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Featured Application: The present study intends to help and support clinicians and specialists
in the decision process concerning the length and type of stems to use in case varus–valgus defor-
mity is present in a patient.

Abstract: Hinged total knee arthroplasty (TKA) is a valid option to treat patients during revision of
an implant; however, in case of varus/valgus deformity, the force transmission from the femur to the
tibia could be altered and therefore the performance of the implant could be detrimental. To be able
to evaluate this, the goal of this study was to investigate, using a validated finite element analysis, the
effect of varus/valgus load configurations in the bones when a hinged TKA is used. In detail, short
and long stem lengths (50 mm, and 120 mm), were analyzed both under cemented or press-fit fixation
under the following varus and valgus deformity: 5◦, 10◦, 20◦, and 30◦. The main outputs of the study
were average bone stress in different regions of interest, together with tibio-femoral contact pressure
and force. Results demonstrated that changes in the varus or valgus deformity degrees induce a
change in the medio-lateral stress and force distribution, together with a change in the contact area.
The effect of stem length and cement do not alter the tibio-femoral contact biomechanics but its effect
is mainly localized in the distal femoral region, and it is negligible in the proximal regions.

Keywords: hinged TKA; varus deformity; valgus deformity; finite element; stem length; cemented;
press fit; biomechanics

1. Introduction

Achieving the correct alignment in total knee arthroplasty (TKA) is an important
factor to restore biomechanical functions of the knee (such as soft tissue balancing and
joint line) and prevent early implant failure, thus guaranteeing long-term survival of
the implant [1–3]. In detail, the alignment of the prosthesis components on the frontal
plane strongly influences the distribution of tibio-femoral contact forces between the two
tibial plateau compartments: biomechanical studies report that varus misalignment causes
overload on the medial side while valgus misalignment leads to increased tibio-femoral
force in the lateral side [4]. As a result of these deviations, the non-physiological loading
of the knee enhances degeneration of the joint and causes overloads on the bone-implant
interface and in the bone itself.

Alterations of the natural alignment, therefore, may lead to early aseptic loosening,
polyethylene wear, erroneous patellofemoral tracking, instability and infection [2,5]; all of
these factors are usually associated with TKA failure, which consequently leads to the need
of a revision total knee replacement.

Together with alignment, the choice of an adequate level of constraint is essential
to ensure successful clinical outcomes and long-term TKA survival [6]; this is even more
important when dealing with revision surgeries.
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The rotating hinge (RH) prosthesis represents a common solution among the different
models available for revision procedures, as thanks to this degree of freedom around the
tibial axis, this model is able to achieve reduced shear stress at the bone-cement interface,
compared to other devices [7–11]. It is important to mention that this kind of implant
can also be used as an alternative to primary TKA, in case of complex situations, such as
extreme joint deformities [7,12].

The main issues addressed with the use of a RH TKA are therefore large ligamentous
instability, severe bone loss, distal femoral or proximal tibial defects (resulting from injury
or tumor) and severe varus or valgus deformities [13–15].

The design of a rotating hinge prosthesis usually consists of a femoral component
and a tibial one (constrained among each other with a rotating hinge mechanism) and
of a polyethylene insert placed between these two elements, in order to prevent luxation
without reducing the range of motion [16].

The current designs are available in multiple sizes and present modularity, with sets
of different features/stem lengths to allow for the different possible fixation techniques;
this variety of possibilities represents thus a worthwhile opportunity, especially in revision
patients where deficiencies of the bone cannot be totally predicted [17].

Stem length, among the other parameters, covers a crucial role in the overall success
of the reconstruction. Usually, the choice of which length to use is largely determined by
the stem fixation technique selected: in modern revision TKA, the options are usually fully
cemented and press-fit fixation [18–21].

Despite its advantages, this kind of implant also implies the relative risks of mechanical
failure and infection [9,22–24], which can furthermore increase in case of eventual patient
joint deformities. The level of constraint provided by the rotating hinge, paired with the
use of different stems and/or fixation approached, may therefore lead to eventual over-
constraining issues affecting the tibio-femoral and/or the bone-implant interactions; a more
comprehensive guideline on the suggested use and optimal configuration of these implants
(when mainly aimed to address high deformities) is however still missing.

