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Abstract: Crack width is the main manifestation of concrete material deterioration. To measure the
crack information quickly and conveniently, a non-contact measurement method of concrete planar
structure crack based on binocular vision is proposed. Firstly, an improved DeeplabV3+ semantic
segmentation model is proposed, which uses L-MobileNetV2 as the backbone feature extraction
network, adopts IDAM structure to extract high-level semantic information, introduces ECA attention
mechanism, and optimizes the loss function of the model to achieve high-precision segmentation of
crack areas. Secondly, the plane space coordinate equation of the concrete structure was constructed
based on the principle of binocular vision and SIFT feature point matching, and the crack width
was calculated by combining the segmented image. Finally, to verify the performance of the above
method, a measurement test platform was built. The experimental results show that the RMSE of
the crack measurement by using the algorithm is less than 0.2 mm, and the error rate is less than
4%, which has stable accuracy in different measurement angles. It solves the problem of fast and
convenient measurement of the crack width of concrete planar structures in an outdoor environment.
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1. Introduction

Concrete material is widely used in construction engineering, such as roads, bridges,
walls, and so on. The crack width on the surface of the concrete structure directly reflects its
degradation degree and bearing capacity. Regular detection of cracks plays an important
role in the maintenance and operation of existing infrastructure and buildings.

Traditional crack measurement is mainly carried out by inspectors using crack scales
or magnifying glasses, which is time-consuming, tedious, and subjective [1]. With the
development of technology, crack detection systems based on fiber optic sensors, laser,
stereo imaging, ultrasonic and other technologies have been developed [2,3], but these
systems are often very expensive. For roads, bridges, and other large detection areas,
many institutions are unable to use these methods for regular inspection of cracks in the
concrete surface, usually only one inspection a year, leading to their inability to timely
evaluate the safety situation, resulting in a lot of accidents due to the deterioration of the
road, and bridge deck structure. Compared with the above technology, the measurement
method based on visual inspection technology has the advantages of non-contact and low
hardware cost [4,5]. Therefore, in recent years, the vision-based crack measurement method
has gradually become a hot research topic. The overall process is divided into two steps:
detection and coordinate transformation.

Traditional image crack detection algorithms include morphological methods, edge
detection methods, and statistics-based methods [6], but these methods have low detection
accuracy in noisy images. At present, crack detection methods using deep learning are
widely used, and their detection methods mainly include two kinds: anchor-based object
detection algorithm and semantic segmentation algorithm. Kang et al. [7] used Fast RCNN
to extract the crack area in the panoramic image with an anchor box and processed the
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image in the area to obtain the length and width of the crack. However, the noise existing
in the anchor box still affected the subsequent crack boundary extraction [8,9]. At present,
many studies on crack segmentation based on semantic segmentation models such as
FCN [10–12], U-Net [13–17], PSPNet [18], and Deeplab series [19,20] have emerged, which
verify the effectiveness of semantic segmentation models for crack extraction. However,
the segmentation accuracy of these models needs to be improved. High-precision segmen-
tation of the crack edge is helpful to reduce the image processing steps before subsequent
measurement, and improve the automation level and the final measurement accuracy. As
the new peak of semantic segmentation, the DeeplabV3+ model has high accuracy in most
datasets. But because of the imbalance of samples in the crack dataset and the sparsity
of the model’s high semantic receptive field, the model often performs poorly in crack
segmentation experiments.

After the crack edge is accurately extracted, most studies on crack measurement based
on visual pixel position have used a camera in the past, which requires that the optical axis
of the camera should be perpendicular to the crack surface. When the detection distance
and angle change, it needs to be re-calibrated [21,22], which makes mobile deployment
difficult. To this end, Zhao [23] used a single camera and a laser range finder to ensure real-
time calibration of parameters, but the error will increase sharply when the angle between
the camera and the object surface exceeds 50◦. In contrast, binocular vision measurement
establishes the spatial relationship between the camera and the object through left-right
image matching and coordinate transformation and does not need to re-calibrate when the
distance and angle between the camera and the object change [24–26]. However, due to the
mismatching that often occurred in the current stereo-matching algorithm, the accuracy of
the edge measurement is often not high.

Aiming at the problem that the current semantic model is not accurate enough for crack
segmentation and the left and right images of binocular cameras are mismatched, resulting
in large errors. In this paper, an improved DeeplabV3+ model is proposed to achieve more
accurate crack segmentation. Secondly, the coordinates of the crack edge space points were
obtained according to the feature point matching, and the precise measurement accuracy
was obtained under different angles combined with the segmentation image.

