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Abstract: The advent of connected vehicle (CV) technology offers new possibilities for a revolution
in future transportation systems. With the availability of real-time traffic data from CVs, it is possible
to more effectively optimize traffic signals to reduce congestion, increase fuel efficiency, and enhance
road safety. The success of CV-based signal control depends on an accurate and computationally
efficient model that accounts for the stochastic and nonlinear nature of the traffic flow. Without
the necessity of prior knowledge of the traffic system’s model architecture, reinforcement learning
(RL) is a promising tool to acquire the control policy through observing the transition of the traffic
states. In this paper, we propose a novel data-driven traffic signal control method that leverages
the latest in deep learning and reinforcement learning techniques. By incorporating a compressed
representation of the traffic states, the proposed method overcomes the limitations of the existing
methods in defining the action space to include more practical and flexible signal phases. The
simulation results demonstrate the convergence and robust performance of the proposed method
against several existing benchmark methods in terms of average vehicle speeds, queue length, wait
time, and traffic density.

Keywords: traffic signal control; deep reinforcement learning; autoencoder neural network;
representation learning

1. Introduction

Recent advances in communication technology, transportation infrastructure, and com-
putational techniques, along with the application of artificial intelligence, will enable a
potential to revolutionize the future of transportation systems. Many countries are making
great efforts toward this transition [1]. Connected vehicles (CVs) are among the most
promising emerging technologies, offering numerous benefits to road safety, traffic mobility,
and energy efficiency. As the implementation of CVs and the transition to a connected
transportation system evolve, the development of reliable and efficient control algorithms
for both the infrastructure and in-vehicle components will be crucial.

The CV technologies create a dynamic and interconnected environment for drivers,
vehicles, and traffic infrastructure. In this environment, connectivity plays a critical role.
Through wireless communication, vehicles can communicate real-time data such as location,
speed, and acceleration with other vehicles (V2V) and infrastructure (V2I). These real-time
data enable traffic controllers to optimize signal phase and timing (SPaT) plans for enhanced
road safety and sustainability. However, the complexity of SPaT optimization, considering
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realistic driving behavior and multiple objectives, presents a significant challenge and
remains an open research area, due to the NP-complete nature of the problem [2,3] and
the “curse of dimensionality” associated with an increasing number of vehicles and traffic
lights in the network.

With the large amounts of traffic data generated by CVs, it is possible to characterize
the interactions between vehicles and traffic infrastructure components, thus enabling the
development of data-driven traffic control strategies. Non-parametric learning approaches,
particularly reinforcement learning (RL), are well suited for characterizing the stochastic
and non-linear nature of traffic flow. These techniques allow the signal controller to
learn policies by observing the transition of the traffic states, without the need for prior
knowledge of the system’s model structure [4]. In other words, RL-based signal control
approaches eliminate the burden of building complex decision-making models for highly
dynamic, nonlinear, stochastic traffic system.

However, constructing and training a learning-based controller directly from raw data
presents a major challenge. Without proper design of the learning models and training
algorithms, the learning-based controller may not be able to effectively learn a control
strategy. To tackle the issue of the “curse of dimensionality”, many researchers have
to simplify the training model by restricting the action and state space, which reduces
the practicability and optimality of the resulting controllers. In this article, we aim to
overcome these limitations by defining the action space in a way that allows for more
practical and flexible signal timings, and by restructuring the state space to improve the
learning performance.

The main contributions of this paper are as follows:

1. A new traffic signal control framework using deep reinforcement learning (DRL) is
proposed, by incorporating a novel convolutional autoencoder network to reduce
the dimensionality of the input traffic states. As a result, a concise representation of
comprehensive traffic information is obtained and utilized to facilitate the learning of
effective SPaT plans.

2. The action space is extended by including both phase duration and cycle length,
allowing for increased adaptability to dynamic traffic flow. With the combinatorial
action space of multiple phase durations and cycle lengths, our method can effectively
handle unbalanced traffic flow with varying traffic volumes.

3. To improve the learning efficiency of the proposed DRL algorithm, several state-of-
the-art techniques, such as target network [5], dueling network [6], and experience
replay [7] are implemented.

4. The effectiveness and performance of our method are demonstrated by comparing
to several existing traffic signal control methods through simulations on the widely
used Simulation of Urban MObility (SUMO) traffic simulator.

The structure of this paper is organized as follows: Section 2 presents a literature
review of related work, including both optimization-based and learning-based signal
control approaches. Section 3 describes the considered traffic scenario and details the
development of the proposed methodology. Section 4 presents the simulation results
and comparative analysis with other approaches to demonstrate the effectiveness and
performance of the proposed method. Finally, the paper concludes with a summary of its
findings and suggestions for future work in Section 5.

