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Abstract: Cycling—as a sustainable and convenient exercise and travel mode—has become increas-
ingly popular in modern cities. In recent years, with the proliferation of sport apps and GPS mobile
devices in daily life, the accumulated cycling trajectories have opened up valuable opportunities
to explore the underlying cycling semantics to enable a better cycling experience. In this paper,
based on large-scale GPS trajectories and road network data, we mainly explore cycling semantics
from two perspectives. On one hand, from the perspective of the cyclists, trajectories could tell their
frequently visited sequences of streets, thus potentially revealing their hidden cycling themes, i.e.,
cyclist behavior semantics. On the other hand, from the perspective of the road segments, trajectories
could show the cyclists’ fine-grained moving features along roads, thus probably uncovering the
moving semantics on roads. However, the extraction and understanding of such cycling semantics
are nontrivial, since most of the trajectories are raw data and it is also difficult to aggregate the
dynamic moving features from trajectories into static road segments. To this end, we establish a new
visual analytic system called VizCycSemantics for pervasive computing, in which a topic model (i.e.,
LDA) is used to extract the topics of cyclist behavior semantics and moving semantics on roads, and a
clustering method (i.e., k-means ++) is used to further capture the groups of similar cyclists and road
segments within the city; finally, multiple interactive visual interfaces are implemented to facilitate
the interpretation for analysts. We conduct extensive case studies in the city of Beijing to demonstrate
the effectiveness and practicability of our system and also obtain various insightful findings and
pieces of advice.

Keywords: cycling trajectory; visual analysis; LDA model; cycling semantics

1. Introduction

The context of modern urbanization and fast-paced life reduces people’s daily exercise.
Various diseases, such as obesity and cardiovascular diseases, are also increasing. As a
convenient way of exercise and travel, cycling not only improves the health of cyclists but
is also a sustainable mode of transportation with environmental and social benefits [1]. In
recent years, lots of countries have implemented strategies to improve their cycling service
and turn it into a safer and more convenient mode of travel [2–5].

With the proliferation of sports apps and GPS mobile devices in daily life, various sensing
devices have recorded a large number of outdoor-recreation cycling trajectories, including
Strava, Keep and so on. Generally, such kinds of big data contain rich spatial and temporal
information of the cycling in cities, thus opening up valuable opportunities to explore the
underlying cycling semantics to enable a better cycling experience. For example, knowing
different types of popular cycling (e.g., recreation, commuting) could help cyclists to find the
most desirable and suitable routes, and knowing the roads that are difficult to ride could help
city planners to build cycling infrastructures in proper locations. Hence, it is quite meaningful
to effectively uncover the implicit cycling semantics from large-scale GPS trajectories.

Trajectories traverse a series of streets, and street names may imply geographic and
cultural information to the citizens of a city [6]. Thus, by converting the cycling trajectories
into a corresponding set of street names, the obtained corpus is able to semantically reveal
the riders’ hidden cycling themes, i.e., the behavior semantics of cyclists. For example,
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a cyclist often rides along the Seine, indicating that he/she is likely to do recreational
cycling. Moreover, it is well-recognized that cycling is naturally restricted to the road
network. However, existing studies mainly focused on analyzing the cycling from the
perspective of cyclists, ignoring the underlying semantics from road segments [7,8]. In
fact, road segments could inherently influence many aspects of cycling, e.g., some roads
in poor conditions generally indicate an unfavorable or challenging cycling experience.
Fortunately, such influences could also be revealed by GPS trajectories. It is because
trajectories contain cyclists’ fine-grained moving characteristics on roads, such as smooth
or intense, thus explicitly indicating where they are suitable for smooth cycling and where
they are challenging for cycling, i.e., the moving semantics on roads. In a nutshell, in this
paper, we aim at utilizing large-scale cycling trajectories and road network data to explore
cycling semantics in a city from the perspectives of both cyclists and road segments.

However, it is still nontrivial to effectively extract and perceive the underlying cycling
semantics. The challenges are threefold. Firstly, due to the GPS noise and other positioning
deviations, the study on the raw GPS trajectories would suffer from the uncertainty problem.
Secondly, the road segments are static in nature while the cycling passing through the road
segments is spatially and temporally dynamic. Consequently, it is difficult to aggregate the
dynamic moving features of the trajectories into static road segments, and it needs to be
decoupled properly. Thirdly, cycling semantics in the city cannot be intuitively presented
through statistical information, which is hard to be perceived especially for users with low
or no technical backgrounds, e.g., urban planners [9].

To overcome the above challenges, this paper presents a new visual analytic system
for the exploration of cycling semantics. Specifically, to overcome the GPS uncertainty
problem, we map the GPS trajectory coordinates from geometrical positions to the set
of street names, then construct a high-level and meaningful textual corpus. Similarly, to
address the conflict between static roads and dynamic moving features, we also convert
the moving attributes on roads (i.e., velocity, acceleration and turning angle) into three
kinds of static textual corpora from cycling trajectories. On top of the different corpora,
latent Dirichlet allocation (LDA) is used to automatically extract various topics of cycling
semantics based on the word probability, thus further reducing the effect of the uncertainty
problem or missing GPS records to a certain extent. Moreover, due to the nature and
intuitive connection between human beings and computers through interactive visual
interfaces, visual analytics is frequently utilized to explore hidden facts/patterns behind
raw data [10,11]. Thus, we further implement multiple interactive user interfaces for
analysts to facilitate the understanding of cycling semantics in a visualization manner.