2. Crack Region Segmentation Algorithm
2.1. Improved DeeplabV3+ Algorithm

In this paper, we choose to improve on the DeeplabV3+ semantic segmentation model
to achieve higher segmentation accuracy for crack regions. The improvements include the
following four areas:

(1) Modify the Xception feature extraction network to the L-MobileNetV2 network structure.
(2) According to the HDC (Hybrid Dilated Convolution) strategy, an improved DenseA-

SPP module (IDAM) is designed to replace the ASPP (Atrous Spatial Pyramid Pooling)
structure in the original model.

(3) ECA (Efficient Channel Attention) mechanism is introduced to modulate the weight
of channel information before splicing 1/4 shallow feature layers and 1/16 deep
semantic information.

(4) Introducing Focal loss and Dice loss functions to optimize the loss function.

The improved DeeplabV3+ model network structure is shown in Figure 1.

2.2. L-MobileNetV2

The original DeeplabV3+ model uses Xception as the backbone feature extraction
network, but the Xception model has a large parameter scale and poor operation speed
control. Therefore, this paper chooses the backbone network based on MobileNetV2 [27] to
facilitate training and reduce detection time.
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2.2. L-MobileNetV2 
The original DeeplabV3+ model uses Xception as the backbone feature extraction net-

work, but the Xception model has a large parameter scale and poor operation speed con-
trol. Therefore, this paper chooses the backbone network based on MobileNetV2 [27] to 
facilitate training and reduce detection time. 

The ReLU activation function used in MobileNetV2 can alleviate the phenomenon of 
gradient dispersion. However, with the increase in network depth and the number of 
training rounds, some weights cannot be updated effectively due to the disappearance of 
the gradient, resulting in the phenomenon of neuron death. As a result, the average value 
of ReLU output is greater than 0, which is not conducive to the feature extraction ability 
of the network model. Therefore, this paper chooses to replace the activation function in 
MobileNetV2 with Leakey ReLU, which initializes neurons by giving negative output val-
ues a small slope, increases the extraction of negative value features, and avoids neuron 
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of the last layer of the inverted residual structure. Experiment [27] shows that this struc-
ture has a better feature recognition effect. The L-MobileNetV2 bottleneck residual mod-
ule after the improved activation function is shown in Figure 2. 

Figure 1. Improved DeeplabV3+ model.

The ReLU activation function used in MobileNetV2 can alleviate the phenomenon
of gradient dispersion. However, with the increase in network depth and the number of
training rounds, some weights cannot be updated effectively due to the disappearance of
the gradient, resulting in the phenomenon of neuron death. As a result, the average value
of ReLU output is greater than 0, which is not conducive to the feature extraction ability
of the network model. Therefore, this paper chooses to replace the activation function
in MobileNetV2 with Leakey ReLU, which initializes neurons by giving negative output
values a small slope, increases the extraction of negative value features, and avoids neuron
death. Its mathematical expression is as follows.

yi =

{
xi, xi ≥ 0
xi
ai

, xi < 0 (1)

where xi represents the output of layer i, yi represents the output after the nonlinear
transformation of layer i, ai is the hyperparameter in the Leakey ReLU activation function,
and the default value is 100.

MobileNetV2 continues the depthwise separable convolution operation in the V1
version and introduces the inverted residual module and the linear bottleneck structure to
increase the pair of features. The inverted residual module first uses 1 × 1 convolution to
increase the dimension and then uses 3 × 3 convolution layer by layer to extract features
across feature points and then uses 1× 1 convolution to reduce the dimension. This process
is the reverse of the residual extraction module of the ResNet network. The linear bottleneck
structure is that the linear activation function is used in the convolution layer of the last
layer of the inverted residual structure. Experiment [27] shows that this structure has a
better feature recognition effect. The L-MobileNetV2 bottleneck residual module after the
improved activation function is shown in Figure 2.

