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Abstract: Rockbursts are serious threats to the safe production of mining, resulting in great casualties
and property losses. The accurate prediction of rockburst is an important premise that influences the
safety and health of miners. As a classical machine learning algorithm, the back propagation (BP) neu-
ral network has been widely used in rockburst prediction. However, there are few reports about the
influence study of different training sample sizes, optimization algorithms and index dimensionless
methods on the prediction accuracy of BP neural network models. Therefore, 100 groups of typical
rockburst engineering samples were collected locally and abroad, and considering the relevance,
scientificity and quantifiability of the prediction indexes, the ratio of the maximum tangential stress
of surrounding rock to the rock uniaxial compressive strength (σθ/σc), the ratio of the rock uniaxial
compressive strength to the rock uniaxial tensile strength (σc/σt) and the elastic energy index (Wet)
were chosen as the prediction indexes. When the number of samples was 40, 70 and 100, sixty
improved BP models were established based on the standard gradient descent algorithm and four
optimization algorithms (momentum gradient descent algorithm, quasi-Newton algorithm, conjugate
gradient algorithm, Levenberg–Marquardt algorithm) and four index dimensionless methods (unified
extreme value processing method, differentiated extreme value processing method, data averaging
processing method, normalized processing method). The prediction performances of each improved
model were compared with those of standard BP models. The comparative study results indicate
that the sample size, optimization algorithm and dimensionless method have different effects on
the prediction accuracy of BP models, which are described as follows: (1) The prediction accuracy
value A of the BP model increases with the addition of sample size. The average value Aave of
twenty improved models under three kinds of sample sizes increases from Aave (40) = 69.7% to
Aave (100) = 75.3%, with a maximal value Amax from Amax (40) = 85.0% to Amax (100) = 97.0%. (2) The
value A and comprehensive accuracy value C of the BP model based on four optimization algorithms
are generally higher than those of the standard BP model. (3) The improved BP model based on the
unified extreme value processing method combined with the Levenberg–Marquardt algorithm has
the highest value Amax (100) = 97.0% and value C = 194, and the prediction results of five engineering
cases are completely consistent with the actual situation at the site, so this is the best BP neural
network model selected in this paper.

Keywords: rockburst prediction; mining safety prevention; BP neural network; model optimization;
sample size; optimization algorithm; index dimensionless

1. Introduction

Construction activities (drilling and blasting) of large underground caverns and tunnel
excavations, etc., inevitably cause internal damage and redistribution of in situ stress
rock masses, which are easy to induce brittle failures, such as spalling, cracking and
rockburst [1,2]. Rockburst is a phenomenon in which the elastic energy gathered in a rock
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mass is released suddenly and violently under external influence, resulting in rockbursting
or ejection. In 1900, rockburst was first observed in the Kolar gold mine of India, which
has frequently occurred in the construction of mines, hydraulic works, tunnels and other
projects in many countries [3–6].

The prediction and evaluation of rockburst are important prerequisites for formulating
prevention and control measures. In recent years, machine learning techniques have been
applied well in the field of classification and recognition, and they have become promising
methods in rockburst prediction, such as support vector machine [7,8], neural network [9,10],
random forest [11,12], cloud model [13,14], extreme learning machine [15,16], Bayesian
classifier [17,18], decision tree [19,20], fuzzy C-means clustering [21] and logistic regression
model [22]. As a classical supervised learning algorithm, the BP (ack propagation) neural
network has been widely used in rockburst prediction [23–25]. Most of the existing studies
used a standard BP neural network, that is, using a gradient descent algorithm to train
the model, which has some disadvantages, including sensitive initial weight setting, local
extreme value prone to occur, slow convergence speed, difficult selection of network structure,
etc. Given these deficiencies, Li et al. [26] used Levenberg–Marquardt algorithm to train
a BP network and improve the efficiency of the standard model. Wang [27] optimized
the network by adding linear transfer functions, momentum terms and introducing a new
training method (Resilient BP). Sun [28] adjusted the weight and threshold of the algorithm
structure by increasing the self-adaptability and momentum term coefficient. Zhang et al. [29]
used particle swarm optimization, and Hu et al. [30] used a genetic algorithm to optimize the
initial weights and thresholds of a BP network, which improved the prediction accuracy of
the model. Meng et al. [31] established an improved BP neural network adopting an adaptive
learning rate algorithm and an algorithm based on numerical optimization technology.
Existing studies have used different optimization algorithms to improve the standard BP
network model and achieved good results. However, a comparative analysis of optimization
effects among multiple different algorithms has not been carried out, and the influence of
different index dimensionless methods on the prediction accuracy of the BP model has not
been discussed.