The main contributions of this paper can be summarized as follows.

• We propose a new visualization system called VizCycSemantics for the exploration
of underlying urban cycling semantics from both the cyclist and road segment’s
perspectives, based on large-scale cycling GPS trajectories and road network data. The
system could help to improve cycling services in cities.

• We textually convert the cycling trajectories into street name and moving feature cor-
pora, then use a topic model to automatically extract the cyclists’ behavior semantics
(i.e., cycling topics of cyclists) and moving semantics on roads (i.e., moving topics on
roads), respectively. We further employ a clustering algorithm to capture the groups
of similar cyclists and road segments in the city.

• We implement multiple interfaces to facilitate the understanding of cycling semantics
for pervasive computing, including a cycling map, cycling groups and topics, the
size of cycling groups, the street cloud of cycling topics, the temporal evolution of
cycling topics, moving topics and moving topic distribution. A group of case studies
in Beijing demonstrates the effectiveness of our system and also obtains various
insightful findings and cycling advice.

The rest of this paper is organized as follows. We review the related work in Section 2.
Section 3 describes the system tasks and framework. In Section 4, we elaborate on the
details of the backend algorithms. Section 5 provides the data source and visualization
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designs. We use two cases to demonstrate the effectiveness of our system in Section 6.
Finally, Section 7 concludes this paper and discusses future directions.

2. Related Work

In recent years, visualization techniques have become important means for large-scale
data exploration [12]. In the transportation community, trajectory data have been widely
studied for developing smart urban services [13–19]; meanwhile, a lot of efforts have also
been devoted to the trajectory visualization for a visual mobility analysis [20,21]. Generally,
existing visualization works can be broadly categorized into two groups as follows.

2.1. Visualization for Raw and Processed Trajectory Data

The visualization of raw trajectory data is to draw the trajectories without processing,
mainly including position animation, time-axis visualization, traffic wall and space–time
cube (STC). Furthermore, the space–time cube [22] is a classic method to visualize the
multiscale spatiotemporal characteristics of trajectory data. On this basis, Bach et al. [23]
proposed a generalized space–time cube which transformed the cube’s 3D shape into
readable 2D visualizations. However, the visualization of large-scale raw trajectory data
might cause mutual occlusions and visual confusion [12]. To solve the dilemma, visual-
izations are usually coupled with many processing methods (e.g., trajectory clustering,
filtering and compression) to simplify the massive trajectories in time and space. For
instance, Chen et al. [10] proposed a visualization method called VAUD, which supported
cross-domain correlation and deduction from multiple data sources including taxi tra-
jectory data. Wang et al. [24] presented a visual analysis system to explore sparse traffic
trajectory data through applying existing trajectory aggregation techniques to the dataset.
Shamal et al. [25] used multiple sketch queries and visualizations to taxi trajectory datasets
and discovered historical traffic situations such as speed and volume at specific times, dates
and different city locations. The system was built upon a transport database that integrated
heterogeneous data sources with an optimized spatial indexing and weighted similarity
computation. Krüger et al. [26] presented a visual analytics approach to fine-tune the data
preprocessing and matching process, using taxi trajectories to demonstrate the approach in
a realistic usage scenario.

2.2. Visualization for Hidden Knowledge of Trajectory Data

Researchers also focus on utilizing visualizations to explore the hidden knowledge
and laws implicit in the trajectory data. Brauer et al. [2] quantified urban cycling quality
by estimating the fluency of a large set of cycling trajectories, using intuitive visual means.
Lu et al. [27] explored the possibility of studying route choice behavior based on a general
trajectory dataset. Kamw et al. [28] further proposed a new computation model and visual
analytical framework to study the accessibility of urban structures with a taxi trajectory
dataset. Moreover, Itoh et al. [29] proposed a visual integration of traffic analysis and social
media analysis using smart card data on the Tokyo Metro, Toei Subway. Zeng et al. [30]
developed a visual analytics interface that integrated massive human mobility data to
explore the relationship between human mobility and activities. Zhao et al. [31] conducted
a group-based and individual-based exploration of the passenger’s mobility correlation
with a visualization system and examined how passengers differed from or correlated
with each other based on the trajectories of buses and subways. Shi et al. [32] surveyed
state-of-the-art research works in the visual analytics of anomalous user behaviors with
travel data. Feng et al. [33] proposed an accurate and intuitive density for POI accessibility
based on the various constraints of road connections and traffic data.

Our work concentrates on visualizing the hidden knowledge of trajectory data. Similar
to our work, Chu et al. [6] extracted the taxi topics about the moving behaviors of taxi riders
from massive taxi trajectory data within a city, which were displayed and analyzed through
a visual analytics system. Additionally, Al-Dohuki et al. [34] managed and visualized taxi
trajectory data in a semantic rich means similarly, but they concentrated on the flexibility
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of semantic query over a text search engine. In this work, we focusd on exploring more
diverse and in-depth cycling semantics from two perspectives, namely, the cyclists and the
road segments.

