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Featured Application: In spite of the significant developments in machine learning methods em-
ployed for short-term electrical load forecasting on a Country level, the complexity and diversity
of the problem points to the need for investing more research effort in the selection of represen-
tative input datasets for the training. This is demonstrated in the example of the Greek electricity
system, where careful selection and quality assurance of input data resulted in quite acceptable
levels of prediction accuracy, even when training standard, robust feed-forward artificial neu-
ral networks.

Abstract: Short-term load forecasting is an essential instrument in power system planning, operation,
and control. It is involved in the scheduling of capacity dispatch, system reliability analysis, and
maintenance planning for turbines and generators. Despite the high level of development of advanced
types of machine learning models in commercial codes and platforms, the prediction accuracy needs
further improvement, especially in certain short, problematic time periods. To this end, this paper
employs public domain electric load data and typical climatic data to make 24-hour-ahead hourly
electricity load forecasts of the Greek system based on two types of robust, standard feed-forward
artificial neural networks. The accuracy and stability of the prediction performance are measured
by means of the modeling error values. The current prediction accuracy levels of mean absolute
percentage error, mean value µ = 2.61% with σ = 0.33% of the Greek system operator for 2022, attained
with noon correction, are closely matched with a simple feed-forward artificial neural network,
attaining mean value µ = 3.66% with σ = 0.30% with true 24-hour-ahead prediction. Specific instances
of prediction failure in cases of unexpectedly high or low energy demand are analyzed and discussed.
The role of the structure and quality of input data of the training datasets is demonstrated to be the
most critical factor in further increasing the accuracy and reliability of forecasting.

Keywords: electricity load curve; day-ahead forecasting; artificial neural networks

1. Introduction

The fundamental objective of electric power industry deregulation is to maximize
efficient generation and consumption of electricity and reduce energy prices. To achieve
these goals, accurate and efficient electricity load forecasting is becoming more and more
important [1]. Distribution and transmission system operators are based on these forecasts
in order to deal with the stochastic variations of the distributed renewable power sources
connected to the grid [2]. This holds true both for the aggregate system load (i.e., on a
country basis) as well as for the load met by micro-grids. Although the main body of the
specialized literature addresses the prediction of the total load on a country, region, or
county/community level, significant attention is shifted to the bus load of the transmission
and distribution systems, which are more affected by the stochastic nature of individual
loads [3]. Moreover, forecasting aggregate system load and electricity price has become
a major issue in modern power systems, a pre-requisite for price forecasting [4]. Thus,
short-term load forecasting (STLF) is an indispensable tool in power systems planning,
maintenance, and management and in smart grid applications [5]. It counts decades of
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research activity and applications, with a multitude of forecasting models, methodologies,
and tools for day-ahead and hour-ahead load predictions.