The present study intends to help and support clinicians and specialists, assisting
the decision process concerning the length and type of stems to use in case varus–valgus
deformity is present in a patient. A numerical biomechanical study was therefore performed
in order to evaluate the effects and performances of different configurations of RH TKA
prosthesis in patients with severe valgus and varus deformities, in terms of distribution
of forces and relative contact areas on the polyethylene insert when different lengths of
femoral stems are used, considering both fixation types (cemented and press-fit) and in
terms of average bone stress in different regions of interests.

2. Materials and Methods

The model was developed based on an already validated and published knee finite
element model [25–27].

Finite elements analysis approach was selected since it guarantees a great comparative
potential, allowing to change any single parameter of the model in order to precisely analyze
its influence on the outcomes while leaving the other boundary conditions unchanged [28–30].

The following features were implemented in the models.

2.1. Geometry & Configurations

The three-dimensional model of a femur, divided in cortical and cancellous bone,
was obtained from CT scans of a right-side Sawbone synthetic bone (Sawbones Eu-
rope AB, Limhamn, Sweden), following an approach widely used for numerical and
experimental tests [2,31–36].

A right side, medium size endo-model rotating hinge knee prosthesis (Waldemar
Link GMBH & Co., Hamburg, Germany) was considered for the study and the relative
geometries were obtained from a previous study [21].
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Different angles of valgus and varus deformities of the femur were considered (5◦, 10◦,
20◦, and 30◦, considering a 0◦ configuration as the physiological control) and the relative
models were implemented. For each configuration, two femoral stem lengths (50, 120 mm)
and two types of fixations (cemented or press-fit) were tested; tibial tray component and
polyethylene insert sizes were kept the same in each configuration, together with the
tibial stem of 50 mm length. For each of the configurations analyzed, the prosthesis was
virtually implanted into the femoral bone following the manufacturer’s surgical technique
(therefore considered to be the ideal positioning of the implant, according to the patient
configuration [21]). In the cemented configuration, the stem was positioned in the center
of the intramedullary canal and surrounded by a homogeneous cement mantle, obtained
by filling a previously reamed hole and subtracting the stem volume, simulating thus the
ideal cementing technique [32].

2.2. Material Properties

According to the literature [2,32,37–39], the materials used in this study were assumed
to be linear elastic; this was chosen to obtain a better approximation of all materials, in
order to achieve a qualitative comparison among different configurations [2]. In particular,
the material for the femoral component and the tibial tray was considered as cobalt-
chromium (CoCr), whereas the material of the tibial insert was ultra-high-molecular-
weight-polyethylene (UHMWPE). These materials were assumed to be homogeneous
and isotropic [2,32,40]. The material used for the bone cement (Polymethyl-methacrylate,
PMMA) in the relative configurations was considered homogeneous and isotropic [2,11].
The material properties in terms of Young’s modulus (E) and Poisson’s ratio (ν) are available
in Table 1 [2,32,37].

Table 1. Material properties of the implant components: CoCr = cobalt-chromium alloy, UHMWE = ultra-
high-molecular-weight-polyethylene, PMMA = polymethyl-methacrylate.

Material Material Model Elastic Modulus (MPa) Poisson Ratio

CoCr Isotropic 240,000 0.30

UHMW Isotropic 685 0.40

PMMA Isotropic 3000 0.30

The cortical bone, according to previous studies, was considered transversely
isotropic [2,8,41,42]; the cancellous bone was instead considered linear isotropic [2,32,43].

The material properties used are reported in Table 2.

Table 2. Material properties of the femoral bone used for all models; the third axis was taken parallel
with the anatomical axis of the femur.

Material Material Model
Elastic Modulus (MPa) Poisson Ratio

E1 E2 E3 ν12 ν23 ν31

Cortical Bone Transversely Isotropic 11,500 11,500 17,000 0.51 0.31 031

Cancellous Bone Isotropic 2130 0.30

2.3. Finite Element Analysis and Boundary Conditions

Abaqus/Standard version 6.19 (Dassault Systèmes, Vélizy-Villacoublay, France) was
used to assemble all parts of the prosthesis with femur bone, in order to perform all the
finite element simulations.