3. System Tasks and Framework of VizCycSemantics

In order to enable the systematical exploration of urban cycling semantics, we dis-
cussed with collaborative domain experts and carefully summarized three main tasks to
motivate the development of our VizCycSemantics system:

• Task 1: Acquire cycling themes of cyclists in the city, i.e., behavior semantics. Based
on the cycling trajectories and road network data, find out how many cycling themes
of cyclists are in the city, which ones are more popular, how many groups of cyclists
there are and how they distribute in time and space. This task could help cyclists to
choose the desirable cycling routes and times according to their preferences.

• Task 2: Identify different moving topics of cycling on the road network, i.e., mov-
ing semantics on roads. By investigating the fine-grained moving features on road
segments, find out the moving topics of road segments in the city and determine
where the road network is good for smooth or challenging cycling, where people need
to ride with care and so on. This task can enable cyclists to choose appropriate road
segments for their physical needs and can also help city planners to properly deploy
cycling facilities.

• Task 3: Facilitate the understanding of the cycling semantics for analysts. Through
implementing an interactive visualization system, the cycling semantics derived from
task 1 and task 2 could be presented more intuitively. The user interfaces should
satisfy the criterion of a user-friendly interaction.

Accordingly, our VizCycSemantics system was composed of two modules. As shown
in Figure 1, the first one was the backend module, which contained several algorithms
to extract cycling semantics automatically from cycling trajectories and road network
data. The second module was the user interfaces enabling a visual exploration of cycling
semantics according to task 3. We used cycling grouping and a street cloud of cycling topics to
show the popular cycling topics and grouping of cyclists and further visualize their temporal
evolution of cycling topics. Furthermore, the moving topics and moving topics’ distribution were
used to analyze the moving topics of cycling on road segments. Additionally, the cycling
map interacted with these interfaces to show the specific spatial distribution of cycling
semantics on the map.

Figure 1. Overview of the system framework.

4. Backend Algorithms of VizCycSemantics

Figure 2 illustrates the workflow of the backend algorithms. The inputs were raw
cycling trajectories and road network data. In the preprocessing stage, filtering and map
matching were used to clean the inputs and derive the matched trajectories to road segments.
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When the study objects were cyclists, we obtained the street name corpus (i.e., C_cyclists)
by converting the trajectories into the corresponding street names. Then, the corpus was
sent to the LDA model to capture the cycling topics of cyclists, namely T_c, because the results
of the LDA model also provided the probability for each cyclist on all cycling topics. We
used k-means ++ [35] to learn the grouping of cyclists, namely G_c. When the study objects
were road segments, we extracted three corpora (i.e., C_segments) based on three moving
attributes (i.e., velocity, acceleration and turning angle) by converting the trajectories into
the corresponding values of moving attributes. Next, in the topic extraction stage, we used
the LDA model on each corpus and obtained three aspects of the moving topics (i.e., T_s).
Then, in the clustering stage, based on the moving topic distributions extracted from the
LDA model, k-means ++ was used to learn the grouping of road segments in the city, namely
G_s. Generally, the cycling topics and groups of cyclists (i.e., T_c, G_c) and the moving
topics and groups of road segments (i.e., T_s, G_s) were obtained through the backend
algorithms and were visualized in user interfaces.

Figure 2. Workflow of backend algorithms.

4.1. Preprocessing

We first designated the study area in the city, then filtered out the trajectories that
exceeded the area and also deleted duplicated and incomplete ones. On top of that, we
utilized the ST-matching algorithm to match the trajectories to the street network [36,37].
ST-matching is based on the hidden Markov model (HMM) [38], which elegantly accounts
for measurement noise and the layout of the road network. ST-matching can integrate geo-
metric information and road topology and thus has the advantages of a high precision and
good stability. For each trajectory point, the algorithm estimated the emission probability
to the nearby street segments and the transition probability. Afterwards, based on the two
sets of probabilities, the Viterbi algorithm [39] was used to calculate the optimal sequence
of map-matched points.
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4.2. Textualization
4.2.1. Trajectory–Streets Textualization

Through trajectory textualization, the geometrical positions of cycling trajectories can
be transformed to the corresponding street names that could indicate the geographic and
cultural information about cyclists [6]. Thus, we could further extract their hidden cycling
topics (i.e., behavior semantics of cyclists).

As shown in Figure 3a, a cyclist has n cycling trajectories, and each of them passes
through m road segments, while each road segment corresponds to a street name, i.e., a
word. Thus, a trajectory can be represented as a sentence with m words. Furthermore, a
cyclist can be represented as a document with n sentences. Such a process is carried out for
all cyclists. Consequently, we can obtain a corpus regarding the cyclists’ trajectories (i.e.,
C_cyclists), in which the number of documents equals the number of cyclists.

Figure 3. The processes of trajectory data transformation. (a) Textualization for trajectories to street
names. (b) Textualization for moving features.

4.2.2. Moving Feature Textualization

As a restriction of cycling, the conditions of the road network strongly influence
the cyclist’s movement, thus indicating the moving topics of cycling. In this sense, we
textualized the cyclists’ fine-grained moving features on roads from the large-scale GPS
trajectories to convey the moving semantics of cycling on the roads.

As shown in Figure 3b, there are n trajectories going through a road segment. For m
sampling points in each trajectory, we calculated three moving attributes, including the
velocity, acceleration and turning angle. Generally, each moving feature at a point can be
viewed as a word, and m words constitute a sentence, e.g., v−Sentence. As a result, each
trajectory is represented by three sentences with regard to three kinds of moving attributes.
Finally, a road segment can be represented as three documents with 3× n sentences, namely,
v−Doc, a−Doc and angle−Doc. By performing the textualization for all road segments, we
could obtain three corpora regarding the cycling moving attributes, i.e., C_segments. The
details on the computation of the three moving attributes are as follows.