2. Related Work

For the past 20 years, numerous studies has been conducted to tackle traffic signal
control issues in the presence of CVs. These studies primarily focus on improving the
performance of isolated intersections, with the goal of scaling the solutions to larger
networks and corridors. According to the mathematical models used, these methods can
be broadly categorized into two groups: optimization-based and machine learning-based
approaches [8].
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2.1. Optimization-Based Approaches

Optimization-based approaches assume that the traffic model is known and the future
traffic flow states could be predicted accordingly. Next, certain optimization problems
are formulated and solved for the optimal SPaT control plans. The objectives of these
optimization problems are usually to minimize traffic performance measures, such as
traffic delay and queue length, which are estimated on the basis of predicted vehicle
arrivals [8]. However, this approach requires accurate predictions of future traffic states,
which can be challenging due to the complexity of the optimization problem that involves
traffic flow models and couples with SPaT data. Therefore, the key challenges in CV-
based traffic controls are to predict the future traffic states accurately, coordinate multiple
intersections effectively by accounting for the conflicts of traffic flows, and efficiently solve
the underlying large-scale optimization problem [8]. These challenges have led to the
development of three different groups of optimization methods: centralized, decentralized,
and hierarchical approaches.

In comparison to conventional signal control methods, such as adaptive control and
coordinated control, the biggest challenge in implementing optimization-based methods is
the high complexity of optimization models. To address this issue, centralized approaches
reformulate the optimization problem by reducing the number of variables. For instance,
in [9], individual vehicles were grouped into pseudo-platoons based on the headways
between them, and a mixed-integer linear program (MILP) was utilized to determine the
optimal signal phase sequence and phase initialization in real-time using platoon request
data and traffic controller status. This work also introduced a dynamic arterial coordination
strategy to promote traffic progression by taking into account platoon queue delay, signal
delay in the current intersection, and possible delay at downstream intersections.

In [10], a real-time adaptive phase allocation algorithm was proposed that utilizes
dynamic programming and optimization techniques to allocate signal phase sequences and
duration based on predicted vehicle arrivals. Zhao et al. [11] adopted an interactive grid
search method to solve an optimization problem, considering accumulated fuel consump-
tion and travel time as the cost function, to determine the optimal traffic light timing of
for each cycle at an intersection. Ma and Liu [12] proposed a new optimization method
based on an improved genetic algorithm, which was compared with the Webster algorithm
and the traditional genetic algorithm. The average vehicle delay was used as the control
objective, and the green signal ratio and cycle time were used as the control variables.

Mohebifard and Hajbabaie [13] used a cell transmission model [14] to categorize the
traffic network into cells and groups for higher-level representation and then formulated
an MILP to maximize network throughput, which was solved using the Benders decom-
position technique [15]. Bin AI Islam et al. [16] formulated an optimization problem to
minimize network-level traffic delay, considering the energy consumption as a constraint,
and solved the resulting non-convex problem using a stochastic gradient approximation
algorithm. In Hong et al. [17], a linear dynamic traffic system model was built for a
large-scale traffic network and a linear-quadratic regulator was applied to minimize both
traffic delay and control-input changes, allowing for an online update of the traffic model
to be adaptive to signal control outcomes.

Decentralized approaches aim to simplify the model and lower the computational cost
of the traffic control problem by utilizing distributed control and optimization techniques.
These methods optimize objective functions for each intersection individually and disre-
gard coordination among neighboring intersections, leading to sub-optimal, local solutions
instead of globally optimal solutions. These approaches typically predict only the traffic
states, often just the arrivals, of the current intersection over a certain time horizon. To ad-
dress this challenge, Li and Ban [18] transformed the problem into a dynamic programming
model by dividing the timing decisions into stages with one stage for each phase, and min-
imizing the accumulated fuel consumption and travel time by calculating the objective
function for each phase. Goodall et al. [19] proposed a predictive microscopic simulation
algorithm to estimate future traffic conditions and objectives over a rolling horizon of 15
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s, assuming vehicles maintain heading and speed during this horizon. To account for the
impact of queue spillbacks, Ref. [20] presented a decentralized method to maximize global
network throughput by maximizing the effective outflow rate of each intersection locally
and independently. This approach determines the minimum saturated green time of all
possible phases based on queue lengths, arrival flows, and downstream queue lengths at
each intersection to facilitate vehicle discharge at full capacity.

In [3], a distributed, coordinated approach was developed to tackle the network
control problem through dividing it into a series of local controllers that can exchange
traffic data with each other. At each decision time step, each controller collects data on
queue lengths and incoming vehicle numbers from neighboring intersections, and decides
whether to end or maintain the existing signal phase for local signal timing till the next step.
Moreover, Islam et al. [21] expanded upon this work by taking into account unconnected
vehicles. Specifically, they developed two algorithms to estimate the traffic states of
unconnected vehicles relying on the traffic information from fuse loop detectors and
CVs using car-following concepts. In [22], both connected and identified non-connected
vehicles were grouped into platoons, resulting in the generation of all possible platoon
departure sequences. Rather than solving for optimal signal timing directly, the platoon
departure sequence that minimizes total vehicle delay was found by enumerating all
possible departure sequences. The optimal SPaT was then calculated as the time needed to
discharge all of the vehicles in a platoon.

Hierarchical approaches address the complexities of the traffic network optimization
problem by breaking it down into multi-level optimization problems with different ob-
jectives for each level. The key step of these approaches is to establish macroscopic and
microscopic models for each level of the control problem. For instance, Ref. [23] proposed
a two-level adaptive signal control method for corridor coordination. Two optimization
problems with distinct objectives were formulated at the intersection and corridor levels.
At the corridor level, an MILP was developed to optimize the offsets along the corridor
while minimizing the platoon delay based on the movement of vehicle platoons. The op-
timized offsets were then sent to the intersection level as the coordination constraints.
At the intersection level, individual vehicle movements were computed using a dynamic
programming method to minimize individual vehicle delay and handle phase allocation
for both coordinated and non-coordinated phases.