2.3. IDAM

The ASPP structure of the original DeeplabV3+ model uses the dilated convolution
with expansion rates of 3, 6, 18, and 24 in parallel to extract the feature relationships of im-
ages under different receptive fields. However, when the dilated rate is greater than 24, the
dilated convolution will gradually lose the feature extraction ability. Therefore, Yang et al.
adopted dilated convolution with expansion rates of 3, 6, 12, 18, and 24 to replace the paral-
lel feature extraction structure of ASPP by dense connection, and proposed a DenseASPP
model [28], which obtained more and larger receptive fields. However, this method still has
the problem of the checkerboard effect, that is, it is assumed that the dilated convolution
with convolution kernel size 3 and expansion rate 2 is used to perform three consecutive
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operations on the image, and the covering points are marked with blue. The extracted
pixels are shown in Figure 3. As can be seen from the white squares in the figure, the
correlation between local information is destroyed and the information is seriously lost.
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To this end, the HDC strategy is adopted in this paper, that is, dilated convolutions
with different expansion rates are used alternately and continuously to reduce the influence
of the checkerboard effect [29]. Suppose that when there are N dilated convolutional layers
with kernel size ksize, the dilation rate is {d1, . . . , di, . . . , dn}, define the maximum distance
between two non-zero points as follows.

Mi = MAX[Mi+1 − 2di, Mi+1 − 2(Mi+1 − di), di] (2)

where Mn = dn, HDC strategy requires M2 ≤ ksize. When ksize = 3 and d = {1,2,5},
M2 = MAX [1,−1,2] = 2 ≤ 3, HDC strategy is satisfied. The convolution extraction re-
sult is shown in Figure 4, which shows that this connection strategy can effectively use
image information and weaken the checkerboard effect.
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To obtain enough and large enough receptive fields, the convolution kernel with an
expansion rate of {1,2,5} is designed to be used twice in this paper. The IDAM model
structure is shown in Figure 5:
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Bring the current structure into the receptive field calculation formula:{
RF = (d− 1)× (ksize− 1) + ksize
RFn = RFn−1 + kn − 1

(3)

In the formula, RFn represents the receptive field of the n-layer dilated convolution,
kn is the size of the n-layer dilated convolution, and the maximum receptive field size of
IDAM is [2 × 2 × (1 + 2 + 5) + 1] = 33. It is sufficient to process the 1/16 (80 × 80 pixels)
depth feature map input in the trunk network. Compared with the four receptive field
combinations of ASPP structure, according to the permutation combination, the number of
extracted feature combinations of IDAM can be calculated as follows:

NIDAM =
n=6

∑
m=1

Cm
n = 63 (4)

It can be seen that the IDAM model structure obtains more combined high-level
semantic features.

2.4. ECA Attention Mechanism

In the original DeeplabV3+ model, channels were stacked directly between the 1/4
shallow feature layer and the deep feature layer through the ASPP structure, and the
importance of semantic information obtained by each channel was the same by default.
However, with the increase of network depth and the expansion of the receptive field,
semantic information would gradually decrease and enrich. The importance of each
channel feature is also different. IDAM structure used in this paper has more channels than
ASPP, so it is necessary to modulate the weight of each channel.

Based on SE (Squeeze-and-Excitation) attention mechanism, the efficient channel
attention mechanism [30] uses 1d convolution to replace the fully connected layer after
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average pooling to compress the features of each channel, which not only reduces the
number of parameters, but also avoids the introduction of redundant channel dependencies.
After that, the Sigmoid function is used to compress the weights to between 0 and 1. Finally,
the input feature map and the processed weights are multiplied to form the features after
modulating the channel weights, as shown in Figure 6.
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In the figure, k is the optimal range of channel information interaction, that is, the
convolution kernel size of 1d convolution, which is calculated as Equation (5):

k =

∣∣∣∣ log2(C)
γ

+
b
γ

∣∣∣∣
odd

(5)

where, C is the number of characteristic channels, and γ and b are generally set to 2 and 1.
The final channel attention ω is calculated as follows:

ω = σ(C1Dk(AvgPool(F)) (6)

where F is the input feature, C1Dk represents the 1d convolution with convolution kernel k,
and σ represents the Sigmoid function.

2.5. Loss Function Modification

In the obtained crack images, the pixel area occupied by the vast majority of cracks is
smaller than the background area. This situation will lead to the imbalance of positive and
negative samples in the training process of the algorithm, cause the weight shift, and lead
to a poor crack segmentation effect. Based on this situation, this paper uses the combination
of Dice loss and Focal loss to replace the cross-entropy loss function to solve the problem
of extremely unbalanced samples in the data set, where the expression of Dice loss is
as follows:

Dice loss = 1−
2∑N

i=1 yiy′ i
∑N

i=1 yi + ∑N
i=1 y′ i

(7)

where, yi and y′i represent the label value and the predicted value of pixel i respectively,
and N is the total number of pixels.