Therefore, based on three sample sizes of rockburst examples (40, 70 and 100), this
paper selects a standard gradient descent algorithm, four typical optimization algorithms
(momentum gradient descent algorithm, quasi-Newton algorithm, conjugate gradient algo-
rithm and Levenberg–Marquardt algorithm) and four commonly used index dimensionless
methods (unified extreme value processing method, differentiated extreme value process-
ing method, data averaging processing method and normalization processing method).
Additionally, it establishes sixty BP prediction models, systematically carries out compara-
tive research on model prediction effect, optimizes the best rockburst prediction model and
applies it to engineering cases.

This manuscript is an extension of the conference paper BP neural network model
optimization for rockburst prediction considering sample sizes, optimization algorithms and dimen-
sionless methods. No copyright issue is involved.

2. Principle
2.1. Dimensionless Methods

Dimensionless methods are commonly used data normalization methods. Due to the
different dimensions of indexes, they are not comparable. Therefore, the indexes should
be processed by the dimensionless method first and then analyzed after eliminating the
dimensional influence. In this paper, we selected four dimensionless methods (unified
extreme value processing method, differentiated extreme value processing method, data
averaging processing method and normalized processing method) to process the original
index data.
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(1) Unified extreme value processing method

The principle of the unified extreme value processing method is shown in Equation (1):

xij
∗ =

xij −min(xj)

max(xj)−min(xj)
(i = 1, 2, . . . , m; j = 1, 2, . . . , n) (1)

where xij is the original data of the j-th index of the i-th sample; xij
* is the data after

processing, where the value is between 0 and 1, and the value distribution is consistent
with that before processing; max(xj) and min(xj) are the maximum and minimum values of
the original data of the j-th index, respectively.

(2) Differentiated extreme value processing method

The unified extreme value processing method adopts a unified formula for the forward
index (that is, the larger the data, the more dangerous the rockburst, such as σθ/σc and
Wet) and reverse index (that is, the smaller the data, the more dangerous the rockburst,
such as σc/σt). However, the indexes are processed differently by the differentiated extreme
value processing method, as shown in Equation (2) for the forward index and Equation (3)
for the reverse index:

xij
∗ =

xij −min(xj)

max(xj)−min(xj)
(2)

xij
∗ =

max(xj)− xij

max(xj)−min(xj)
(3)

(3) Data averaging processing method

The principle of the data-averaging processing method is shown in Equation (4):

xij
∗ =

xij

x
(4)

where x is the average value of the original samples data of the j-th index.
This method maintains the overall consistency of the original data well while eliminat-

ing the effects of dimension and order of magnitude, which retains the information of the
original variation degree of each index.

(4) Normalized processing method

The principle of the normalized processing method is shown in Equation (5):

xij
∗ =

xij
m
∑

i=1
xij

(5)

This method converts the actual value of the index into its proportion in the total value
of the index, so it is also called the proportion method.

2.2. BP Neural Network

The BP neural network is a multilayer feed-forward network based on the BP algo-
rithm. The network has the advantages of self-learning and self-adaptation, where the
structure is simple, and the algorithm is mature. The standard BP neural network is usually
composed of an input layer, hidden layer and output layer. The input layer of the BP
neural network constructed in this paper has three neurons, which are the dimensionless
values of σθ/σc, σc/σt and Wet. This paper set two hidden layers that, after extensive
debugging, have node numbers 10 and 4, respectively. There are four neurons in the output
layer, corresponding to rockburst risk levels I–IV to which the samples belong, as shown in
Figure 1.
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Figure 1. Structure of the BP neural network.

The standard BP neural network uses a gradient descent algorithm to train the network
and adjust the error. In order to optimize the BP neural network model, four unconstrained
optimization algorithms (momentum gradient descent algorithm, quasi–Newton algorithm,
conjugate gradient algorithm and Levenberg–Marquardt algorithm) are used to train the
network. These five algorithms can be called by the corresponding training function in the
MATLAB neural network toolbox.