In Qiao et al. [24], a three-level multi-agent signal control system was proposed for an
urban traffic network, including an intersection agent, a regional agent, and a central agent.
Three corresponding objective functions were designed to minimize total delay time, reduce
the total green ratio-related delay, and find the optimal signal cycle. The fireworks algorithm
was employed by Tan et al. [25] to solved the optimization problems, resulting in optimal
cycle length, offset, and green ratio that minimize the total delay time of all intersections.

2.2. Data-Driven Approaches

The increasing availability of data and computation power has made machine learning-
based approaches more and more popular in traffic control. These approaches offer the
advantage of being model-free, eliminating the need to build complex mathematical models
to describe the traffic states and solve nonlinear optimization problems. For instance,
Ma et al. [26] proposed the use of real-time high-precision vehicle trajectory and traffic
flow data to better understand and control congestion, and suggested using deep learning
algorithms and model predictive control theory to construct a congestion recognition and
control optimization model for the urban roadway network.

Without a need for prior knowledge of the traffic system, machine learning-based
approaches also reduce the likelihood of introducing errors to the estimation of traffic
states. Additionally, machine learning approaches are less computationally intensive and
have great potential for real-time applications, making them more practical than traditional
model-based optimization methods. Moreover, machine learning-based controllers have
the ability to continuously learn and adapt to changes in the traffic pattern, leading to
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improved optimality. There have been efforts to use machine learning techniques to model
the complicated relationship between the signal timing plans and traffic delays, as reported
in [27]. Overall, machine learning-based approaches hold great potential for addressing
the various challenges in the field of traffic signal control.

The critical elements in designing a machine learning-based approach for traffic control
include (1) capturing the traffic state effectively, (2) selecting the appropriate learning
algorithm, (3) defining clear learning objectives, and (4) designing an inclusive action
space. For instance, Liang et al. [28] represented the traffic state of a single intersection as
image-like grids, using an n× n× 2 matrix to denote the position and speed of vehicles
within the grids. This matrix was then used as input to a convolutional neural network that
calculated expected future rewards for each possible action from the action space, which
was adjusting the current signal phase duration. The reward was defined as the reduction
in cumulative waiting time between two successive signal cycles. By using the double
Q-learning method to maximize the expected reward, the neural network could learn how
to reduce the average waiting time of vehicles at an intersection. Ma et al. [29] employed a
support vector machine (SVM) algorithm to model the relationship between the current
traffic state and the optimal signal timings and an online learning algorithm to adjust the
SVM model in real-time.

In [30], the traffic state of an intersection was represented using a set of normalized
queue lengths in each lane, which were discretized through the application of the k-means
clustering algorithm. To optimize energy consumption and mobility simultaneously, they
utilized an RL algorithm with three different reward functions. At each decision time step,
the signal controller agent made a decision to either end or continue the current signal
phase. Similarly, [31] proposed a reward function with respect to a fixed-time controller.
The agent receives positive rewards for better performance than the fixed-time controller,
and negative rewards for under-performance. In [32], the traffic state was characterized
by a 2-D matrix consisting of the number of stopped vehicles in each direction and the
average speed measured in each section. The action space comprised two options: selecting
signal phases and adjusting phase offsets. The reward function was a combination of the
total volume that passed through the arterial network and the difference in queue lengths
between the two different directions. To increase the adaptability of the signal control
model, Yoon et al. [33] proposed a graph-based method that depicts the traffic state as
graph-structured data, which were then input into a graph neural network to train the
signal control policy. The study focused on an isolated intersection with only straight
traffic flows and thus the SPaT was made up of two green-red phases and two yellow-red
phases, and the action was defined as the ratio of the green time over a fixed signal cycle.
To enhance the ability of the RL algorithm to generalize, Zeng et al. [34] incorporated
prior traffic knowledge. They used a fully-connected network to classify the intersection’s
demand pattern, and combined the results with outputs from a convolutional network to
produce joint Q-value approximations. The intersection state was represented by a discrete
encoding matrix consisting of vehicle position, speed, and signal phase. The reward
structure was a combination of the number of stopped vehicles and passing vehicles, phase
changes, and total vehicle waiting time.

In the scenario of network-wide traffic control, the application of a centralized RL
method faces many challenges, such as an exponential increase in the dimension of the
action space as the number of traffic lights increases, making it difficult to find an effective
joint control policy. To address this issue, some studies, such as [35,36], trained each
intersection as an individual agent based on the local traffic states and information from
neighboring intersections, while the overall system state and performance were determined
by the joint actions of all intersections. However, the stationary reward distribution and
environment dynamics are required by a Markov decision process. It is difficult for the
agent to converge to a stationary policy when its rewards are influenced by neighboring
intersections. To resolve this issue, Ref. [37] implemented a knowledge sharing mechanism
to enhance cooperation and collaboration among traffic signals, where the “knowledge”
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was a collective representation of the traffic environment collected by all agents and used
for learning individual policies. Similarly, to improve the convergence of the multi-agent
RL algorithm, Ref. [38] combined a group of traffic signals into a single agent through a
k-nearest-neighbor-based joint state representation.

