training phase. Consequently, assessing the quality of
the model, too, would recur more frequently rather than occurring only once. Furthermore,
with the capacity of productions systems to provide timely feedback, this would result in a
model (and, as a result, an AI system) being capable of recognising and, hence, reacting
properly to distributional data drifts (if desired, this could serve as a prerequisite for online
learning too [54]). Indeed, it is due to this faculty that the data-centric approach has an
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edge over its model-centric counterpart when applied to models such as the one adopted
in the steel inspection problem in [19] (Section 1).

4.4. Ongoing Growth of the IoT

According to Statista, a German research company specialised in market and consumer
data, the number of worldwide IoT-connected devices would triple from 9.7 billion in 2020
to more than 29 billion in 2030.

A previous forecast, published in May 2020 by Transforma Insights, another leading
research firm focused on the world of ‘digital transformation’, estimated the same figure to
grow from 7.6 billion in 2019 to 24.1 billion in 2030 [55]. Later [56], however, Transforma
Insights updated its estimate, confirming that of Statista (ostensibly due to taking into
account the role of COVID-19 in accelerating the digital transformation, as the initial
findings were published before enfolding the whole scope of the pandemic).

Not only do the analysts of both firms expect similar growth of IoT-connected devices
over the next decade but they also agree on a compound annual growth rate (CAGR) of
near to 10% of the IoT market, forecasting the global annual revenue of IoT to grow from
USD 388 billion in 2019 to USD 1058.1 billion in 2030.

Table 1. Characteristics of model-centric AI and data-centric AI.

Category Model-Centric AI Data-Centric AI References

System development
lifecycle

Successive upgrade
of a model (algo-
rithm/code) with
fixed volume and
type of data

Continuous improve-
ment in the quality
of data with fixed
model hyperparame-
ters

[19,20]

Performance Performs well only
with large datasets

Performs well also
with smaller datasets [37–39,54]

Robustness Susceptible to adver-
sarial samples

Higher adversarial
robustness [50,57]

Applicability

Appropriate for test-
ing algorithmic solu-
tions in applications
with narrow tasks

Particularly
suitable for real-
world scenarios [17,21]

Generalisation

Limited capacity to
generalise across
datasets (due to lack
of context)

May generalise well
to datasets other than
the one tested on

[49,51,52,58]

5. Rules and Criteria for Achieving Data-Centric AI

Adopting a data-centric approach can be achieved by combining several steps. Indeed,
it is an activity for which empowering an AI system to accomplish the highest levels
of performance requires incorporating interdisciplinary expertise. In the following, we
consider some criteria and practical rules that help implement a data-centric approach
leading to more effective AI systems.

5.1. Sufficient and Representative Data Inputs

First, datasets should be curated so as to reflect both sufficiency and representativeness
of data inputs. One way to fulfil these requirements is by allowing the devised model
to access as many data inputs with as much task-relevant information as required for
the model to solve the task at hand. This includes cancelling out inevitable noise that is
present in real life. Indeed, this is how the human brain applies ’selective attention’ when
processing visual information. Specifically, it focuses on the goal-relevant aspects of the
environment while inhibiting distracting information that might be otherwise noisy for the
task at hand [59].
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For research teams, this can practically mean, for example, reducing the spatial com-
plexity in an image segmentation task to the relevant image regions rather than keeping on
tuning the devised model architecture, model complexity, data augmentation strategies, or
related training strategies [60].

5.2. Unveiling Inherent Contexts through Textual Descriptions

Second, research teams should work towards ensuring high-quality data by revealing
the inherent context within data inputs during data preparation. A vital human activity
during the process of data preparation is that of ‘data labelling’ (also known as ‘data anno-
tation’). Research teams usually overlook potential biases, which may have a detrimental
effect on the quality of data.