Each model was meshed using tetrahedral elements with a size between 1 mm and
3 mm. A refinement of mesh was performed in the contact area of the internal components
of the implant, and in the tibio-femoral and bone-implant interface sections to make sure
that the selected mesh was the proper one to achieve the sought after results: to check the
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quality of the mesh and the proper size, a convergence test was thus performed [2,20] and
is available in the Supplementary Materials.

According to the previously published study [21], surface-to-surface contacts were
implemented for the definition of all contacts, i.e., among the components involved in the
hinge mechanism, between the insert and the femoral component of the prosthesis and
between the implant and the bone.

Each configuration analyzed was tested under the same total load conditions, i.e., the
proximal part of the femur constrained and a total vertical compressive force of 1000 N applied
to the inferior face of the tibial tray. The subdivision of this total force on the two sides of the
tibial tray was then used as a parameter in order to model the different levels of varus/valgus
deformities: a simplified model in the literature [11] allowed indeed to obtain the percentage
of force distribution in the medial and lateral regions of the tibial component for each angle of
deformity (based on the equilibrium of forces and moments in the frontal plane), and was
therefore taken as reference. The percentages of force distribution in the medial and lateral
compartments obtained from this mathematical model are reported in Table 3.

Table 3. Percentages of the total force applied in the different configurations analyzed in the study [11].

Configuration Medial Force Lateral Force

30◦ Varus 91% 9%

20◦ Varus 82% 18%

10◦ Varus 64% 36%

5◦ Varus 60% 40%

Well Aligned 55% 45%

5◦ Valgus 43% 57%

10◦ Valgus 38% 62%

20◦ Valgus 8% 92%

30◦ Valgus 1% 99%

These percentages were therefore used in the present study to determine the subdivision
of the total force on the medial and lateral sides, and the resulting forces were applied on the
respective side of the tibial tray plateau (see Figure 1), as input loads for the FE simulations.
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ylene insert, together with the average von Mises stress [44–48] in different regions of 
interest of the bone; in detail, in agreement with previous studies [20,21], the femoral shaft 
was subdivided in eight regions of interest, each with a height of 30 mm (Figure 2). 

 
Figure 2. Regions of interest defined for the present study. All of the regions have a height of 30 mm 
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Figure 1. Load conditions applied to the model, (A) frontal view, reporting the direction of the forces
applied; (B) distal view, reporting the area used for the applied force. FL = lateral force (in blue),
FM = medial force (in green).
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Each varus/valgus aligned configuration was statically analyzed in full extension,
analyzing two femoral stem lengths (50, and 120 mm) and considering both types of
fixations examined (cemented or press-fit).

For all of the configurations tested, the output for the finite element analysis was
the medial and lateral tibio-femoral contact force and the relative contact area in the
polyethylene insert, together with the average von Mises stress [44–48] in different regions
of interest of the bone; in detail, in agreement with previous studies [20,21], the femoral
shaft was subdivided in eight regions of interest, each with a height of 30 mm (Figure 2).
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measured along the femoral anatomical axis.

3. Results

Figure 3 concerns the cemented stem of 50 mm length, and reports the graphical
overview of the average von Mises stress and contact pressure and area on the polyethylene
insert for the different angles of deformity addressed.

From the figure, it is possible to note a change in the distribution of the stress and
of the contact pressure on the tibial insert, that translates from lateral to medial when
switching from valgus to varus configurations. Addressing the position of the contact point,
the results show that the lateral contact is mainly located in the posterior section of the
compartment while the medial contact point is mainly in the anterior one.

From a quantitative point of view, Tables 4 and 5 report, respectively, the values of
medial and lateral contact forces and the values of the medial and lateral contact areas for
the different configurations and for different stem lengths and cementing techniques.
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Table 4. Medial and lateral contact forces for the different configurations and for different stem
lengths and cementing techniques.