In summary, the studies reviewed above have highlighted the potential of data-driven
approaches in developing signal control strategies that outperform conventional controllers
such as fix-timing and actuated controllers. However, the scenarios considered were
significantly simplified. Some studies limited the number of lanes and traffic directions,
resulting in a smaller state space, while others limited the action space by either selecting a
continuous space with fixed phase sequence and phase split action, or choosing a discrete
action space with limited options for phases and duration or fixed cycle/phase length
with phase switching as the only actions. These simplifications were made to reduce the
complexity of the data-driven models, indicating that the existing methods face challenges
in learning a practical and truly optimal signal control strategy.

3. Methodology

The deep reinforcement learning (DRL) approach has gained much attention due to
its capability in learning high-level decision-making processes, as demonstrated in [39].
As a data-efficient method, it enables learning of decision-making by agents through
interactions with the environment. A typical DRL-based control framework consists of
three basic components: environment sensing, the action space of the agent, and a learning
goal for the agent [4]. As demonstrated in previous studies, data-driven methods applied to
traffic signal control problems outperform conventional methods in simulations involving
large amounts of data.

The objective of this research is to improve the overall performance of data-driven
signal control frameworks by enhancing training outcomes and yielding more adaptable
SPaT results. As highlighted in the previous section, the existing DRL-based methods face
various challenges in terms of learning efficiency and optimality. In particular, the learning
structure needs to be revised to accommodate dynamic traffic conditions and improve
learning efficiency. With this in mind, this paper presents a novel data-driven optimization
framework for traffic signal control that leverages innovative DRL techniques. The structure
of the proposed method is depicted in Figure 1.

3.1. Scenario and Simulation Environment

In this paper, we consider a traffic signal control problem for a typical four-way
signalized intersection. As shown in Figure 2, the intersection has one left-turn lane, one
through lane, and one right-turn lane in each direction. The isolated intersection and traffic
are simulated by SUMO [40], a microscopic, space-continuous traffic simulation software,
which allows to retrieve details of simulated objects and to adjust their parameters at
every time step. The traffic signal at the intersection is managed by a DRL-based actor,
which is also referred to as an agent. This agent continuously receives traffic states and a
reward signal from the simulation environment and makes decisions based on the current
traffic state.

Traffic States: The traffic state is represented by discrete encoding of position and
speed information of vehicles around the intersection [41]. The simulated intersection
is divided into squared mesh grids with equal length c, which can be represented by an
N × N matrix. Each grid in the matrix has two values: one binary value that indicates the
presence of a vehicle, and the other that stores the speed of the existing vehicle. An example
of a 30× 30 traffic state matrix is shown in Figure 3, where the yellow grids denote vehicles
and the numbers show their speeds in m/s. Blank grids indicate the absence of at those
positions. In real-world implementations, vehicle mobility information can be obtained
through a vehicular network or other devices Jeong et al. [42].
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Which Phase? Duration?

Compressed Representation

Reward Signal

Traffic States

Figure 1. Proposed data-driven optimization framework for traffic signal control.

Figure 2. The simulated intersection.
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Figure 3. An example of traffic state matrix.

Action Space: This research focuses on two main types of discrete action spaces for
RL-based traffic signal control. The first option involves selecting a signal phase from
a fixed set of choices at predetermined time intervals, with the duration of each phase
limited to a multiple of the time interval. The second option involves fixing the phase
sequence of a signal cycle and adjusting the duration of each phase in the subsequent cycle
at the end of the current cycle. As depicted in Figure 4, a typical four-phase signal cycle is
considered as comprised of two straight and two left-turn phases. To discretize the action
space, a combinatorial approach is used to choose the signal cycle length and phase splits.

The selection of the signal cycle length plays a crucial role in handling traffic volumes.
A long signal cycle increases road capacity and prevents loss of green time that could occur
with delayed response to the green light [43]. However, excessively long cycle lengths
can result in increased congestion and long waiting queues. There is a trade-off between
road capacity and traffic delay to consider when selecting the cycle length. To balance
this, the selection of cycle length is limited to {10 s, 20 s, 30 s, 40 s, 50 s, 60 s} to prevent
extremely long cycle lengths from slowing down the traffic flow. The available selections
for phase duration range from 0 to the maximum cycle length, in increments of 5 s. This
results in a total of 1035 possible actions. Additionally, during the last 3 s of each phase,
the green lights turn yellow.

3.2. Compressed Representation of Traffic States

It is convenient to use the position and speed information of vehicles to build a
traffic state matrix for input to the DRL training algorithm. However, the large space
of the resulting traffic states makes it difficult for the DRL algorithm to identify a direct
relationship between the traffic state and the signal control action. To address this issue,
finding an appropriate traffic state representation is crucial. In this study, an autoencoder
neural network is used to represent the complex traffic states of the whole intersection
as a concise representation Baldi [44]. Having a state representation that contains rich
information is vital for the control agent to make informed decisions, without being affected
by the “curse of dimensionality”. To achieve this, the dimension of state representation must
be reduced while preserving as much information as possible. Additionally, the compressed
state representation allows the underlying traffic pattern to be extracted as features by the
autoencoder. Although it is hard to know the exact features learned by the autoencoder,
feature extraction has been shown to be a useful approach in improving reinforcement
learning in various applications [45].