3. Index Selection and Data Analysis

The mechanism of rockburst is complex, and its causes are numerous. Considering the
internal cause (physical and mechanical properties of the rock itself) and the external cause
(e.g., stress concentration caused by excavation), this paper selected the ratio of maximum
tangential stress of surrounding rock to rock uniaxial compressive strength (σθ/σc), the
ratio of rock uniaxial compressive strength to rock uniaxial tensile strength (σc/σt) and
the elastic energy index (Wet) [32] as prediction indexes. The reasons for selecting these
indexes are as follows: σθ/σc–this index considers the adjustment and change in stress after
excavation of underground space and the stress concentration phenomenon of surrounding
rock, which reflects the potential influence of the stress state of surrounding rock on the
surrounding rock, and reflects the stress condition background of rockburst. The σc/σt
index is the strength brittleness coefficient, which refers to the dynamic process of rockburst.
The rock mass undergoes brittle fracture, and the surrounding rock also produces unstable
failure, so the degree of brittle failure is closely related to rock eruption. Wet is the elastic
energy index that describes the conditions of rock eruption from the perspective of energy;
its value reflects the energy storage characteristics of the rock mass, and the higher the
rockburst, the more energy is released when a rockburst occurs. The intensity of the
rockburst is graded into four levels: level I (none rockburst), level II(weak rockburst), level
III (moderate rockburst) and level IV (strong rockburst).

In this paper, 100 groups of rockburst samples were extensively collected from around
the world [33–36], including 19 level I samples, 27 level II samples, 36 level III samples
and 18 level IV samples. The full sample data can be found in Appendix A “Sample data”.
Figure 2 shows the boxplot of the rockburst prediction indexes, which shows the mean
value; the upper and lower bounds of the 95% confidence interval for the mean value; the
median; the variance; the standard deviation; and the maximum value for the rockburst
prediction index, minimum value, range, interquartile range, skewness and kurtosis, and
some characteristic values are shown in Table 1.
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Figure 2. Box plot of prediction indexes: (a) σθ/σc; (b) σc/σt; (c) Wet.

Table 1. Statistical parameters of rockburst prediction indexes.

Level Characteristic σθ/σc σc/σt Wet

I

mean 0.20 24.49 2.99
median 0.20 23.00 2.00

minimum 0.10 6.70 1.40
maximum 0.43 47.90 7.40

standard deviation 0.20 36.00 2.30

II

mean 0.43 20.77 2.94
median 0.42 20.40 2.90

minimum 0.22 6.80 0.90
maximum 0.67 34.30 5.10

standard deviation 0.37 24.00 5.10

III

mean 0.57 24.20 4.41
median 0.56 21.85 4.30

minimum 0.28 9.50 2.00
maximum 0.84 55.00 7.10

standard deviation 0.40 14.70 7.10

IV

mean 0.72 19.08 6.18
median 0.68 17.25 6.25

minimum 0.42 11.20 2.00
maximum 1.41 32.20 10.90

standard deviation 0.58 13.20 6.30

4. Research Method

The collected rockburst samples were divided into three different sizes (40, 70 and
100), among which the proportion of samples in the training set and test set was 7:3.
Four dimensionless methods were selected to process the prediction indexes, and the
processed data were used as the input layer of the BP neural network for training and
testing. The gradient descent algorithm and four optimization algorithms were used to
construct training functions, and different BP neural network models were established.
Under different sample sizes, the 1#–3# optimal models were selected initially, and then
the best optimal model was finally selected from the three optimal models for engineering
applications. Figure 3 shows the flow chart of model optimization.
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Figure 3. Flow chart of model optimization.

5. Prediction Results and Analysis
5.1. Prediction Results

This paper defines the prediction accuracy rate A to compare and analyzes the pre-
diction effects of different models. A represents the ratio of the correctly predicted sample
number to the total sample number, as shown in Equation (6). The higher the A value is,
the better the predicted effect of the model.

A =
N′train + N′test
Ntrain + Ntest

(6)

where Ntrain and Ntest are the sample numbers of the training set and test set, respectively,
and N′train and N′test are the correctly predicted sample numbers of the training set and test
set, respectively.