Specifically, data annotators are humans with different cultural and individual back-
grounds. Thus, they are susceptible to subjective judgements that could result in erroneous
labels. To avert falling into the trap of biases, however, research teams may require includ-
ing ‘textual descriptions’ as an intermediate step between accessing data inputs (images,
videos, audio recordings, etc.) and assigning labels to them. Such textual descriptions
would be some 3- to 10-word sentences in which human subjects (e.g., annotators) reflect on
whatever contextual information is included in the data inputs. Although this admittedly
increases the overall time required to create datasets, it helps AI engineers ensure that the
collected data clearly illustrate the concepts that they need the AI to learn, resulting in AI
systems that are able to learn from smaller datasets available in most industries.

5.3. Continuous Involvement of AI and Business-Domain Experts

Third, and closely related to the step above, data engineering should be performed by
business-domain experts instead of AI experts. This is because AI experts have their compe-
tency mainly in representing the world in a format that enables the machine (algorithm) to
learn patterns, while domain experts have comprehensive knowledge about the intricacies
of a specific business use case and can hence provide a domain-relevant representation
of the world [61]. Moreover, domain experts can play a role in enhancing the evaluation
process by developing specific use cases that put the model into more domain-sensitive
tests. This way, the ability to use AI becomes easier, and hence utilised AI system becomes
more accessible to a wide range of industries.

5.4. Use of MLOps

Fourth, instead of spending time and effort on developing software, research teams
and experts could reduce the maintenance cost of AI applications by using machine learning
operation (MLOp) platforms. These provide much of the scaffolding software needed to
facilitate the production of an AI system. As a result, the gap between proof of concept and
production will massively shrink to weeks, instead of otherwise years.

There are several MLOp systems that could be applied for both data-centric and
model-centric AI. For instance, one may use tools such as labelme [62] and ActiveClean [63]
for data-labelling and data-cleaning activities, respectively.

In the case of model-centric AI, examples of available MLOp tools include model
store systems [64], model continuous integration tools [65,66], training platforms [67],
and deployment platforms [68].

6. Reconciling Data-Centric AI with Model-Centric AI
6.1. Data-Centric and Model-Centric AI Can Only Be Two Sides of One Coin

At first glance, it seems quite natural to think of tweaking the model (algorithm/code)
rather than improving the data, if the goal is to enhance the system’s performance and
robustness. However, with the limitations of model-centric AI solutions and the serious
problems DL-based models suffer from, as described in Section 3 (or Table 1 for summary),
the need to turn to data-centric approaches becomes quite understandable. We believe
that this should occur while paying similar attention to the underlying model; that is, both
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model-centric and data-centric approaches should be handled as two sides of the same
coin, and recognising the limitations of the model-centric approach in certain businesses
and industries should not lead to abandoning it altogether. This is both practical and
self-evident since both the model and data affect each other interdependently.

Moreover, though shifting to data-centric AI approaches in response to the limitations
of model-centric AI might seem attractive, constructing new datasets usually comes with
high costs, and there is no guarantee that the new dataset would be completely free from
new types of artefacts [52,69]. Indeed, due to the brain’s flexibility, there is always a
possibility for human annotators to apply subtle cognitive strategies during the annotation
task that would limit the model’s ability to generalise. So, it would be better to treat the
model and data as two sides of one coin and improve them simultaneously.

6.2. Problem-Solving Requires Considering Both the How-To (Model) and the What-Is (Data)

Our intuitive understanding of problem solving puts considerable weight on the way
we act upon things besides knowing their properties and facts about them. In the case of the
development of AI systems, this would imply a preference towards exerting more efforts
in the design and optimisation of intelligent algorithms and more vividly tweaking the
underlying model hyperparameters along with the code used to implement the designed
algorithms. Keeping the dataset fixed at this stage of work is even necessary since only
through a fixed dataset can one have the possibility to compare models and classify them
according to their performance.

On the other hand, starting the design of AI systems with a model-centric approach
provides ample opportunity to accumulate experience in understanding real-world prob-
lems and potential computational solutions compared with the gains in the experience that
could have resulted, had research and industry followed the track of data-centric approach.
In fact, it is in the nature of things that when solving a problem, we first take action in order
to produce an effect, upon which we then proceed to dig deeper to understand the proper-
ties of things around us. This is exactly what intelligent agents do to acquire experience
while interacting with their environments, as postulated by reinforcement learning [70],
a recently much-celebrated ML technique [26,58,71,72].