Forecasting techniques can be broadly categorized into (i) statistical or time series-
based methods, (ii) physical methods, and (iii) hybrid or ensemble methods. However,
machine learning (ML) techniques have by far outperformed the other categories. These
include a large variety of artificial neural networks (ANN). They start from the well-known
multilayer perceptron (MLP), the support vector machine (SVM) [6], the Markov chain
methods, etc. ANN-based forecasting is generally considered very effective because of the
ANNs’ ability to learn complex, nonlinear relationships [2] and their significant advantage
of being universal approximators [7]. The specific application requirements should be
considered in the selection of the most suitable forecasting methodology. However, every
successful forecasting model should be characterized by low computational expenditure
and should be able to incorporate empirical knowledge. Further, it should be flexible and
straightforward in the interpretation of its results [4]. The models proposed in the literature
can be classified into two categories: trend methods and similar-day approaches [5]. Trend
methods interpolate the demand curve as a function of time and extrapolate the curve to
predict future demand. The similar day approach tracks similarities between current and
historical load curves. Machine learning techniques fit this second category. A training
set is formed in order to optimally determine or fit the model parameters. After sufficient
training, the tuned model is applied to the test dataset. If the modeling error exceeds
the set tolerance, the training set is modified, and the model is trained again. Aiming
at the reduction of forecasting errors, many researchers proposed hybrid models. These
models combine a clustering algorithm and a forecaster. The clustering algorithm captures
characteristic attributes of the data. These include outliers, periodic behavior, and other
relationships. The training set is divided into a number of relatively homogenous clusters.
Each cluster set is employed to train its own forecaster. This process results in improved
training of each forecaster. Time series models or ML models can be employed as forecasters
in this process. The self-organizing map (SOM) can be profitably combined with SVM
for peak load prediction. Fan et al. exploited an SOM for the categorization of their
training data [8]. Separate support vector regression models are applied to each cluster
to predict the daily peak load. Che et al. [9] combined the SOM and the support vector
regression (SVR) with adaptive fuzzy rule forecasting and applied it to cases with variable
training period lengths. The seasonality of load peaks is addressed through a functional
clustering technique. Mori et al. [10] combined the deterministic annealing (DA) clustering
for the preprocessing of input data, together with an MLP ANN, to predict day-ahead
peak load. Kim et al. [11] classified existing seasonal load data into four patterns using
Kohonen NN. Daubechies D2, D4, and D10 WTs were adopted subsequently to predict
hourly load. Martinez—Alvarez et al. [12] applied clustering techniques to group and
label the data set samples. Thus, the prediction of a data point starts with the extraction
of the pattern sequence prior to the day to be predicted. Traditionally, most models were
based on feed-forward (FF) ANNs trained by modification of the basic back-propagation
algorithm. Cecati et al. [13] assessed five different learning algorithms for radial basis
function (RBF) ANNs to advance their performance in the load forecasting of the ISO-New
England market. Typical RBF networks were applied to 24 h electric load forecasting based
on SVR, Extreme Learning Machines, and Decay RBF NN. In addition to the shallow and
deep, fully connected FF ANNs, which are routinely employed in load forecasting, more
complex types, such as the long short-term memory (LSTM), which is a version of recurrent
neural networks (RNN), adopt a block structure with a number of gates interacting with the
previous and next network state. They are more complex compared to FF ANN. However,
they are capable of effectively handling temporal dependencies between variable time
series lags. For this reason, they are employed in more complex forecasting tasks, such as
the electricity price forecasting in auctions [14]. To this end, convolutional neural networks
(CNNs) using convolution to learn patterns within specific time windows are also employed
to learn from the data from different perspectives via data shuffling. A review of more
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recent developments with the use of deep learning (DL) methods in electric power systems
is presented in [15]. Mishra et al. [16] analyzed the taxonomy of existing DL algorithms
applied to different forecasting problems in the electrical utility industry. Khodayar et al.
explored the theoretical advantages of deep learning in power systems research. Supervised,
unsupervised, and semi-supervised applications, as well as reinforcement learning tasks,
were covered [17]. Sun et al. [18] combined Bayesian probability theory and deep learning
in a framework employing clustering in sub-profiles to forecast aggregated net load from
the Ausgrid distribution network. Input data for the numerical experiments were collected
from smart meters in load centers in Sydney, New South Wales. Additional input from
residential rooftop PV outputs was considered to enhance the performance of aggregated
net load forecasting. In spite of the significant research effort allocated to the structure of
the ANN applied in the load forecasting problem, the structure of input data employed
for the training dataset did not receive the necessary degree of attention. The majority
of the research effort uses standardized input data from data repositories and performs
benchmark tests to assess possible improvements in error metrics. On the other hand, the
nature of the load forecasting problem on a country or regional basis is very complicated
and affected by multiple factors discussed in the next section, in modes that are not yet well
understood [19]. Moreover, day-ahead load forecasting on a country or regional level was
challenged by the advent of COVID-19 and the associated shutdown of economic activity,
which complicated the prediction. The period from March 2020 to May 2022 had peculiar
characteristics due to the COVID-19 pandemic and the measures taken during large time
intervals in order to protect public health from the spread of the virus. A study of the effects
of shutting on and off several activities, aiming to assess the calibration capabilities of the
prediction models, is still underway [20]. Surakhi et al. [21] investigated the dependence
of forecasting accuracy on the selection of an optimal time-lag value. They comparatively
tested a statistical approach using auto-correlation, LSTM, and a heuristic optimization
algorithm combined with LSTM. In a comprehensive study involving data from load
datasets from Australia, Germany, and America, Li et al. [22] tested a convolution-based
DL model with a densely connected network. The model’s backbone is the unshared CNN
and a densely connected structure to avoid the vanishing of the gradient. Pavicevic et al.
tested various models in temporal convolutional (TCN) and RNN/LSTM architectures for
predicting the electricity price on the Hungarian market and electricity load in Montenegro
TCN and LSTM layers, both in combination with fully connected layers, demonstrated the
best performance, but in cases where all models failed with large mistakes, autoregressive
LSTM performed even worse [19]. Mir et al. [23] presented the systematic development
of a short-term load forecast (STLF) model using 5-year hourly load time series for an
electric power utility in Pakistan. Following the investigation of previously developed
models, they addressed the challenges of STLF by comparatively applying multiple linear
regression, bootstrap aggregated decision trees, and ANNs.