Each trajectory provides a start time ts, end time te, and a sequence of GPS points with
latitudes and longitudes (i.e., P1, P2, P3, . . . , Pn). The Euclidean distance di between Pi and
Pi+1 and the time interval of the trajectory are computed as:

di = dist(Pi, Pi+1) (1)

∆t = te − ts/(n− 1) (2)
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Based on that, the velocity vi of point Pi is approximated as the mean velocity between
Pi and Pi+1, and the acceleration ai is similar. The equations are as follows:

vi = di/∆t (3)

ai = (vi+1 − vi)/∆t (4)

where vi is the velocity of point Pi and vi+1 is the velocity of point Pi+1.
As for the turning angle, it can be obtained by calculating the difference between

continuous heading directions [40]. Figure 4 displays three continuous GPS points. The
heading direction (headingPi

) of Pi is the angle between the moving direction (denoted by
the solid arrow) and the fundamental direction (denoted by the dotted arrow). Hence, the
turning angle at a point Pi can be computed according to Equations (5) and (6):

turnAngPi
=| heading Pi−1

− heading Pi
| (5)

where | heading Pi−1− heading Pi | ≤ 180◦.

turnAngPi
=| heading Pi−1

− heading Pi
| −180◦ (6)

where | heading Pi−1− heading Pi | > 180◦.

Figure 4. Illustration of heading direction and turning angle calculation.

4.3. Topic Extraction via LDA

Based on the transformed corpus (i.e., C_cyclists and C_segments), we used a topic
model to extract the hidden cycling topics. LDA is a classic topic model, which can discover
the topic structure hidden in a large document corpus [41]. Topics are defined based on the
probability distribution of vocabularies, thus there are several groups of keywords with high
probabilities. Hence, in this paper, LDA was employed to extract the cycling topics of cyclists
and moving topics on road segments. In terms of cyclists, a cycling topic was a cluster of
streets within a probabilistic framework. In terms of road segments, a moving topic was a
cluster of velocity/acceleration/turning angle values within a probabilistic framework.

Moreover, the results of the LDA included two kinds of distributions, i.e., a keyword–
topic distribution and a topic–document distribution, detailed as follows.

4.3.1. Keyword–Topic Distribution

Through the LDA model, several topics were obtained, which could be represented by
a set of words (i.e., street names or moving features). Each word had a frequency in the
topic, which we referred to as a keyword–topic distribution. The appearance probability
of a word in a given topic t was expressed as p(w|t). Based on that, topics were sorted
according to the total probabilities of all words appearing on the topic. Words with medium
or high probabilities (i.e., keywords) were considered to represent that topic. Furthermore,
the sum of the probabilities of a word on all topics was 1 (Σzp(w|t) = 1).

Moreover, we computed the perplexity of a corpus to evaluate the LDA model. Note
that a lower perplexity score indicates a better generalization performance [41]. In terms of
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the LDA model used in the paper, the hyperparameter was mainly the number of topics,
which could influence the specific keyword–topic distribution. In other words, the optimal
number of topics was selected by evaluating the perplexity of different topic numbers. The
perplexity was calculated as follows:

Perplexity(D) = exp

{
−∑M

d=1 log p(wd)

∑M
d=1 Nd

}
(7)

where D represents the corpus, with a total of M documents. Nd corresponds to the number
of words in each document d, wd is the word in document d, and p(wd) is the probability
of wd in the document d.

4.3.2. Topic–Document Distribution

The LDA model generated the topic–document distribution, i.e., the probability dis-
tribution of each document on all topics extracted with the LDA. In terms of cyclists, a
document represents a cyclist, thus we could obtain the probability distribution of each
cyclist on all cycling topics. In terms of road segments, a document represented a road
segment in a similar way. This contributive probability of a topic t to a given document
d was represented as p(t|d). Among the distribution, top topics were regarded as the
representative characteristics for a document (i.e., a cyclist or a road segment). Moreover,
the distribution probability of each topic on all documents added up to 1, i.e., Σtp(t|d) = 1.

4.4. Topic-Based Clustering

In order to analyze the grouping of cyclists and explore their characteristics in the
city, the cyclists were clustered based on the topic–document distribution. In the same
way, clustering was performed to study the grouping of road segments based on the three
moving attributes.

After performing the LDA model, the topic–document distribution could be obtained.
Assuming that there were a total of M documents and T topics in a corpus, i.e., the dataset X
included M objects X = X1, X2, X3, . . . ,XM, and each object had T dimensions. The goal of
the topic-based clustering was to gather M objects into designated k clusters based on their
similarity on the topics. Each object only belonged to one cluster with the smallest distance
from the center of a cluster. In this study, we employed the k-means ++ clustering algorithm
because of its efficient and simple calculation. Compared with the k-means algorithm, it obtains
an initial set of centers that is provably closer to the optimum solution [35]. The number of
clusters was determined by the elbow rule [42], and k was the inflection point where the sum of
squared errors (SSE) started to drop smoothly. The SSE was calculated as follows:

SSE =
k

∑
i=1

∑
p∈Ci
|p−mi|2 (8)

where Ci is the ith cluster, p represents each object in cluster Ci, and mi is the centroid of Ci,
i.e., the mean value of all objects.