In the case of sample sizes of 40, 70 and 100, based on four index dimensionless
methods and five algorithms (gradient descent algorithm and four optimization algorithms),
sixty BP models are established, including the standard BP neural network model based
on the gradient descent algorithm (standard BP model), BP neural network optimization
model based on the momentum gradient descent algorithm (GDM–BP model), BP neural
network optimization model based on the quasi–Newton algorithm (BFG–BP model), BP
neural network optimization model based on the conjugate gradient algorithm (SCG–BP
model) and BP neural network optimization model based on the Levenberg–Marquardt
algorithm (LM–BP model) [37]. There are twenty BP models under each sample size, and
their prediction accuracy rate A is shown in Table 2. Figure 4 shows the accuracy rate A of
the model under different dimensionless methods.
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Table 2. Prediction results of the BP model.

Prediction Model Index Dimensionless Method A (40)/% A (70)/% A (100)/%

Standard BP model

Unified extreme value processing method 70.0 60.0 75.0
Differential extreme value processing method 77.5 48.6 59.0

Normalized processing method 67.5 67.1 60.0
Data averaging processing method 70.0 52.9 68.0

GDM–BP model

Unified extreme value processing method 62.5 57.1 69.0
Differential extreme value processing method 52.5 60.0 69.0

Normalized processing method 67.5 54.3 62.0
Data averaging processing method 67.5 57.1 66.0

BFG–BP model

Unified extreme value processing method 72.5 70.0 89.0
Differential extreme value processing method 65.0 70.0 81.0

Normalized processing method 65.0 88.6 64.0
Data averaging processing method 85.0 65.7 91.0

SCG–BP model

Unified extreme value processing method 80.0 82.9 95.0
Differential extreme value processing method 77.5 81.4 78.0

Normalized processing method 60.0 70.0 45.0
Data averaging processing method 65.0 70.0 91.0

LM–BP model

Unified extreme value processing method 80.0 92.9 97.0
Differential extreme value processing method 72.5 88.6 94.0

Normalized processing method 70.0 84.3 58.0
Data averaging processing method 67.5 92.9 95.0

Note: A (40), A (70) and A (100) refer to the prediction accuracy of the BP model when the sample size is 40, 70
and 100, respectively.

Figure 4. Model accuracy rate A under different dimensionless methods: (a) sample size 40;
(b) sample size 70; (c) sample size 100.

5.2. Analysis

To better measure the prediction accuracy of the model, considering the influence of
different sample sizes, the prediction results of multiple modeling with different sample
numbers of the same model were integrated, and the comprehensive, accurate value C,
which reflects the prediction accuracy of different models under the same conditions, was
used for comparison, as shown in Equation (7).

C =
n

∑
i=1

Ci (7)

where Ci is the number of accurate samples predicted by the model, i-th is the sample size
and n is the number of types of sample size; in this paper, n = 3 (as 40,70 and 100).
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The larger the C value is, the higher the accuracy and the better the prediction effect.
Table 3 shows the comprehensive, accurate values of different models.

Table 3. Comprehensive, accurate values C of different models.

Prediction Model Unified Extreme Value
Processing Method

Differentiated
Extreme Value

Processing Method

Normalized
Processing Method

Data Averaging
Processing Method

Standard BP model 145 124 134 133
GDM–BP model 134 132 127 133
BFG–BP model 167 156 152 171
SCG–BP model 185 166 118 166
LM–BP model 194 185 145 187

Table 3 shows that the dimensionless method has different influences on the predicted
effect of the BP model, and the influence degree can be directly reflected by the extreme
difference in the comprehensive accuracy value C. The larger the extreme difference value
is, the greater the difference in the prediction results of the model with the dimensionless
method. Therefore, the extreme difference value of C can be used to measure the prediction
stability of a BP neural network model. Because the smaller the range of the extreme
difference value of C is, the closer the model prediction result is, different dimensionless
methods have less influence on the BP neural network model. Prediction stability is the
excellent performance of a model. The prediction stability of a model is good, which
indicates that the data requirement of the model itself can be reduced. In other words, if
the prediction stability of the model is good, it is unnecessary to use specific methods to
process data. Of course, all of these are based on a small difference in forecast accuracy.
Table 4 shows the extreme difference values of C for different dimensionless methods under
the same model.

Table 4. Extreme difference values of C for different dimensionless methods under the same model.

Prediction Model Extreme Difference

Standard BP model 21
GDM–BP model 7
BFG–BP model 19
SCG–BP model 67
LM–BP model 49

As seen from Table 4, dimensionless methods have the greatest impact on the SCG–BP
model and the least impact on the GDM–BP model. The results show that the GDM-BP
model has the minimum requirements for the dimensionless method, and the prediction
accuracy differs little when different dimensionless methods are adopted and vice versa for
the SCG-BP model.