Configuration
Press Fit 50 Cemented 50 Press Fit 120 Cemented 120

Medial
Force(N)

Lateral
Force (N)

Medial
Force(N)

Lateral
Force(N)

Medial
Force (N)

Lateral
Force(N)

Medial
Force (N)

Lateral
Force (N)

30◦ Valgus 43 906 41 911 43 905 40 911
20◦ Valgus 89 860 86 867 87 858 86 864
10◦ Valgus 307 651 307 659 310 655 308 657
5◦ Valgus 350 619 347 618 348 620 345 620

Well Alligned 442 532 447 532 443 528 445 532
5◦ Varus 484 497 486 495 484 488 484 495

10◦ Varus 517 469 516 462 515 456 517 464
20◦ Varus 657 314 660 315 660 316 663 316
30◦ Varus 726 243 726 244 728 243 731 246

Table 5. Medial and lateral contact areas for the different configurations and for the different stem
lengths and cementing techniques.

Configuration

Press Fit 50 Cemented 50 Press Fit 120 Cemented 120

Medial
Area

(mm2)

Lateral
Area

(mm2)

Medial
Area

(mm2)

Lateral
Area

(mm2)

Medial
Area

(mm2)

Lateral
Area

(mm2)

Medial
Area

(mm2)

Lateral
Area

(mm2)
30◦ Valgus 15 157 15 158 15 159 15 158
20◦ Valgus 28 156 28 156 28 155 28 156
10◦ Valgus 62 132 63 132 62 132 63 132
5◦ Valgus 71 130 71 130 71 130 70 130

Well Alligned 79 115 79 115 79 115 79 115
5◦ Varus 81 110 81 110 81 109 81 109

10◦ Varus 83 107 83 106 83 106 83 106
20◦ Varus 95 91 96 91 95 91 96 91
30◦ Varus 103 74 105 74 105 74 105 74

From these two tables, it is possible to note that the differences in terms of tibio-femoral
contact relative to a change of stem lengths or fixation approach are negligible if compared
to the changes induced by a different varus/valgus angle.

Figure 4 then reports, for the cemented 50 mm stem, different results relative to the
medial side expressed as a percentage of their total on both sides; in detail, the different
tibio-femoral contact forces and areas are represented in relation to the varus/valgus angles,
together with the values of the input forces applied on the distal surface of the tibial insert
(as a control for a comparative point of view).

It is possible to notice that each parameter presents a different trend, with the contact
area being less sensible to changes of the varus/valgus angle (with a range of 9–58%) while
the contact force is more sensible (with a range of 5–75%).

While the tibio-femoral contact forces and areas returned to be mostly insensible
to variations of the stem length and fixation approach, the femoral bone showed to be
influenced by these variations in terms of bone stress distributions in the different regions
of interest addressed. Figure 5 reports the variations in terms of the average von Mises
stress for ROI 1, 3, 5, and 7, according to the different configurations of stem length, fixation,
and varus–valgus angle.
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The detailed values for the four different models are reported in Tables 6–9.
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Table 6. Average von Mises stresses (in MPa) in the different ROIs for the 50 mm press-fit stem.

Configuration
Press-Fit 50—Average von Mises Stress (MPa)

ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 ROI 6 ROI 7 ROI 8
30◦ Valgus 1.73 1.88 2.15 1.82 1.83 1.72 1.79 1.83
20◦ Valgus 1.62 1.80 2.14 1.81 1.86 1.73 1.81 1.84
10◦ Valgus 1.50 1.73 2.10 1.81 1.97 1.75 1.93 1.87
5◦ Valgus 1.52 1.77 2.12 1.85 2.01 1.78 1.96 1.87

Well Aligned 1.70 1.99 2.24 2.01 2.15 1.89 2.06 1.92
5◦ Varus 1.79 2.09 2.29 2.10 2.21 1.95 2.11 1.94

10◦ Varus 1.88 2.18 2.36 2.18 2.27 2.00 2.16 1.96
20◦ Varus 2.39 2.69 2.79 2.63 2.61 2.28 2.39 2.08
30◦ Varus 2.71 3.01 3.08 2.90 2.80 2.44 2.51 2.14

Table 7. Average von Mises stresses in the different ROIs for the 120 mm press-fit stem.