Guo et al. [24] employed electricity consumption data from three cities in Jiangsu,
China, to train a DL-based framework, random forest, and gradient boosting machine to
forecast the total electricity consumption of 3000 users. To address various factors affecting
residential electricity consumption, they used feature engineering. The influencing factors
were divided into date-related and air-quality-related factors, weather factors, and local
economic factors. As long as the forecasting is applied to large regions or a country
level, the attainable accuracy is inferior. This is true, especially when the error metrics
are applied to the hourly values of power demand. Wang et al. [25] applied a stacked
noise suppression auto-encoder (SDA) model and a class of DNN to forecast the hourly
electricity price. The datasets were compiled from hubs in five U.S. states. Two types of
forecasting, online hourly forecasting and day-ahead hourly forecasting, were examined.
MAPE values in the range from 2.51% to 46% were reported, depending on the price
fluctuation, which was very high in January and very low in April 2014. Hossen et al. [26]
employed a DNN for forecasting day-ahead electricity consumption. Ninety days of
data from the Iberian utility market were employed for training the multilayer DNN.
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Various combinations of activation functions were tested, aiming at improved MAPE,
taking into account the weekday and weekend variations. The functions tested include
Sigmoid, rectifier linear unit (ReLU), and exponential linear unit (ELU). Weekday MAPE
ranged between 2.1 and 3.9%. Weekend MAPE ranged between 1.3 and 2.5%. Din and
Marneridis [27] investigated the feasibility of the application of the feed-forward DNN
and recurrent-DNN models utilizing datasets from ISO New England. The proposed
models obtained the least daily demand prediction MAPE errors of the order of 1% in the
spring season. The highest errors were observed in the summer. They were attributed
to the unexpected electricity consumption exceedance caused by high temperatures and
social events. Dong et al. [28] combined CNN and K-means algorithms to predict hourly
load. They applied the K-means algorithm to a 1.4 million electrical load records dataset,
restructuring it into several subsets. Afterward, these subsets were input to CNN for
training and testing. The results were promising, attaining 3% MAPE during summer
and 7.4% MAPE during winter. Wen et al. [29] employed deep RNN–gated recurrent
unit (GRU) models for short- and medium-term prediction, which attained a MAPE of
3.5% in their forecasts. Kong et al. [30] made short-term load predictions at the individual
building level. They applied a density-based clustering method to calculate and compare
the inconsistency between the combined load and individual loads. Since the consumers’
lifestyle significantly changes the energy consumption pattern, the authors proposed an
LSTM–RNN-based load forecasting structure for the load demand dataset. The LSTM
and BPNN-T in the top tier outperformed all the other benchmarks: MAPE varied from
8.18% to 8.64% in the predictions. Shi et al. [31] proposed a pooling-based deep-RNN for
household load forecasting. They attempted to avoid over-fitting caused by increasing
data diversity and dimensions. Their STLF model was tested on 920 residential smart
meter datasets in Ireland. The RMSE attained outperformed ARIMA by 19.5%, SVR by
13.1%, and classical deep RNN by 6.5% in terms of RMSE. Peng et al. [32] presented a
useful comparison of important research works on typical methods used in electricity load
forecasting, with indicative values of statistical metrics. They developed and applied a
hybrid method—improved backtracking search optimization algorithm (IBSA)–double-
reservoir echo state network (DRESN) in STLF. Mutual information is utilized to eliminate
low-significance input features and retain key input features. The DRESN structure aims
to increase the diversity of the network. Roulette strategy, adaptive mutation operator,
and niche operator are introduced to improve the standard BSA algorithm. The IBSA
is applied to optimize several critical parameters in the DRESN neural network. The
proposed method outperformed eight popular benchmark models, as tested with North
America and PJM load datasets. The decades of development of short-term electricity
load forecasting techniques have been invested in flexible and easy-to-use computational
tools currently employed by the network operators [33]. However, as reported above, the
prediction accuracy needs further improvement regarding the design and implementation
of the input training datasets, which have specific peculiarities for each country, depending
on the size, climate, and economic activities’ diversity and other factors. As seen in the
above presentation, modeling error results reported from several research works in short-
term electrical load forecasting vary over a wide range of MAPE and nRMSE. This can be
attributed to the wide variation of training input data structures and the different types of
predictions obtained and the different geographical scales met in the different applications.
The focus of the present work is on further improvement and standardization of the training
dataset of the day-ahead load prediction. This is accomplished by adding the daily heating
and cooling degree-days of a representative location, as well as improving the prediction
of the peak load, after carefully studying specific time periods in the Greek system where
all models systematically fail. In this process, two standard, popular, and cost-effective FF
ANN models are employed for the day-ahead system’s load forecasting. The comparison is
carried out using consistent metrics and the same data from the Greek system [34]. The
hourly actual aggregate electricity load, as reported by the Greek Independent Power
Transmission Operator (IPTO) [34] during the five-year period 2017–2021, was employed
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in the training of the models, along with meteorological data. Testing and validation of
the models are carried out for various periods of 2022. The main contributions of the
present work are the following: (i) the current prediction accuracy level attained in the
Greek system is not high, and it is proven that it can be easily attained with simple types of
FF ANNs and easily available datasets; (ii) a systematic procedure is adopted to find and
discuss the most important incidents of prediction failure, explain the reasons of failure,
and indicate possible pathways to their remedy. (iii) This procedure leads to suggestions
for improvement in the selection and phasing of the training variables, the increase in
data monitoring frequency, and the possible inclusion of information on specific economic
activity variables to be included in the training and prediction. The paper is organized
into four sections. Section 2 presents the overview of input data and the formulation of the
prediction methodology to be employed. Section 3 discusses the selection of input data
and the specific types of ANN for the day-ahead forecast. The results of the simulation
are presented and discussed in Section 4. Finally, the conclusions and future work are
presented in Section 5.