Similarly, the extreme difference values of C for different prediction models under the
same dimensionless method can be calculated, as shown in Table 5.

Table 5. Extreme difference values of C for different prediction models under the same dimensionless
method.

Dimensionless Method Extreme Difference

Unified extreme value processing 60
Differentiated extreme value processing 51

Normalized processing 34
Data averaging processing 54
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According to Tables 4 and 5, compared with the impact of the dimensionless method
on the prediction model, the selection of BP neural network models has a more significant
impact on the prediction results.

From the above analysis, it is clear that both the dimensionless method and the model
training method are important factors affecting the prediction effect of the model. Therefore,
the model prediction accuracy Pa and the prediction stability Ps are considered in this
paper for model optimization. Pa is measured by the comprehensive, accurate value C and
Amax (the prediction accuracy under the maximum sample size), where the C reflects the
comprehensive prediction performance of the model under different sample sizes, the Amax
reflects the prediction effect when the size of samples is the largest, and the combination
of the two can ensure the prediction accuracy effectiveness. The prediction stability Ps is
measured by the C’s extreme difference. For model preference, prediction accuracy Pa is
considered first, and prediction stability Ps can be used as an auxiliary discriminant factor.
If the model prediction accuracy varies greatly, the influence of stability can be ignored.
When the difference between the two models’ C values is less than or equal to 5, the model
with better prediction stability is preferred in this paper.

Based on the above analysis, the predicted effect of the LM–BP neural network based
on the unified extreme value processing method is best among the sixty prediction models,
and its Amax (100) = 97.0% and C = 194, both of which are maximum values. Therefore, the
LM-BP model is the best optimal model in this paper.

In order to study the influence of sample size on the prediction effect of the BP neural
network model, the average and maximum prediction accuracy rates of twenty BP models
under different sample sizes were calculated, as shown in Figure 5. It can be seen that
with the increase in sample size, the average and maximum prediction accuracy rates both
increase nonlinearly. Therefore, the expansion of the sample size is one of the conditions
for improving the prediction accuracy of the BP model.

Figure 5. Model accuracy rate under different sample sizes.

5.3. Limitation

In this paper, the BP neural network model was used to study rockburst prediction,
and a series of conclusions were obtained, but there are still some shortcomings. The
research conclusions of this paper are only applicable to the BP neural network under the
database of this paper, and similar conclusions may not be possible for other models. In
addition, the sample library established in this paper is small and unbalanced, which may
have a certain impact on the prediction results. As can be seen from Figure 2, there are
fewer outliers in the data, but different levels of the same indicator are different, and the
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existing feature optimization studies are based on overall optimization [38,39]. For local
optimization implementations, this may have an impact on the results.

6. Engineering Application

To verify the engineering application effect of the best optimal model, the LM–BP
neural network model based on the unified extreme value processing method to process
data was applied to five engineering cases, namely, the Maluping mine (case 1) [40], the
−730 level of Dongguashan copper mine (case 2) [41], the 3 + 390 working face of Jinping
II hydropower station (case 3) [41], the Qinling tunnel (case 4) [41] and the highway tunnel
of Zhongnan mountain (case 5) [42]. Rockburst occurred in these projects, and the values
of σθ/σc, σc/σt, and Wet are all worth recording. The prediction results are compared with
those of the support vector machine (SVM) model and decision tree based on the same
training samples.

(1) Maluping mine

The Maluping mine area of the Kailin group is located in the northern section of the
east flank of Yangshui Anticline, with a stratigraphic inclination of 110◦–165◦ and a typical
dip angle of 20◦–35◦. Additionally, the structure is dominated by faults, all of which are
strike faults. The LM-BP neural network model is applied to predict the rockburst in the
mining area with a 750 m middle section and red shale lithology. The prediction results
are consistent with the SVM model, as shown in Table 6. The field records show that the
roadway at this place has produced a sidewall and weak rockburst. The prediction results
in this paper are consistent with the field situation [40].

Table 6. Rockburst data and prediction results of Maluping mine.