Appl. Sci. 2023, 13, 2750 9 of 23

Phase 1 Phase 2

Phase 3 Phase 4

Figure 4. A typical signal cycle with four phases.

Autoencoder is a type of neural network that can learn a compact representation of
the input data [46]. Convolutional neural networks, such as the Visual Geometry Group
(VGG) neural networks [47], can extract inherent features from the spatial information in
the input data. By organizing a convolutional neural network into an encoder–decoder
architecture, the network can encode a static traffic state into a fixed-length vector, serving
as input to the reinforcement learning model.

The proposed convolutional autoencoder (CAE) network, shown in Figure 5, has a
mirror structure of two functional components: the encoder and decoder. The task of the
CAE is to reconstruct the original input to its output through a designated bottleneck layer
h. As illustrated in the figure, the input and output of the CAE are the traffic state matrices
with a shape of 64× 64× 2. The encoder part consists of two pairs of convolution-pooling
layers followed by two fully-connected layers, while the decoder is the reverse of the
encoder structure. The notation numbers define the dimensions of the outputs at each
respective layer. The size of hidden layer h can be determined through training experiments.
Upon completion of training, the encoder network will be used as the state representation
compressor to generate the input vector to the DRL neural network.

The proposed CAE was implemented and trained using Tensorflow [48]. The opti-
mization process employs the Adam algorithm [49] with mean squared error (MSE) as the
cost function. The hyper-parameters, such as number of filters and neurons in the CAE,
were determined through cross-validation training experiments. The size of the reduced
representation vector of the traffic states was selected as 8, resulting in a compression ratio
of 1024 to 1. In addition, the input state matrix was normalized by scaling the vehicle speed
to the range of 0 to 1 based on the maximum allowable speed of the road.
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Figure 5. The structure of the proposed convolutional autoencoder (CAE) for traffic state representation.

The proposed method was evaluated using a validation set, which constituted 10% of
the total available dataset. The simulation of the entire traffic signal control system was
carried out in SUMO, and the training dataset was generated by continuously running
simulations in SUMO. All vehicles were randomly initialized with a specified flow rate.
An example training session is shown in Figure 6 using a dataset of one million samples.
The minimum reconstruction errors in this example are 5.07× 10−4 for the training error
and 6.54× 10−4 for the validation error. It is important to note that the purpose of using
CAE is not only to reduce the dimension of the traffic state but also to extract inherent
features within the traffic information. The original traffic state is image-like data, and con-
volutional neural networks are usually used to learn the hierarchical representations of
these visual data. Based on convolutional operations, CAE is capable of learning inherent
features associated with the geometric distribution of the vehicles around the intersec-
tion. Hence, CAE was selected in this work. However, the effectiveness of CAE should
not be solely judged by its ability to perfectly reconstruct the input sample but validated
through the RL control experiments. An increase in the size of the hidden layer H may
lower the reconstruction loss; however, a large input size for the RL algorithm may have
negative consequences.

Figure 6. Training history of the proposed convolutional autoencoder.

3.3. Deep Reinforcement Learning Structure

The well-trained CAE is then combined with the DRL algorithm to form the final
model. The overall structure of the model is shown in Figure 7. The CAE’s encoder network
generates a compressed representation of traffic states, which is then fed into the fully
connected neural network to approximate the Q-value function as described in [4]. At the
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end of each control cycle, the neural network computes the Q-values of all available actions
for the given traffic state representation. The agent then selects the action with the highest
Q-value, which is expected to result in the maximum reward. After executing the selected
action, a new control cycle begins and the agent continues to learn how to maximize
rewards through interaction with the environment. To improve learning efficiency and
reduce possible over-estimations, the model incorporates techniques such as the target
network [5], dueling network [6], and prioritized experience replay [7]. The proposed DRL
training algorithm is detailed in Algorithm 1.

Figure 7. Proposed deep reinforcement learning model.

Reward Signal: The design of the reward signal is critical to the success of the RL-
based traffic signal control. The reward signal serves as a guide for the agent to learn
the objective of its control actions, which is to enhance the intersection’s throughput and
minimize vehicle waiting time. The reward provides feedback to the agent, evaluating its
past actions. It’s important to note that unlike other RL-based applications, the traffic signal
control problem has no terminal state. This means that the reward signal must reflect the
performance of each action taken by the agent, as there is no terminal reward to learn from.