The Focal loss is expressed as follows.

Focal loss = −α(1− pt)
β log(pt) (8)

where, α is used to adjust the ratio of positive and negative sample loss, and the weight of
the background region in the loss function of the model can be reduced by setting the value
of α, which is set as 0.5 in this paper. β is an adjustable factor, which is used to improve the
emphasis of the algorithm on the training of difficult samples for crack extraction. In this
paper, 2 is taken, and pt represents the probability that the predicted pixel is a crack.

Finally, the loss function in the DeeplabV3+ model is improved as follows.

Loss = Dice loss + Focal loss (9)
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3. Visual Method for Measuring Crack Width in Concrete
3.1. Binocular Vision Spatial Coordinate Acquisition Algorithm

Binocular vision obtains the spatial information of objects by matching the left and
right camera images. Global matching and semi-global matching algorithms are commonly
used, but these methods will produce a large number of mismatching regions in the
matching process, resulting in holes. In this paper, an algorithm based on only three
matching feature points to establish the space equation for crack measurement is designed
for the case that the cracks of concrete are mostly in the plane region.

The measurement principle of binocular vision is based on the parallax theory, that
is, if P is a point in space, the spatial coordinates are (X, Y, Z), pL and pR are the imaging
points of the target P on the left and right cameras, and the image coordinates are (xl, yl),
(xr, yr) respectively, then the calculation method of the spatial coordinates of P is as follows.

X = d · xl/xl − xr
Y = d · yl/xl − xr
Z = d · f /xl − xr

(10)

where f is the focal length of the camera and d is the baseline length of the binocular camera.
Since the SIFT feature point matching algorithm is robust to noise and illumination,

this paper relies on it to match the feature points of the left and right crack images. As
shown in Figure 7, it can be seen that the matching accuracy of the left and right image
feature points of this method is high.
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The three points with the highest matching similarity of feature points are selected as
the concrete plane space equation, as shown in Figure 8, O represents the optical center
of the left camera, OLXLYL is the imaging plane of the left camera, OwXwYw is the spatial
structure plane, p is a point on the crack edge of the spatial plane represented by the blue
curve. Suppose that the coordinates of three non-collinear spatial points are p1(X1,Y1,Z1),
p2(X2,Y2,Z2), and p3(X3,Y3,Z3).
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Therefore, the normal vector n of the structural plane where the crack is located can be
solved by the following equation:

→
p1 p2 = (X2 − X1, X2 −Y1, Z2 − Z1)
→

p1 p3 = (X3 − X1, Y3 −Y1, Z3 − Z1)
→
n =

→
p1 p2 ×

→
p1 p3

(11)

Then the structural plane equation is expressed as follows.

(X− X1, Y−Y1, Z− Z1) ·
→
n = 0 (12)

Combined with Equation (10), the corresponding relationship between each pixel in
the left image and the spatial coordinates can be finally obtained.

3.2. Crack Parameter Acquisition Algorithm

In the routine inspection and maintenance of concrete structures, the maximum crack
width is usually used to evaluate the damage to the structure. In this paper, firstly, the
centerline position of the crack in the image is obtained according to the skeleton extraction
algorithm, and the crack edge area is divided according to the skeleton. The maximum
crack width is taken as the shortest distance from any point on one edge of the crack to the
other side of the crack, and its expression is as follows:

wi = min(
√
(Xi − Xj)

2 + (Yi −Yj)
2 + (Zi − Zj)

2)

i, j = 1, 2, 3 . . . , n
(13)

3.3. Measurement Process of Crack Parameters

In this paper, using the above crack detection and binocular vision algorithm, com-
bined with the experimental platform in Chapter 4, a crack parameter measurement method
is proposed. Firstly, the concrete plane with cracks is captured by a binocular camera, and
the left camera image is input into the improved DeeplabV3+ algorithm to segment the
crack area, and the image coordinates of the crack boundary are input into the List. Then,
the SIFT algorithm was used to match the feature points of the left and right images, and
the coordinate transformation relationship between the left image pixels and the space
plane was calculated by combining the calibrated internal and external parameters of the
camera. Finally, each point in List was traversed according to Equation (13), and the spatial
Euclidean distance was calculated to obtain the maximum width of the crack. The above
process is shown in Figure 9.
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4. Experiment and Analysis
4.1. Improved DeeplabV3+ Algorithm Verification Experiment

The data set in this paper is 1466 high-resolution crack images obtained from Internet
search and field shooting and enhanced by data. The training set, verification set, and test
set are divided in a ratio of 8:1:1. Crack segmentation model training was based on Python
language, Pytorch framework, and PyCharm integrated development platform, and the
experimental GPU was GeForce RTX 3060.