No.
Prediction Indexes

Actual Level
Prediction Results

σθ/σc σc/σt Wet LM-BP Model Decision Tree SVM Model

1 0.45 11.20 2.03 II II II II

(2) Dongguashan copper mine

Dongguashan copper mine is the first typical deep-buried hard rock metal mine with
rockburst proneness in China. Its main ore body is located at −680 m–1000 m, most of
which are located below −730 m above sea level. The maximum principal stress of the
ore body is 30–38 MPa, which belongs to a high-stress region, and rockburst occur many
times during the mining process. The LM-BP neural network model is used to predict the
rockburst of the Dongguashan copper mine. The prediction results are consistent with the
DA-DNN model (based on the dropout and the improved Adam’s deep neural network)
and the cloud model, as shown in Table 7. There was a rockburst in the skarn at −790 m in
this mine. After supporting by an anchor net, the anchor rod was cut off, and a 1.8 m long
floor heave appeared at the boundary of the strata [41]. It can be seen that the prediction
results in this paper are consistent with the field conditions and are better than the SVM
model (misjudged case 2 from level III to level II).

Table 7. Rockburst data and prediction results of Dongguashan mine.

No.

Prediction Indexes

Actual Level

Prediction Results

σθ/σc σc/σt Wet
LM-BP
Model

Decision
Tree SVM Model DA-DNN

Model [41]
Cloud Model

[41]

2 0.46 11.10 3.97 III III II II III III
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(3) 3 + 390 working face of Jinping II hydropower station

Jinping II hydropower station is located in a high-stress area of southwest China. The
buried depth of a water diversion tunnel is generally 1500–2000 m, and the maximum
buried depth is 2525 m. The tunnel rock mass is relatively complete, and the uniaxial
compressive strength of the rock is 55–114 MPa, with the maximum major principal stress
of 46 MPa measured. The rockburst phenomena have occurred several times since the
tunnel construction. The LM-BP neural network model is used to predict rockburst on
the 3 + 390 working face of the Jinping II hydropower station. The prediction results are
consistent with the SVM model, cloud model and the actual situation, as shown in Table 8.

Table 8. Rockburst data and prediction results of Jinping II hydropower station.

No.

Prediction Indexes

Actual Level

Prediction Results

σθ/σc σc/σt Wet LM-BP Model Decision Tree SVM Model Cloud Model
[42]

3 0.84 19.69 2.30 III III III III III

In this paper, the rockburst prediction results of the Qinling tunnel (case 4) and the
highway tunnel of Zhongnan mountain (case 5) by the LM-BP neural network model
is as shown in Table 9. The prediction results are completely consistent with the actual
engineering situation, while the SVM model predicts case 4 from level III to level IV.

Table 9. Prediction results of 4# and 5# cases.

No.
Prediction Indexes

Actual Level
Prediction Results

σθ/σc σc/σt Wet LM-BP Model Decision Tree SVM Model

4 0.42 13.98 7.44 III III IV IV
5 0.65 28.60 6.80 IV IV IV IV

Based on the prediction results of the above five engineering cases, the prediction
results of the LM–BP model are completely consistent with the situation in the field.
However, the SVM model misjudged case 2 from level III to II and case 4 from level III to
IV, as shown in Figure 6.

Figure 6. Comparison of prediction results.
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7. Conclusions

The present paper selected the ratio of the maximum tangential stress of surrounding
rock to the rock uniaxial compressive strength (σθ/σc), the ratio of the rock uniaxial
compressive strength to the rock uniaxial tensile strength (σc/σt) and the elastic energy
index (Wet) as prediction indexes, and extensively collected 100 groups of typical rockburst
samples. Based on standard algorithms, four optimization algorithms and four index
dimensionless methods, this paper established sixty BP models in total for rockburst
prediction with sample sizes of 40, 70 and 100. The following conclusions can be drawn:

(1) Comparative study and engineering application results show that the LM–BP
neural network based on the unified extreme processing method has the best prediction
effect, which is the best optimal model.

(2) The selection of dimensionless methods has different influences on the prediction
results of the BP neural network model, the SCG–BP model has the greatest influence and
the GDM–BP model has the least influence. Compared with the dimensionless method, the
selection of the training function of the BP neural network has a more significant influence
on the prediction results.

(3) With the addition of training samples, the average and maximum prediction
accuracy rates of the BP model both increase nonlinearly. Therefore, it is necessary to
increase the number of typical rockburst samples and gradually improve the prediction
accuracy of the BP model in the future.
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Appendix A

Table A1. All sample data.