2. Materials and Methods

Before attempting to formulate a day-ahead load prediction methodology, it is useful to
present and discuss the current state of the day-ahead prediction of Greece’s electricity load
curve, as reported to the European Transparency Platform (ENTSO-E), which is responsible
for the central collection and publication of Electricity Generation, Transportation, and
Consumption Data and Information for the Pan-European Market [35]. As an example, the
actual demand values, on an hourly basis, are compared with the day-ahead predictions
for January 2022 in Figure 1. The average values and variability, on a monthly basis, of the
most important statistical metrics for 2022 are shown in the same Figure to quantify the
prediction accuracy. MAPE is 2.61% with a standard deviation of 0.33%, and nRMSE is
0.036 with a standard deviation of 0.005. Finally, the mean bias error (MBE) is 73 MW, which
indicates an over-prediction. On a qualitative basis, it is interesting to see in this example
of January 2022 (Figure 1) that the most pronounced prediction failures are observed
with regard to the morning peaks, and to a much lesser extent, to the late afternoon peak
loads. It must be mentioned in this respect that the specific level of prediction accuracy
is not attained by a truly day-ahead computation. That is, not all 24 h of the next day are
predicted. Instead, the next day’s prediction is corrected at noon, based on the—known at
that time—actual load data of the first half of the day.

Figure 1. Greek system load during January 2022, day-ahead predicted versus actual values (MW) [35].
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The effect of this improved prediction may be seen in the example of a typical weekday
(20 January 2023) based on the data reported daily by the Greek system operator (IPTO) [34]
presented in Figure 2. The modified noon prediction reduces the 24 h MAPE from 3.35%
to 2.47% and nRMSE from 0.041 to 0.035. Thus, the forecasts reported in the ENTSO-
E database are not true 24-hour-ahead forecasts. This explains the somewhat reduced
accuracy in our true 24-hour-ahead forecasts presented in the next section.