In the training process, the model is divided into two parts. First, the backbone
network is trained by freezing 60 epochs, and then it is trained by thawing 140 epochs to
accelerate the training speed of the model. The batch size of the frozen part is 8, and the
batch size of the unfrozen part is 4. Cosine annealing is used to reduce the learning rate.
The change in loss value in the training process is shown in Figure 10.
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To verify the effectiveness of the crack segmentation model proposed in this paper,
the improved DeeplabV3+ model and the current mainstream segmentation models are
respectively used to train the crack data set made in this paper. Different models use
the same training set, verification set, and test set. The performance of each model is
evaluated by model parameter size, Mean Intersection over Union (MIoU), Mean Pixel
Accuracy (MPA), and Pixel Accuracy (PA). At the same time, to prove the rationality of the
improved method in this paper, the DeeplabV3+ model with Xception and MobileNetV2 as
the backbone feature extraction network is also added to participate in the comparison, as
shown in Table 1. To further compare the ability of these models to identify cracks, their
ROC curves were fitted using a B-spline curve by adjusting the confidence threshold, as
shown in Figure 11.

Table 1. Performance comparison of different segmentation models.

Network Model MIoU MPA PA Parameter Size

PSPNet 85.90% 90.74% 99.08% 2.376M
HRNet 84.96% 89.91% 98.92% 9.637M
U-Net 87.02% 90.26% 99.12% 24.891M

DeeplabV3+(Xception) 88.70% 93.67% 99.18% 54.709M
DeeplabV3+(MobileNetV2) 88.79% 92.28% 99.23% 5.813M

Ours 92.26% 95.54% 99.45% 16.833M
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Table 1 shows that the DeeplabV3+ model is higher than other models in the Accuracy
indicators of MIoU, MPA, and Accuracy. Combined with Figure 11, we can see that the
predictive power of the original DeeplabV3+ model with Xception as the backbone network
is similar to the model with MobileNetV2. However, the original DeeplabV3+ model
parameter size is about 9.4 times that of the latter. The parameter size of the improved
DeeplabV3+ model proposed in this paper is about 1/3 that of the original model, and
its ROC curve is higher than the original model. Compared with the original model, the
MIoU, MPA, and PA of the improved model are increased by 3.56%, 1.87%, and 0.27%. The
segmentation results of different models are shown in Figure 12.
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As can be seen from Figure 12, PSPNet, U-Net, and the original DeeplabV3+ models
are prone to generate breakpoints when segmenting cracks, resulting in discontinuous
cracks. U-Net model is easy to identify holes on the concrete surface as cracks and has a
high mismatching rate. Although HRNet generated fewer breakpoints in the face of small
cracks, it can be seen from the third and fourth-row images that the model segmented the
crack edge relatively wide. From the comparison of the first and second-row images, it
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can be seen that the proposed method can effectively extract continuous narrow cracks
with fewer fractures. By comparing the labeled images with the segmentation images of
different models, it can be seen that the proposed method is the most accurate for extracting
the crack region.

4.2. Crack Measurement Experiment

In this section, the concrete crack width measurement method proposed in this paper
is experimentally verified. The AYALEY adjustable baseline binocular camera is used in
the experiment, and its maximum resolution is 1280 × 960, as shown in Figure 13. Before
measurement, the camera calibration toolbox in MATLAB is used to calculate the internal
and external parameters of the camera.
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The experiment chooses to measure the crack of concrete pavement, and Figure 14
shows the four positions selected for the measurement.
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Figure 14. The measured selected position ( 1©, 2©, 3©, and 4© represent the locations of four crack measurements).

The central axis of the camera was made perpendicular to the concrete pavement for
shooting, and the crack width was obtained by segmentation, edge extraction, and skeleton
extraction of the four crack images respectively, as shown in Figure 15. The fourth column
is the edge and skeleton extraction effect in the first red box, which shows that the crack
edge extracted by the proposed algorithm is more accurate.
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To verify the accuracy of the proposed crack width measurement method, the mea-
surement comparison experiment is carried out, as shown in Table 2. Methods 1, 2, and
3 represent the original DeeplabV3+ algorithm combined with the semi-global matching
method, the original DeeplabV3+ algorithm combined with the proposed spatial coordinate
acquisition method, and the improved DeeplabV3+ method combined with the proposed
spatial coordinate acquisition method, respectively. HICHANCE-CK101 crack width mea-
suring instrument (Measurement accuracy: 0.01 mm) was used to calculate the true value
of the crack width by the average of three measurements.