Configuration
Press-Fit 120—Average von Mises Stress (MPa)

ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 ROI 6 ROI 7 ROI 8
30◦ Valgus 1.49 1.65 2.03 1.84 1.85 1.74 1.81 1.81
20◦ Valgus 1.39 1.57 1.97 1.82 1.86 1.72 1.81 1.81
10◦ Valgus 1.25 1.46 1.92 1.82 1.98 1.75 1.93 1.83
5◦ Valgus 1.26 1.50 1.94 1.86 2.02 1.78 1.96 1.85

Well Aligned 1.35 1.67 2.07 2.03 2.16 1.90 2.07 1.89
5◦ Varus 1.41 1.77 2.14 2.12 2.23 1.96 2.13 1.92

10◦ Varus 1.48 1.85 2.22 2.21 2.30 2.02 2.18 1.94
20◦ Varus 1.90 2.32 2.70 2.68 2.65 2.31 2.40 2.06
30◦ Varus 2.15 2.60 3.00 2.95 2.84 2.47 2.53 2.13

Table 8. Average von Mises stresses in the different ROIs for the 50 mm cemented stem.

Configuration
Cemented 50—Average von Mises Stress (MPa)

ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 ROI 6 ROI 7 ROI 8
30◦ Valgus 1.67 1.73 1.94 1.65 1.87 1.76 1.75 1.67
20◦ Valgus 1.57 1.70 1.93 1.69 1.90 1.77 1.77 1.67
10◦ Valgus 1.56 1.83 2.02 1.89 2.05 1.86 1.83 1.65
5◦ Valgus 1.61 1.90 2.08 1.97 2.11 1.91 1.87 1.67

Well Aligned 1.81 2.14 2.29 2.21 2.29 2.06 1.99 1.72
5◦ Varus 1.92 2.26 2.40 2.32 2.36 2.12 2.04 1.74

10◦ Varus 2.02 2.36 2.48 2.40 2.42 2.17 2.08 1.76
20◦ Varus 2.52 2.84 2.91 2.82 2.73 2.43 2.28 1.88
30◦ Varus 2.81 3.13 3.18 3.06 2.92 2.58 2.40 1.95

Table 9. Average von Mises stresses in the different ROIs for the 120 mm cemented stem.

Configuration
Cemented 120—Average von Mises Stress (MPa)

ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 ROI 6 ROI 7 ROI 8
30◦ Valgus 1.49 1.53 1.75 1.66 1.88 1.76 1.76 1.67
20◦ Valgus 1.38 1.48 1.72 1.69 1.91 1.78 1.77 1.67
10◦ Valgus 1.30 1.56 1.79 1.89 2.05 1.87 1.84 1.65
5◦ Valgus 1.34 1.62 1.85 1.97 2.11 1.91 1.88 1.67

Well Aligned 1.50 1.84 2.06 2.21 2.29 2.05 1.99 1.72
5◦ Varus 1.60 1.95 2.16 2.32 2.36 2.12 2.04 1.74

10◦ Varus 1.68 2.04 2.25 2.41 2.43 2.18 2.09 1.77
20◦ Varus 2.14 2.50 2.70 2.83 2.75 2.44 2.30 1.89
30◦ Varus 2.40 2.78 2.99 3.08 2.94 2.60 2.42 1.96

From Figure 5, it is thus possible to see that each model induces a different stress
distribution, especially in the distal femoral region (ROI 1), and that the differences are
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instead lower in the proximal regions (ROI 7). Moreover, it is also possible to see that, for
each configuration analyzed, the change in average von Mises stress is mostly insensible to
changes of the valgus angle (with a variation curve almost horizontal) while it is moderately
sensible to changes in terms of the varus angle.

Analyzing the proximal regions in detail, it is possible to see that in ROI 1 the short
stem is characterized by a higher average stress (almost the same for cemented and press-fit
fixation) while the press-fit long stem is characterized by lower stresses, especially in the
varus conditions: this outcome is reasonably due to the stress shielding effect related to the
longer stems, which consequently leads to slightly higher stresses in the regions close to
the stem tip.

4. Discussion

In this study, a series of finite element simulations was performed in order to evaluate
the effects on the insert and bones of different configurations of RH TKA prosthesis, in
terms of valgus and varus deformities, lengths of femoral stems, and fixation approaches.