Figure 2. Initial day-ahead prediction, modified noon prediction, and actual load curve on a weekday
in January 2023 [34]. The modified noon prediction reduces 24 h MAE from 177 to 131 MW, MAPE
from 3.35% to 2.47%, and RMSE from 0.041 to 0.035.

Before proceeding to study the accuracy of the prediction of special events and spot-
specific cases of prediction failure, it is important to understand the general typologies of
the Greek system load curves in the main seasons of the year.

2.1. Typical Load Curves of the Greek System, Seasonal Effects

To understand the behavior of the 24 h total electric load curve, its evolution during
a Friday of January is shown in Figure 2. The total system’s load drops during the night,
stabilizing at about 3.9 GW. The minimum values are before dawn, from 3:00 to 5:00 in
the morning. This base load level makes up for the night consumption, which covers the
following main activity:

• Urban, road, and highway lighting;
• Industrial production continuing to the night shift;
• Base load of the residential sector.
• Refrigeration loads for the industrial, commercial, and residential sectors.

In the period 05:00–09:00, we observe the morning ramp. During the noon hours, the
demand drops below 5.4 GW. From 16:00 to 18:00, the afternoon ramp leads to a demand
plateau close to 6.3 GW between 18:00 and 20:00. Next, it is useful to study the patterns of
another day, which is a Monday in November (Figure 3).
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Figure 3. Evolution of the Greek system load on a typical Monday of November, 2022. Predicted
versus actual hourly load values [35].

The behavior of the demand curve during the night is about the same. However, the
base load during the night drops below 3.5 GW. The morning ramp during this weekday
is characteristic, with a total demand increase of 1.25 GW between 05:00 and 08:00. The
morning ramp continues more gradually to the first load peak of the day (about 10:00 AM).
This corresponds to the following activity:

• Industrial activity starts for the morning shift.
• Commercial and services activity starts.
• People prepare and go to work.
• Students prepare and go to school.
• Space heating starts after the night shut down.

After 9:00 AM, we observe an approximate consumption plateau, which results in
a daily minimum at about 3:00 PM. Following the noon hours, we observe a gradual
increase in consumption, which leads to the second ramp of the day and leads to the
second consumption peak at 18:00–19:00 (because of the winter time and the early advent
of evening, while this peak goes up to 21:00–22:00 during summer time). This second peak
reaches 5.5 GW during this mild late autumn day but may reach 8.5 GW or more during
winter (Figure 1) due to the part of space heating supplied by electricity. After 8 PM, we
observe a gradual reduction in the electric load, which takes its night levels after 02:00.

The system’s load levels may drop significantly lower during the neutral months of
April–May and October, respectively, which do not require electricity consumption for
space heating in the residential and part of the commercial sector.

An example of this performance is presented in Figure 4 for the month of April, 2022,
where the minimum demand during the night drops close to 3 GW and the evening peak
drops to less than 6 GW during late April, where ambient temperatures are of the order of
20–24 ◦C during the day.
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Figure 4. Greek system load during April 2022, day-ahead predicted versus actual values (MW) [35].

Further, it is interesting to observe in Figure 5 a pronounced load prediction failure
of the Greek system’s operator for the period 20–22 April (Wednesday to Friday, hours
2640–2712). An observation of the weather data for typical places in central Greece shows
a sudden weather improvement after a rainy and cold weekend. A closer observation of
this period in Figure 5 indicates that the day-ahead prediction routinely over-predicts the
demand for the 20th, 21st, and half of the 22nd of April.

Figure 5. Load prediction failure during the period Wednesday 20 to Friday 22 April, 2022 (sudden
weather improvement) [35]. Maximum relative error is 11.9%.
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Only after the noon correction in the prediction of the afternoon system’s demand the
error vanishes, and the prediction accuracy returns to high levels.

Next, the Greek system’s operator’s forecasting is compared with the actual demand
for the month of July 2022 (Figure 6). This is a difficult period for forecasting because of
the high electricity demand for air conditioning, which leads the system’s peak demand
to exceed 9 GW for certain cases (25–28 July, hours 4920–5016). As regards the prediction
accuracy, it is interesting to observe a prediction failure for the weekend 16–17 July (hours
4704–4752), which is shown in detail in Figure 7.