5. Visualization Implementation
5.1. Study Area and Data Source

The area we studied was within Beijing’s Sixth Ring Road. The trajectory dataset
consisted of 58,842 trajectories provided by 5425 anonymous cyclists in 2014. Each record
had an anonymous user ID, allowing us to identify the trajectories of the same cyclist. In
addition, each trajectory also provided the start time, end time and a sequence of latitudes
and longitudes. The sampling rate of the GPS points was 3 seconds.

Furthermore, we utilized the street network provided by OpenStreetMap (OSM) to
construct the street topology within the Sixth Ring Road, and finally obtain a total of
11,926 road segments and the corresponding street names.
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5.2. Visual Design

In order to facilitate the interpretation of extracted cycling semantics for analysts, we
carefully designed six main visualization interfaces in our system, including a cycling
map, cycling grouping, a street cloud of cycling topics, a temporal evolution of cycling
topics, moving topics and a moving topic distribution. These visual views were developed
with the Apache ECharts tool (https://echarts.apache.org/zh/index.html, accessed on
18 February 2023).

5.2.1. Cycling Grouping and Street Cloud of Cycling Topics

This helps users explore the cycling groups in the city, e.g., how many groups of cyclists in
the city and which streets were popular for cyclists and so on. We implemented three interfaces
to visually present the inherent details of the cycling groups, namely, cycling groups and
topics, the size of the cycling groups and the street cloud of the cycling topics. Among
them, the first two were collectively referred to as cycling grouping.

Cycling grouping: In Figure 5b, users can explore the distribution of cycling topics
and the relationship between cycling topics and groups. Curves with different colors
represent the cyclists in different groups (i.e., Gc from G1 to G10). Columns from left to
right represent the important topics in the corpus (the importance degrees are decreasing),
and the vertical axis represents the cyclist’s probability for this topic. Thus, the smooth
curves connecting adjacent columns could tell the topic distributions of cyclists, i.e., Tc.
Such an interface is called a parallel coordinate plot over the topics [43]. Additionally,
users know the optimal number of Tc in the input box with a prompt, and they can also
change the number in the input box to make a comparison. Moreover, users can also refer
to Figure 5c to compare the sizes of different cycling groups.

Figure 5. The interfaces of VizCycSemantics system. (a) Cycling map. (b) Cycling groups and topics.
(c) Size of cycling groups. (d) Street cloud of cycling topics. (e) Temporal evolution of cycling topics.
(f) Moving topic distribution. (g) Moving topics.

Street cloud of cycling topics: To examine the specific streets that a cycling group focus
on, users can select a group in the left list of Figure 5b, and a corresponding street cloud
will appear in Figure 5d. Such a street cloud can visually show the most popular streets of a
cycling group, and the distinct font sizes represent their popularity degrees. Moreover, the
street cloud is drawn with the same color as the selected group for easy differentiation.

5.2.2. Temporal Evolution of Cycling Topics

This enables users to analyze how cycling topics change over different time granularity.
As shown in Figure 5e, users are able to examine the temporal evolution of cycling

topics with a given granularity. The corresponding time unit can be chosen via buttons
on the right side, including hours in a day, days in a week, and months in a year. In the

https://echarts.apache.org/zh/index.html
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evolution interface, the curves with different colors stand for the topics in Tc. Users can
easily find which topic each curve belongs to through the corresponding colors of different
cycling topics on the left. Moreover, the horizontal axis represents continuous time periods,
and the vertical axis represents the sorting of topics’ distribution probabilities in a time
period (10 represents the highest one). Note that the curve for a topic only connects adjacent
time periods when their probabilities exceed the threshold simultaneously. Thus, a curve
may break in the middle, such as topic 2 colored in orange in Figure 5e.

5.2.3. Moving Semantics Profiling

This enables users to explore the implicit moving semantics of cycling on roads, e.g., the moving
topics of the three moving attributes and the topic distribution of road segments. Moving semantics is
visually presented by two interfaces, namely moving topics and moving topic distribution.

Moving topics: The moving attributes studied in this paper include velocity, accelera-
tion and turning angle. Users can select one kind of moving attribute via buttons on the top
side. The specific topics are shown in Figure 5g through single-axis scatter diagrams. To
be more specific, the same colored circles denote a topic, and the horizontal axis indicates
the velocity/acceleration/turning angle values (i.e., a word) for this topic. Moreover, the
size of the circle indicates the contribution of the word to the current topic. Hence, users
can easily define the meaning of moving topics according to the largest contribution in the
topic with different sizes of circles.

Moving topic distribution: When choosing a road segment in Figure 5a, Figure 5f
will display the topic distribution of the selected road segment through a ring graph. The
colors used in the ring graph are also consistent with those on Figure 5g. With such an
interface, users can intuitively find out which topic is the mainstream one for that road
segment (e.g., dangerous moving conditions).

Furthermore, after the clustering, road segments in the city are assigned to certain
groups (i.e., G_s). In this regard, users are able to further analyze the grouping of different
kinds of road segments on the cycling map, which is introduced in the following section.