There is no deterministic guideline for selecting the most appropriate performance
index, but the selection is crucial, as it guides the agent in learning the desired control
objectives. Commonly used performance indices in the field of traffic signal control in-
clude travel delay, queue length, and average vehicle speed (as seen in [8,17,50]). Some
approaches focus on reducing road congestion and only use average waiting time or queue
length as the reward signal. However, this could result in the agent learning a strategy that
frequently changes the traffic signal, leading to shorter queue time but lower speed. On the
other hand, using a shorter cycle length reduces average vehicle speed, leading to vehicles
spending more time idling at intersections, which not only increases fuel consumption but
also contributes to the reduction in road capacity.
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Algorithm 1: Pseudo-code for training algorithm of DRL-based agent

Input: mini batch size B, pre-train step tp, training episode length N,
learning rate α, greedy ε, discount factor γ, target network update
rate τ, target network update frequency K

Initialize primary network Qθ , target network Qθ− , replay memory D with
capacity M

Loop for each episode:
Initialize simulator environment
Initialize time step t = 0
Observe current state St
while time step t < N:

With probability ε select action At randomly
otherwise select At ←− argmaxQθ(St, a)
Execute action then observe next state St+1 and reward Rt
Store (St, At, Rt, St+1) in replay memory D
St ←− St+1
if current step t > pre-training step tp:

Sample a minibatch of B experience tuples
(St, At, Rt, St+1) from D
Compute target Q values for each experience:

Q∗(St, At) ≈ Rt + γQθ− (St+1, argmaxa′Qθ(St+1, a′))
Perform a gradient descent step with loss:
1
B‖Q∗(St, At)−Qθ(St, At)‖2

Update target network θ− every K steps:
θ− ←− τθ + (1− τ)θ−

t←− t + 1

A better approach is to use average vehicle speed as the reward signal. This allows
the agent to improve the overall traffic mobility and reduce average travel delay, while
also promoting fuel efficiency, which is mainly related to the vehicle speed and idle time.
Therefore, we use the average vehicle speed V̄ of the entire intersection, calculated at the
end of each control cycle, as the reward signal R, which is defined below:

R = V̄ =
1
T

T

∑
t=1

1
N

N

∑
i=1

vi, (1)

where vi is the velocity of vehicle i, T is the length of the current signal cycle, N is the total
number of vehicles in the control zone, and t is the time-step of the simulation.

4. Simulation Results

In this section, we present the simulated experiments to examine the effectiveness of
the proposed methodology.

4.1. Simulation Parameters

The simulation took place in a SUMO environment where a 320 m× 320 m intersection
was considered and established (as shown in Figure 2). The detailed parameters of the
simulated intersection and vehicles are listed in Table 1. The vehicles were randomly
initialized with a 10% probability per second. The Krauss car-following model [51] was
employed to ensure that vehicles move as fast as possible while maintaining perfect safety
requirements. The simulations assume a 100% CV penetration rate. Further evaluation of
other penetration levels will be conducted in future work.
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Table 1. Adopted parameters of simulation environment.

Parameter Value

Lane length 160 m
Vehicle length 5 m
Time step 1 s
Maximum vehicle speed 20 (m/s)
Maximum vehicle acceleration 3 (m/s2)
Maximum vehicle deceleration 4.5 (m/s2)
Minimum gap between vehicles 2 m
Car following model Krauss Following Model [51]
Duration of yellow phase 3 s
Traffic volume 480 vehicles per lane and per hour
Left turning vehicles ratio 25% of total
Right turning vehicles ratio 25% of total

4.2. Hyper-Parameter of Deep Reinforcement Learning Network

The implementation of the DRL network was carried out using Tensorflow [48] and
integrated with the SUMO simulation environment through a Python interface. The training
was conducted in episodes, with each episode consisting of 3600 time steps of 1 s each,
totaling one hour per episode. The random seed for the vehicle simulation was changed
in every episode. The critical hyper-parameters are listed in Table 2, with the values
determined through a process of trial and error.

Table 2. Hyper-parameters of deep reinforcement learning network.

Parameter Value

Simulated time steps for each episode 3600
Replay memory size 20,000
Minibatch size 64
Pre-train steps 2000
Target network update interval 64 control cycles
Target network update rate 0.001
Discount factor 0.99
Optimizer Adam [49]
Learning rate 1× 10−4

Initial probability of exploration 1
Final probability of exploration 0.01
Ending step for exploration probability 40,000

4.3. Convergence of DRL-Based Signal Controller Training

The convergence of the proposed DRL training algorithm was demonstrated by eval-
uating the accumulated rewards for each episode. As shown in Figure 8, the rewards
increased rapidly at the beginning and then leveled off as the training progressed. The av-
erage vehicle speed and average waiting time in each episode are also plotted to show the
improvement and convergence of traffic measurements. As previously noted, the average
waiting time is not part of the optimization objective due to its conflicting relationship with
the average vehicle speed in signal control policy. As a result, the average waiting time
increases slightly at the end of the training process.

4.4. Comparison with Baselines

The proposed method was compared with existing methods by implementing the
DRL-based traffic signal controller in [28] under the same simulation conditions. The DRL
training algorithm used is similar to the one described in Algorithm 1. It is important
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to note that the reward signal in [28] is the average waiting time and their signal control
strategy involves adding or subtracting 5 s from the duration of one of the current phases.
As shown in Figure 9, the performance of both average waiting time and average vehicle
speed improve as the training process progresses, but its convergence is slower and more
fluctuated compared to our proposed method in this paper.
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Figure 8. Convergence of the proposed DRL network.
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Figure 9. Training history of a reference DRL-based traffic signal controller.