6.3. Models’ Limitations Do Not Necessarily Imply the Limitation of Modelling

According to Aristotle’s first-principles thinking, understanding the fundamental
aspects of a problem can help provide good solutions to it [73]. In the NLI task, which was
introduced in Section 3.3, the model learns, among other things, annotation artefacts. This
results in high performance when tested on datasets containing such artefacts but not on
ones with no such biases.

While this shows the limitations of the devised model, it does not necessarily mean
that the model-centric approach itself is limited (at least in the field of NLI). Specifically,
by understanding that the annotation artefacts result from ignoring the premise–hypothesis
relationship, one can design models that suppress the learning of such artefacts. For in-
stance, Belinkov et al. ([52]) proposed to input into the model both the hypothesis and
entailment label so as to predict the premise instead of the typical NLI models, which learn
to predict an entailment label, given a premise–hypothesis pair.

6.4. Nature Supports Learning of Models

Several strategies contribute to enhancing the robustness of DL/ML models and
paving the way for a complementary interplay between data-centric and model-centric AI.
First and foremost is aligning algorithms to nature with its intuitive and robust mechanisms,
in particular, learning and ‘problem-solving’ mechanisms as performed by the human
brain. One such mechanism is common sense. It describes the ability of humans (as well as
animals) to learn world models by accumulating enormous amounts of contextual knowledge
about how the world works and what causal relationships regulate the co-occurrence
and succession of events, and use this knowledge in predicting future outcomes [74–76].
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Typically, common-sense knowledge is acquired through unsupervised observation in a
very limited number of task-irrelevant interactions with the learning environment.

Current AI and ML systems do not exhibit such a faculty. For instance, while a
human car driver can draw on her/his intuitive knowledge of physics to predict the bad
consequence of driving too fast, an AI system of an autonomous vehicle requires thousands
of reinforcement learning trials to acquire such knowledge. A typical observation in this
regard is that learning occurs at a meta-level; that is, when humans solve problems that they
face for the first time, they typically rely on the affordances the brain provides, sometimes
fleetingly, through interaction with the environment (see [74,77]).

6.5. Together, Data-Centric AI and Model-Centric AI Provide More Robustness and Security

The fact that data could be freely submitted into a running DL/ML algorithm (as
can be experienced in cyber attacks with adversarial samples) without directly attacking
the model itself or the IT infrastructure that hosts it provides a supportive argument
for the significance of developing data-centric and model-centric AI in a complementary
approach. Initially, it was believed that the tendency of a DL network to make false
predictions in response to the inputs formed by applying small but intentionally worst-
case perturbations to samples from the dataset was due to the extreme nonlinearity of DL
networks, combined with insufficient model averaging and the insufficient regularisation of
the purely supervised learning problem. Later, however, it was understood that adversarial
samples are manifestations of the rather linear nature of neural networks in general. They
are neither random artefacts of the normal variability that accumulates through different
runs of propagation learning nor do they arise from overfitting or due to incomplete model
training [48]. Rather, adversarial samples are robust to random noise and as such could
transfer from one neural network model to another, despite differences in the number
of layers with different model hyperparameters and most importantly, when trained on
different sets of samples [41].

This implies that rather than being solely a matter of the datasets used to train a
deep neural network model based on backpropagation, it is the way how the network
is structurally connected to data distribution that matters, suggesting combining both
data-centric and model-centric approaches when aiming at enhancing network robustness.

7. Conclusions

In response to the increasing interest among the AI/ML community in favoring data-
centic AI over model-centric AI, which suggests a paradigm shift in the way AI/ML models
are devised, we analysed the pros and cons of both approaches, only to end up reconciling
data-centric AI with model-centric AI. On the one hand, we share other researchers’ view
that more attention should be paid to the data-centric AI approach. However, we believe
that this should not result in reduced interest in model-centric AI, as promoting current
AI requires considering both approaches in a complementary interplay. In particular,
Industry 4.0, which promises to automate the interaction of cyber–physical objects over the
IoT, would benefit from such an interplay, as both data and AI are hallmarks of Industry
4.0 technologies.
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