The results found returned that, overall, the tibio-femoral contact forces and areas
are not considerably influenced by variations of stem length and fixation approach while
varus/valgus variations lead to relative changes (varying according to the parameter
analyzed and to the gravity of the deformity). Moreover, the femoral bone stress distribution
was determined to be influenced by the variations in the prosthesis design and fixation,
with further differences found in relation to the region of interest considered.

Addressing more in depth, the outcomes of the tibio-femoral interface, the reason
behind the lower sensibility of the contact area to varus/valgus angles and the overall
insensibility to the variations in stem length and fixation approach is indeed to be found
in the design of the RH TKA itself. In detail the central constraint, which allows internal-
external rotations and superior-inferior translations, does not enable any other degree of
freedom and thus contributes to maintain the tibio-femoral interactions to be more constant.
For this reason, indeed, changes in the contact area are remarkably low in varus deformities
ranging from 0◦ to 30◦ (less than 20% variation in terms of contact area, while slightly
higher values are found in terms of force), even if the difference in the input forces is greater
than 35%. These outcomes are then in agreement with several clinical studies focused on
endo-model hinged TKAs, which reported its stability and absence of cases of wear due to
overloading of the polyethylene [13,15,49]. Moreover, a recently published study [50] on
the use of the rotating hinge and followed over 10-years concluded that using a specific
RH TKA design with less rotational constraint has better clinical and survival outcomes
than implants with greater rotational constraint (such as one specific CCK addressed in the
study) in case of varus and valgus deformities.

Addressing then the outcomes in terms of femoral bone stress, the results highlighted
how these values are influenced more by the stem length and fixation rather than the values
of varus and valgus deformities; these results are indeed in agreement with that found
in the literature concerning the effects of stem design [20,21] and moreover demonstrate
the ability of this prosthesis to maintain similar outcomes in terms of bone-prosthesis
interactions, despite the different levels of deformity of the patient joint.

It is however to be mentioned that this study presents a series of limitations. Firstly,
only one implant model was considered, with a single size and typology being analyzed;
a single angle of flection was then simulated for all of the configurations. These two
restrictions may indeed represent a limitation for the generalization of the results, but it is
to be highlighted that these choices allowed to perform a comparative study focused on the
specific parameters taken into consideration, thus obtaining meaningful information that
can therefore represent an interesting insight for the surgeons during the decision-making
process. Addressing the finite element models, it is to be mentioned that the material
models used to simulate the bones in this study implied a series of assumptions: indeed,
no bone activity was considered in the simulations and therefore the variations in femoral
mechanic characteristic, usually occurring in response to the different loading conditions
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the joint undergoes [51–54], are not taken into account. Despite these latter limitations,
however, these models were developed based on previously published and validated
ones [21] and therefore the results they provided can be considered reliable, as they are
furthermore in agreement with the literature [2,20,21].

Concerning the validation of the model, it is to be mentioned that no direct validation
was performed for this study; however, it is to be considered that the model used was
implemented starting from validated models that can be found in previously published
studies [21,25–27], and therefore can be considered as reliable in its results.

5. Conclusions

This study provided interesting information on the influence of varus/valgus defor-
mities of different levels of severity on the performances of different configurations of
rotating hinged TKA, showing how the prosthesis design features mainly alter the bone
stress distribution while varus/valgus deformities are the main responsible factors for
variations in tibio-femoral contact forces and areas.

This result represents an interesting information for the surgeons: for implants char-
acterized by high level of constraint, indeed, alterations in the bending and torsional
stiffness and moments might occur if the stem length and fixation are modified, and they
would therefore be transferred to the tibio-femoral interface of the implant; this eventuality
may thus condition the surgeon’s choice, which may aim for a compromise in order to
avoid any tibio-femoral issues deriving from these alterations. The results of this study
showed instead that, in the case of the rotating hinge analyzed, no remarkable mechani-
cal consequences on the tibio-femoral interface are found despite variations in stem and
fixation configuration; the surgeon can therefore focus their decisions on optimizing the
bone-implant interface, without the need for finding a compromise in the fear of altering
excessively the tibio-femoral biomechanics.
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