Table 2. Crack width measurement error.

ID True
Value/mm

Results of
Method
1/mm

Error
Value/mm

Rate of
Error/%

Results of
Method

2/mm
Error

Value/mm
Rate of
Error/%

Results of
Method

3/mm
Error

Value/mm
Rate of
Error/%

1 5.412 6.025 +0.613 11.33 5.876 +0.464 8.57 5.586 +0.174 3.22
2 4.210 4.412 +0.202 4.80 4.366 +0.156 3.71 4.085 −0.125 2.97
3 3.567 3.775 +0.208 5.83 3.238 −0.329 9.22 3.696 +0.129 3.62
4 6.189 5.023 −1.166 18.84 5.848 −0.341 5.51 6.321 +0.132 2.13

It can be seen from the measurement results in Table 2 that the absolute value of
the error measured by method 1 to method 3 in this paper is gradually reduced, which
verifies the effectiveness of the improved DeeplabV3+ algorithm and the space coordinate
conversion algorithm proposed in this paper. Both of them can reduce the measurement
error of the crack width, and the error rate of method 3 is less than 4% and the error
value is less than 0.2 mm. To further prove the characteristics of easy deployment and
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stable measurement of this method, by fine-tuning the distance, the optical axis of the
camera is adjusted to 90, 70, 50, 30, and 10 degrees from the concrete plane respectively.
In this process, the left and right cameras were kept level, and the above 4 cracks were
photographed and measured, as shown in Figure 16.
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The error values measured by different angles of the four crack locations using the
proposed measurement method are shown in Table 3.

Table 3. Measurement errors at different angles.

ID Measurement Error Value/mm
10◦ 30◦ 50◦ 70◦ 90◦

1 0.205 0.190 −0.188 −0.164 0.174
2 0.198 −0.176 0.171 0.152 −0.125
3 −0.210 0.184 0.165 −0.144 0.129
4 0.182 −0.187 0.126 0.152 0.132

RMSE 0.199 0.184 0.164 0.153 0.141

As can be seen from Table 3, with the reduction of the angle between the optical axis
and the concrete plane, the measurement error of the crack width increases, and the RMSE
of the crack measurement rises from 0.141 under the angle of 90◦ to 0.199 under the angle
of 10◦, but, in general, the error value is still small and the fluctuation is relatively gentle,
which verifies the stability and effectiveness of the proposed method under different angles.
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5. Conclusions

In this paper, the improved DeeplabV3+ model is used to extract the crack area in the
panoramic image, and then obtain the edge of the crack in the segmentation map. The SIFT
algorithm is used to match the three feature points of the original left and right images,
and the conversion relationship between the image coordinates and the spatial coordinates
is calculated to obtain the crack width information. Experiments on concrete pavement
show that the method can measure the crack width on a concrete plane accurately. The
main conclusions of this study are as follows:

(1) The improved DeeplabV3+ model using the L-MobileNetV2 backbone network, IDAM
module, ECA attention mechanism, and modified loss function can segment the crack
area in the image more accurately than the current mainstream segmentation models.
The MIoU, MPA, and PA of the model are 92.26%, 95.54%, and 99.45%, respectively.

(2) Experimental results show that the method proposed in this paper has good measure-
ment accuracy on the surface of the concrete structure. The error value of crack width
measurement is less than 0.2 mm, and the error rate is less than 4%. Changing the
angle between the camera optical axis and the concrete plane to measure the crack
under 90 degrees to 10 degrees, it is found that the measured crack width RMSE
increases with the decrease of the angle, but is not higher than 0.2 mm.

(3) The proposed method is easy to deploy and improves crack detection efficiency. In the
future, it can be integrated into a mobile automation platform to replace manual work
and realize the regular detection of cracks on concrete pavements, bridges, and other
surfaces. At the same time, without changing the resolution, the theoretical error of
binocular vision measurement will increase rapidly with the increase in distance, and
the current system cannot guarantee the accuracy of long-distance measurement.
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