5.2.4. Cycling Map

This enables users to examine the spatial distribution of cycling semantics on the map, including
the cycling topics of cyclists and the moving topics on roads.

For the cycling topics of cyclists, when choosing a group in Figure 5b, streets for
its representative topic (e.g., recreational cycling) are shown in Figure 5a. In order to
visualize a topic composed of multiple street names precisely, the streets are drawn in the
corresponding color in Figure 5b. Moreover, the width of a drawn line is determined by the
importance of the street in the given topic. Note that we only delineated the streets above
a threshold, i.e., p(w|t) > 0.015. With such a visualization, cyclists could easily choose a
desirable cycling route according to their preferences.

For the moving topics on roads, when choosing a kind of moving attribute on the top of
Figure 5f,g, the grouping of road segments based on the attribute is displayed on the cycling
map. Taking velocity as an example, there are four groups corresponding to four extracted
topics. Each group is drawn in the color of its representative topic, and the width of the line
segments denotes the probability of the topic. Thus, with this interface, users can find out
which road segments they are interested in via the color and width of the road segments.

The background in the system was developed by Baidu map (https://lbsyun.baidu.
com/index.php?title=jspopularGL, 16 December 2022). Different forms of backgrounds
(dark, gray, etc.) could be used to provide visual cues. Moreover, the map provided
landmarks such as business districts and scenic spots and also supported any zoom.

6. Case Study

The target users of VizCycSemantics system are cyclists and urban planners. To
demonstrate the effectiveness of our visual exploration system for users, we conducted two
case studies in Beijing.

https://lbsyun.baidu.com/index.php?title=jspopularGL
https://lbsyun.baidu.com/index.php?title=jspopularGL
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6.1. Case 1: Exploring the Spatiotemporal Patterns of Cycling Themes for Cyclists

We first verified that users could learn about popular group trends and explore the
characteristics of the corresponding cycling groups by observing the distribution of topics
on the map. First, when users intended to identify the representative cycling groups,
they could find a total of 10 cycling topics and 10 cyclist groups obtained through topic
extraction and clustering in Figure 6a. Each group had the highest probability on a topic,
which represented the main streets that the group often rode on. Then, users could analyze
the detailed meaning of each cycling topic through our system. First, users could examine
the street names of cycling topics in Figure 6b. Secondly, by zooming on the map, users
could view more information within the area around the cycling topics, including the
distribution of transportation hubs, office buildings, commercial buildings, residential
areas, parks, etc. Therefore, users could define 10 cycling topics and merge the topics with
the same definition, and finally obtain four cycling themes, namely recreational cycling,
connected cycling, daily commuting cycling and exercising cycling.

6.1.1. Recreational Cycling

There were two groups belonging to the theme of recreational cycling, namely group
4 and group 7. When users wanted to view the geographical distribution of a specific
group (e.g., group 4), they could select group 4 in Figure 6a. Then, its spatial distribution
of corresponding streets was shown in the cycling map (Figure 7a). Users could find that
cyclists in that group mainly rode in the northwest of Beijing. Moreover, when users
intended to know the respective street names of the group, they could concentrate on the
corresponding street cloud. As shown in (Figure 6b), the Badaling Expressway, Beiqing
Road and Qinghe Road are the popular street names of group 4. Qinghe is a famous
and beautiful river in Beijing, and the Badaling Expressway is one of the longest and
busiest tourist routes with a broad vision from Beijing to Lhasa. Moreover, Qinghe Road
is close to the North Garden, Qinghe Bay and Beijing Wenyu River Park. Therefore, the
scenery along these roads is pleasant and suitable for recreational cycling. By the same
procedure, it could be found that group 7 also referred to a recreational cycling group.
Specifically, in Figure 7b, from the center of Beijing along Anli Road and Ansi Road to
the north, passing through the Olympic Forest Park and Dongxiaokou Forest Park in the
midway, the environment around is delightful. Continuing to ride north, cyclists can
enjoy the scenery of Xiaotangshan and other scenic spots. Based on the above analysis, cyclists
who would like to ride for recreation can choose the routes in Figure 7a,b to enjoy beautiful scenery.

6.1.2. Connected Cycling

Connected cycling means that cyclists ride for the purpose of connecting transporta-
tion, e.g., riding from home to metro stations before taking the metro to working places.
The theme incorporated two groups, i.e., group 2 and group 8. As shown in Figure 7c,
the two groups passed through the center of Beijing, distributed horizontally. In group 2,
most topics were concentrated between the Second Road and Sixth Ring Road in the east of
Beijing. In addition, users could find that group 8 passed through West Chang’an Avenue
and Fuxingmen Inner Street in the west and going westward until the Sixth Ring Road in
Figure 7d. In these areas, there is an entire subway line distributed horizontally, with bus
stops evenly distributed along the way. A large number of cyclists may make transfers near
the horizontal line. Hence, it is recommended to build more bike-sharing spots near this horizontal
traffic line through central Beijing to facilitate traffic.