No.
Prediction Indexes

Actual Risk Level
σθ/σc σc/σt Wet

1 0.11 31.2 7.4 I
2 0.10 23.0 5.7 I
3 0.20 36.0 2.3 I
4 0.19 47.9 1.9 I
5 0.13 6.7 1.4 I
6 0.19 6.7 1.4 I
7 0.23 6.7 1.4 I
8 0.28 9.7 1.9 I
9 0.11 27.2 7.0 I
10 0.13 18.8 3.6 I
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Table A1. Cont.

No.
Prediction Indexes

Actual Risk Level
σθ/σc σc/σt Wet

11 0.10 21.4 4.7 I
12 0.31 42.8 1.8 I
13 0.20 11.2 3.6 I
14 0.20 14.1 3.6 I
15 0.28 42.7 2.2 I
16 0.11 29.4 2.0 I
17 0.23 7.5 1.5 I
18 0.43 45.9 1.7 I
19 0.22 36.4 1.8 I
20 0.40 15.6 3.5 II
21 0.44 13.1 2.1 II
22 0.37 24.0 5.1 II
23 0.45 11.2 2.0 II
24 0.67 26.8 0.9 II
25 0.56 20.4 2.0 II
26 0.46 20.4 2.0 II
27 0.49 19.7 2.3 II
28 0.44 19.7 2.3 II
29 0.42 19.7 2.3 II
30 0.46 19.7 2.3 II
31 0.28 23.6 4.9 II
32 0.56 34.3 1.9 II
33 0.30 20.4 5.0 II
34 0.35 22.7 3.3 II
35 0.45 14.8 3.1 II
36 0.41 30.7 4.3 II
37 0.22 9.0 4.9 II
38 0.45 6.8 2.2 II
39 0.35 12.1 2.9 II
40 0.37 29.7 3.5 II
41 0.42 32.8 3.0 II
42 0.38 28.8 3.0 II
43 0.62 8.3 1.8 II
44 0.42 29.9 2.4 II
45 0.42 15.5 3.2 II
46 0.57 31.2 3.2 II
47 0.34 24.0 6.6 III
48 0.42 21.7 5.0 III
49 0.40 14.7 7.1 III
50 0.40 15.0 7.1 III
51 0.48 24.0 5.1 III
52 0.61 24.0 5.1 III
53 0.70 11.7 2.8 III
54 0.83 28.9 3.2 III
55 0.74 28.9 3.2 III
56 0.79 22.0 2.0 III
57 0.84 19.7 2.3 III
58 0.52 21.2 5.5 III
59 0.60 28.3 3.4 III
60 0.53 21.0 3.6 III
61 0.66 21.5 4.1 III
62 0.52 17.8 4.3 III
63 0.57 25.6 3.8 III
64 0.61 25.6 3.7 III
65 0.56 29.2 4.8 III
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Table A1. Cont.

No.
Prediction Indexes

Actual Risk Level
σθ/σc σc/σt Wet

66 0.49 49.5 4.7 III
67 0.46 45.5 5.2 III
68 0.47 55.0 5.0 III
69 0.61 25.0 3.7 III
70 0.55 31.3 4.6 III
71 0.50 50.9 5.2 III
72 0.69 16.9 3.4 III
73 0.54 12.2 4.9 III
74 0.47 16.5 5.5 III
75 0.52 18.6 4.2 III
76 0.55 11.1 4.0 III
77 0.56 16.3 3.3 III
78 0.28 9.5 6.1 III
79 0.66 22.3 3.2 III
80 0.72 27.5 4.3 III
81 0.62 19.4 4.5 III
82 0.59 18.8 4.2 III
83 0.77 17.5 5.5 IV
84 0.54 14.2 6.2 IV
85 0.58 13.2 6.3 IV
86 0.66 13.2 6.8 IV
87 0.74 24.4 6.3 IV
88 1.00 11.2 2.0 IV
89 0.93 28.9 3.2 IV
90 1.41 19.2 3.1 IV
91 0.71 32.2 5.5 IV
92 0.69 32.1 5.9 IV
93 0.42 17.0 10.9 IV
94 0.72 13.9 9.1 IV
95 0.64 14.4 7.7 IV
96 0.72 13.2 5.2 IV
97 0.65 28.6 6.8 IV
98 0.44 20.3 8.1 IV
99 0.64 17.5 7.2 IV

100 0.65 12.4 5.4 IV
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