In addition to the proposed DRL-based traffic signal controller, two baseline methods
have been implemented for comparison. These include a fixed-timing signal controller
and an actuated signal controller. To determine the best fixed-timing strategy, various
combinations of cycle lengths and phase duration were explored and the one with the best
performance was selected. The selected cycle length was 60 s, and the four phase duration
were 20 s, 10 s, 20 s, and 10 s. The actuated signal controller operates on a time-gap basis,
allowing the green phase to be extended if there is a continuous flow of traffic. When the
time gap between successive vehicles satisfies a predefined criterion, the signal switches
to the next phase. Actuated controllers are known to perform better than fixed-timing
controllers in dynamic traffic conditions. However, the traffic flow was steady and thus
the actuated signal controller performed similarly to the fix-timing controller. In addition,
the maximum phase duration was set to match the fix-timing controller, while the minimum
phase duration was set at 5 s.

To evaluate the performance of the proposed DRL-based control method, five common
traffic mobility metrics were selected: (1) average vehicle speed, which reflects the overall
mobility of the intersection, in the present moment and over a certain period of time,
and represents the average travel time of all vehicles to complete the trip when computed
over an episode; (2) average waiting time, which is calculated by dividing the total waiting
time of vehicles by the number of vehicles present at each time step, providing an insight
into travel delays from the perspective of road users; (3) average queue length, which is the
average of the total number of lanes and measures the congestion level of the intersection
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at each time step; (4) average queue time, which is calculated by dividing the total waiting
time of vehicles caused by a queue by the total number of lanes at each time step and
offers a similar perspective as average waiting time, but with a focus on traffic congestion;
(5) average vehicle density, which is the average number of vehicles in each lane at each
time step and represents the density of vehicles approaching the intersection.

The performance comparisons of our proposed method with the baseline methods
is shown in Figure 10. These metrics were obtained through 100 repetitions of statistical
testing using the same vehicle initialization file. Each data point represents the traffic state
at a single time step of the simulations and the median values are indicated by the white
labels in the middle of the boxes. As can be seen from this figure, the wide distribution
of the average vehicle speed and the average vehicle waiting time is due to the stochastic
nature of the traffic flow, while the lower median values indicate that our DRL-based
controller can acquire the signal control policies that may prioritize the overall traffic
performance over the performance of individual vehicles, which is also verified in Figure 13
that will be discussed later. However, there is room for further improvement of the control
policies by tuning the learning algorithm, such as by adding a maximum constraint for the
vehicle’s waiting time, which will be explored in future research.
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Figure 10. Performance comparisons with baselines.

The performance of the proposed DRL-based control method is also demonstrated
in Figure 11 through the five common traffic mobility metrics considered, each with its
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average value and confidence interval in a time series. Comparing Figure 11a–e, it can be
seen that the curves have similar trends, implying that these metrics are interconnected.
For example, longer queues lead to longer average queue time, slower average vehicle
speed, and slower vehicle discharge. Specifically, Figure 11a shows that the proposed
method had a much shorter average queue length than the three baselines. The curve
of our proposed method increased at the beginning and then decreased sharply at the
end, whereas the other methods did not follow this trend, demonstrating the effectiveness
of the proposed controller in recovering from saturation and clearing the intersection
quickly when the traffic volume decreases. By contrast, the other methods could not fully
recover from congestion within the simulation time. Regarding the average queue time in
Figure 11b, our proposed DRL method resulted in smaller queue times than the baseline
DRL method while there seems to have been no obvious improvement over the fixed-timing
and actuated methods. This is due to the acquired asymmetric policy, which sacrificed
traffic flow in the north and south approaches to maximize the overall performance. If
we continue to examine Figure 11c–e, we can see that our developed DRL method can
lead to slightly better results (e.g., higher average vehicle speed, lower average vehicle
density, and shorter average vehicle waiting time) than the three baseline methods under
the simulation scenario considered in this work.
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Figure 11. Simulation comparisons with baselines.
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To better understand the reason behind the wide distribution of the mobility metrics
simulated by the proposed method, the lane-wise simulation data of our proposed DRL
method is plotted in Figures 12 and 13. The comparison of the average queue length and
queue time of each lane reveals that the lanes in the north and south approaches have
similar curves with lower values than the west and east lanes. This suggests that our
DRL-based controller has adopted an asymmetric traffic flow policy, even though the traffic
volumes are balanced, to optimize the performance of the entire intersection. Figure 12
further confirms that the significant deviations observed in the green boxes of Figure 10
are primarily due to the asymmetric traffic control policy. Specifically, the north and south
approaches always have queues, while the west and east approaches have smoother traffic
flow. As a comparison, the traffic flows simulated by other considered methods are plotted
in Figure 14. It can be seen that their traffic flows are balanced, as evidenced by the similar
trends and values of the average queue length and queue time for each lane.
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Figure 12. Performance estimation of the proposed method in each lane.
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Figure 13. Traffic flow simulated by the proposed method in each lane.
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Figure 14. Traffic flow simulated by the referenced method in each lane.