6.1.3. Daily Commuting Cycling

Groups corresponding to the theme of daily commuting cycling included group 3,
group 5, group 9 and group 10, which were active within the Fourth Ring Road (Figure 7e–i).
The central area of Beijing is densely distributed with a large number of residence commu-
nities, office buildings and business districts. Moreover, the Third Ring Road gathers top
enterprises and central institutions, while the Fourth Ring Road is dotted with institutions
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of higher education and Olympic venues. Hence, residents might use bicycles for daily
commuting in the area. Except for the groups distributed in the central area, users could
find that group 6 was mainly concentrated in the southeast near the Fifth Ring Road. Note
that there are a large number of high-tech businesses and residences, thus indicating a
daily commuting cycling as well. Accordingly, for people in the central and southeast area, it
is mainstream and convenient to make their daily trips by riding a bicycle. In this respect, more
bicycle sharing or public transportation services should be provided in these areas.

Figure 6. (a) Cycling groups and topics. (b) Street cloud of cycling topics. (c) Size of cycling groups.
(d) Temporal evolution of cycling topics at different time granularity values.

6.1.4. Exercising Cycling

As shown in Figure 7j, this theme only included group 1. When users wanted to know
how many cyclists were in that group, they could find in Figure 6c that the number of
cyclists in group 1 was the largest, obviously exceeding other groups. Cyclists in group 1
often rode along the Fifth Ring Road and the northeast part within the Sixth Ring Road.
Additionally, the Fifth Ring Road is long and coherent, and the frontage roads in the
northeast to the airport are also long and straight. Moreover, the traffic flow is much
less in these roads compared to downtown. Since 2016, there have been several cycling
competitions on the Fifth Ring Road and a large number of cyclists are likely to do physical
exercise by riding there. Hence, the cycling infrastructures distributed near the Fifth Ring Road
can be strengthened suitably to expand the area suitable for exercising cycling. Cyclists looking for
exercise and challenge can also choose to ride on the Fifth Ring Road and the frontage roads in the
northeast to the airport.

6.1.5. Temporal Evolution of Cycling Topics

When users intended to learn about the evolution of cycling topics at different time
scales, they could view the specific changes in the interface of the temporal evolution. As
shown in Figure 6d, the probability of each cycling topic changed in a day, a week, and a
year, respectively. It can be seen that the cycling topics were time-dependent and mainly
changed rapidly. In a day, most topics were mainly concentrated in the working hours (e.g.,
topics in daily commuting cycling and challenging cycling), and the connected cycling was
more active during the morning and evening rush hours. In the week, challenging cycling
continued to be active, while recreational cycling was more active on weekends, revealing
that some cyclists chose to do leisure cycling at that time. Over the year, the probability of
the group fluctuated greatly, and most topics were more inactive during the winter. Hence,
users could choose a suitable time to ride.
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Figure 7. (a,b) Topics of recreational cycling distributed on the map. (c,d) Topics of connected cycling
distributed on the map. (e–i) Topics of daily commuting cycling distributed on the map. (j) Topic of
exercising cycling distributed on the map.

6.2. Case 2: Exploring the Moving Semantics of Road Segments

Finally, we focused on the moving semantics of road segments. First, when users
intended to understand the moving characteristic of cycling, they could identify the moving
topics based on three moving attributes with our system. For a selected moving attribute,
the grouping of each road segment was drawn in the color of its representative topic, and
the width of the line segments denoted the probability of the topic. Hence, users could
learn about the moving characteristics of cycling on road segments to choose suitable routes
for cycling or to find proper locations for cycling planning.

6.2.1. Topics Extracted by Velocity

When selecting the velocity button, users could find information about the topic of
velocity with the interface of moving topics. As shown in Figure 8a, according to the largest
contribution in the topic, users could extract the primary characteristics of the four topics,
namely slower cycling, the slowest cycling, the fastest cycling and faster cycling. The
topics were distributed between 0 and 9 m/s. It can be seen that the probability of slower
cycling was the highest, whose velocity was mainly concentrated on 3 m/s. Moreover,
the second topic was the slowest cycling, illustrating that slow cycling was more common
within the Sixth Ring Road. Moreover, the third was the fastest cycling (around 7 m/s),
and cyclists could enjoy speedy cycling on the roads with a high proportion in this topic.
Furthermore, the probability of faster cycling was the lowest, and its velocities mainly
focused on 2–5 m/s.

Cyclists who would like to ride rapidly can choose the road segments colored by yellow and
orange. Additionally, they should try to ride as little as possible on green road segments to avoid
traffic jams.

6.2.2. Topics Extracted by Acceleration

As for the acceleration, in Figure 8b, users could summarize the four topics of acceler-
ation as generally stable cycling, changeable cycling, dangerous cycling and relatively
smooth cycling. The acceleration responded to the change of velocity, and its distribution
of topics was mainly distributed between 0 and 4 m/s2. Among them, in addition to
4 m/s2, the first topic mainly focused on 0–2 m/s2, which meant complicated but generally
stable cycling. In addition, changeable cycling conditions were distributed dispersedly,
mainly concentrated around 1 m/s2, 3 m/s2 and 4 m/s2, uncovering the instability of
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cycling. Moreover, the dangerous cycling accelerations were mainly between 2 and 4 m/s2,
which meant that the cycling conditions changed rapidly and emergency acceleration and
deceleration occurred. Furthermore, although the distribution of the fourth topic was
relatively average, the probability of accelerations decreased from 0 m/s2 to 4 m/s2. When
the acceleration was 4 m/s2, the probability was already very small. Thus, we regarded the
last topic as relatively smooth cycling.

Figure 8. Moving semantics profiling. (a) The most important topics of velocity. (b) The most
important topics of acceleration. (c) The most important topics of turning angle. (d) The topic
distribution of a selected road segment. (e,f) Grouping of road segments with velocity, acceleration
and turning angle in two local areas, respectively.

Road segments colored by blue and orange support relatively stable cycling. Cyclists may enjoy
smooth cycling by choosing the area with plenty of blue or orange segments.

6.2.3. Topics Extracted by Turning Angle

To learn about the moving characteristics of the turning angle on road segments, users
could view the topics in Figure 8c. The four topics of turning angle were divided into
straight cycling, crookeder cycling and crookedest cycling, which were distributed from
10 degrees to 30 degrees. Generally, the probability of 10 degrees was the highest, and
it gradually decreased with the increase of the degree of turning angle. Among these
topics, the proportion at 10 degrees of straight cycling was the highest, indicating that the
number of swerves were the least on the blue segments. Moreover, crookeder cycling and
crookedest cycling were more evenly distributed between 10 degrees and 30 degrees than
topic 1. Hence, it was easier for more swerves to occur.

Cyclists looking for a safe riding style are advised to ride in the blue area where they are able to
enjoy straight cycling.

6.2.4. Regional Comparison

We chose two typical areas to analyze whether cycling infrastructure needed to be built
or strengthened in the area. Users could compare different roads by moving and zooming
in on the map. Area 1 was around the Fifth Ring Road along the Badaling Expressway,
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where there are mainly residential areas and parks. Area 2 was the western part near the
Second Ring Road, with a dense population and concentrated streets.

In area 1, as shown in Figure 8e, the color of the road segments for the velocity
was mostly yellow (i.e., the fastest cycling) and orange (i.e., the faster cycling). Taking
one road segment colored yellow as an example, as shown in Figure 8d, the distribution
probability of this road segment on the four topics was 0.07375018, 0.07389444, 0.77817565
and 0.07417972, respectively. That is, the fastest cycling had a greater impact. Generally,
cyclists can enjoy cycling rapidly in that area. For the acceleration, there were more blue
(i.e., generally stable cycling) and orange (i.e., relatively smooth cycling) roads in area 1,
indicating that sprint and braking rarely happened in the cycling process and the cycling
condition was stable. For the turning angle, roads colored blue (i.e., straight cycling) were
more common, thus cyclists tended to ride straightly.

In conclusion, it is shown in the first row of Figure 9 that the riding in area 1 is good. Along
the Badaling Expressway, there are a lot of frontage roads suitable for cycling. In addition,
recreational riding in case 1 also passes through this area. Residents living here can ride
conveniently, and the area is also developed into a popular choice for cycling enthusiasts.
Hence, the bicycle infrastructures in the area do not need to be strengthened.

In area 2, it is shown in Figure 8f that the velocity grouping was mainly blue (i.e., the
slower cycling) and green (i.e., the slowest cycling). For the acceleration, the color of the
grouping was mainly yellow (i.e., dangerous cycling) and green (i.e., changeable cycling),
indicating that the cycling in area 2 was not stable. For the turning angle, most roads were
obviously yellow, revealing that cyclists rode crookedly.

It is summarized in the second row of Figure 9 that riding in area 2 is bad, so the construction
of bicycle infrastructure is necessary. Cyclists can bypass the area to avoid degrading their
cycling experience. Urban planners can better improve existing streets or build new roads.

Figure 9. The grouping of moving attributes and the corresponding inference and suggestion.

7. Conclusions and Future Work

This work proposed an interactive visualization system named VizCycSemantics for
the exploration of cycling semantics, and the users of our system were mainly cyclists
and urban planners. Based on large-scale GPS trajectories and road network data, the
semantics studied in the paper were twofold, namely, the behavior semantics of cyclists
and the moving semantics on road segments. Specifically, trajectories were converted into a
street name corpus for cyclists and a moving feature corpus for road segments, respectively.
Then, we used an LDA model to automatically extract the cyclists’ behavior semantic (i.e.,
cycling topics of cyclists) and moving semantics (i.e., moving topics on roads). We further
employed the k-means++ algorithm to capture the groups of similar cyclists and road
segments in the city. At last, multiple user interfaces were implemented to visualize the
various patterns of cycling semantics. To better demonstrate the practicality of the system
in transportation planning, two case studies were shown within the Sixth Ring Road in
Beijing. First, with specific cycling topics shown in our system, cyclists could find popular
group trends and suitable routes of their own interest. Urban planners could also make
corresponding traffic plans through different cycling topics. Secondly, with the moving
topics on road segments, cyclists could choose routes with fast, stable and straight cycling.
Urban planner could find out where the cycling infrastructures should be built/improved
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via the types of moving conditions in the area. Moreover, this system only employed some
very basic information from the trajectory and road network data, thus it could be easily
and safely generalized to other cities.

In future work, we will broaden and deepen the cycling semantics exploration from
more perspectives. For example, the visited points of interests (POIs) can be considered as
words in the process of trajectory textualization, so as to import human activity semantics.
Furthermore, social media data can be considered to enhance trajectory semantics and
obtain a richer knowledge. It is also a good idea to make our own cycling trajectories
with a camera, which can provide more contextual information to enrich cycling semantics.
Additionally, we intend to refine the visualizations to further enhance the aesthetics of and
interaction with the system, enabling users to do more diverse and personalized analysis
and exploration.
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