To further validate the control policy acquired by our proposed method, we trained a
DRL controller with symmetric signal phases and timing. Specifically, each signal cycle
had equal lengths for the first and third phases, while the second and fourth phases were
identical. The cycle length was selected from the set {10 s, 20 s, 30 s, 40 s, 50 s, 60s},
resulting in 27 total actions. The purpose of this experiment was to see the control policy
learned by the DRL algorithm with symmetric SPaT. As shown in Figure 15, the results
for the symmetric policy have more noticeable periodic oscillations, indicating periodic
traffic congestion. However, despite not being as good as the original DRL-based controller
with flexible SPaT, it still outperformed the fix-timing controller. There is no significant
difference in traffic flow between each direction for the symmetric SPaT policy; hence a
direction-wise plot was not included. This comparison confirms our speculation that the
original DRL controller had learned a policy with asymmetric traffic flows to optimize the
traffic performance of the entire intersection.

4.5. Robustness Analysis

The challenge in data-driven control methods is ensuring robustness and reliability
with discrete data points. On the one hand, to achieve the optimal control in a complex
environment, the agent must visit each state–action pair enough times, which may result
in over-fitting, i.e., poor control performance under the unseen traffic conditions. On the
other hand, to perform robustly on unseen states, the solution is either to train the agent
with a large dataset including as many state–action variations as possible or to simplify the
state and action space, but both approaches may compromise convergence and optimality
of the controller. As stated in previous sections, our solution tackles this challenge by using
the CAE to reduce the dimensionality of the state space while increasing the action space to
enhance the control performance.

The previous simulations were conducted with a constant traffic flow rate of
480 vehicles per hour per lane. To examine the robustness of the proposed DRL-based
method, the controller was evaluated under different traffic volumes with varying traf-
fic flow rates. The results of the previously trained controller with volumes of 400, 600,
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720, and 800 vehicles per hour per lane are shown in the green box-plots in Figure 16.
The orange box-plots represent the performance of controllers specifically trained with
the corresponding traffic flow rates. For instance, the orange box-plots of 400 vehicles
per hour per lane show the simulation data generated by a DRL-based controller trained
with a constant traffic flow of 400 vehicles per hour per lane. The fixed-time and actuated
controllers are also included for comparison. The comparison shows that the proposed
DRL-based controller performs well in unseen traffic scenarios. However, retraining the
controller with specific volumes does result in improved performance, but at a higher
training cost and without guaranteed results. The control policy depends on the traffic
volume, but the agent cannot determine the traffic volume from a single control cycle’s
traffic state. To overcome this limitation, future investigation could focus on incorporating
temporal information into the traffic state inputs to achieve optimal performance in various
traffic scenarios.
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Figure 15. Simulation comparisons with the DRL-based controller trained using symmetric SPaT.
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Figure 16. Robustness analysis by comparing the performance of DRL-based controller.

5. Conclusions

This paper presents a novel DRL-based traffic signal controller for a typical four-way
intersection. Different from the existing data-driven methods, this work takes advantage of
CAE to capture traffic states into compressed representations. With a reduced dimension-
ality of the input traffic states, the proposed DRL-based controller enables more flexible
design of the action space and increased responsiveness to dynamic traffic conditions.
The simulation results demonstrate the effectiveness and performance of the proposed
method through comparisons with three baseline methods across five commonly used
performance metrics. The proposed DRL-based controller also exhibits more consistent
training results compared to existing DRL methods. To further validate the control policy
learned by the proposed DRL algorithm, the traffic flows with different SPaT plans are
analyzed. In addition, the proposed DRL-based controller is tested for robustness against
varying traffic volumes and compared with controllers retrained for specific traffic con-
ditions. The results indicate that the proposed DRL agent is capable of handling unseen
traffic scenarios effectively.

The proposed method has a limitation in that it incurs a high training cost due to the
expanded action space. Additionally, it has only been tested on a single four-phase intersec-
tion with 100% CV penetration rate. Future work will aim to extend the proposed method
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to more complex scenarios and scale it up for corridor and network-level signal control
with joint optimization of signal timing. This will present a greater challenge, as the traffic
state and action space dimensions will increase exponentially. One potential solution to this
challenge is to utilize the multi-agent reinforcement learning approach, which addresses
the control problem of multiple autonomous, interactive agents in a common environment
by distributing the global control to multiple local RL control agents [52]. The sharing of
information among intersections can help individual signal controllers to learn and work
together to optimize the overall performance of the traffic network. Additionally, we aim to
expand the scenario to include varying traffic flows and heterogeneous vehicles, to further
test the robustness and scalability of the data-driven methods. By incorporating these
challenges, we hope to develop a data-driven approach that can learn a practical and truly
optimal signal control strategy for real-world traffic systems.

Furthermore, the proposed method uses the position and speed information of CVs at
the end of a control cycle to construct the traffic state matrix as input to the DRL controller,
ignoring the temporal information. Utilizing recurrent neural networks, such as long
short-term memory (LSTM), has the potential to capture the complex dynamics within the
temporal information of input data. Integrating an LSTM-autoencoder into the encoder–
decoder network architecture can help it learn a representation for time series sequence
data, enabling the DRL controller to make more accurate traffic state estimations and
improve control strategies. These are promising avenues for future research.
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