Figure 6. Greek system load during July 2022, day-ahead predicted versus actual values (MW) [35].

Figure 7. Prediction failure for the period during the weekend 16–17 July with high ambient temper-
atures [35]. Maximum relative error is −20.9%.
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The system’s operator failed to predict with sufficient accuracy the effect on the
system’s demand of the onset of high ambient temperatures during the specific weekend.
This will be examined in more detail in view of the respective predictions of our models in
Section 4. Next, we are going to present the modeling approach we developed and tested,
aiming at further improving the forecasting accuracy of the Greek system demand.

2.2. Input Data Employed for the 24-Hour-Ahead Forecasting

Our investigations were based on the processing of the measured hourly electrical
load during the years from 2017 to 2021, for which the hourly load demand input data
for the Greek system were obtained from ENTSO-E [35]. Testing and validation of the
models were carried out for various months in 2022. In addition to the electric load curves,
meteorological data, at least on a daily basis, need to be employed for representative
climatic conditions of Greece. The central location of Athens in Greek geography, and the
presence of about 40% of the population and a significant part of industrial and business
activity here, allows us to consider Athens weather data as corresponding—more or less—
to the average Greek climate as weighted by the number of inhabited space and number of
inhabitants. For this purpose, out of the four weather stations of the central Athens area
(Gazi, Ambelokipi, Patissia, Psychico) [36], the suburb of Psychico was selected for weather
data [37]. Psychico may be considered as representing the climatic conditions of Athens,
which hosts a major part of the population and economic activity, and, on the other hand,
its climate is not severely affected by the city-center conditions. On the other hand, because
it may be considered to belong to the northern suburbs, and it is not densely built with
high-rise buildings, and it has plenty of trees and park space, its climate is not affected
by Athens center conditions, a fact that allows it to be more representative of Greece. For
this reason, input weather data as daily averages and high-low temperature values were
obtained from the meteorological station of Psychico [37].

Apart from meteorological variables such as dry bulb temperature and relative hu-
midity, load presents a high correlation to its past values [4]. To this end, it is interesting
to confirm, to the specific dataset, the generally observed short-term periodicity of the
load using the Pearson correlation coefficient [38]. In Figure 8, the Pearson correlation
coefficients of the current hourly load for the full year 2021, correlated with its previous
hourly values up to 216 h before, are graphically presented. Obviously, they start from the
value of 1 at zero delay, and they are seen to fluctuate with 24 h periodicity. However, a
high correlation coefficient of 0.9344 is clearly observable for a 24 h delay. Next, a higher
correlation coefficient observed was 0.8392 for a 168 h delay. For this reason, 24 h lagged
load and 168 h (previous week) lagged load are routinely fed as input to FF ANN applied
for day-ahead load prediction.

Figure 8. Correlation coefficient curve for evaluating short-term periodicity characteristics of the
Greek system load curve for the full year 2021. Strong correlation exists with the 24 h lagged load
(previous day) and, to a lower extent, with the 168 h lagged load (previous week).
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For the day-ahead load forecast, the following are input parameters usually applied in
the specialized literature:

• Dry bulb temperature;
• Dew point temperature;
• Hour of day;
• Day of the week;
• Holiday/weekend indicator (0 or 1);
• Previous 24 h average load;
• 24 h (previous day) lagged load;
• 168 h (previous week) lagged load.

The ambient dry-bub (DB) temperature is included in most investigations because
temperature affects electricity consumption. The correlation between the total daily electric-
ity demand (GWh) of the Greek system in 2021 and daily average temperature is shown in
Figure 9. A nonlinear relationship between load and temperature is observed. There exists
a baseline daily demand of the order of 100–130 GWh, during the days with normal average
temperature (DB) in the range 18–24 ◦C. With the onset of higher average temperatures,
the total daily load steeply increases up to 210 GWh.

Figure 9. Correlation of the total daily electricity load in GWh with the daily mean temperature (DB)
of Psychico weather station (year 2021).

The same trend is observed when the mean daily temperature deviates to values lower
than normal. However, as seen in Figure 9, the effect of lower mean daily temperature
levels on the total daily load (GWh) is significantly less pronounced. This is due to the
fact that space cooling is carried out almost exclusively by means of electrically driven
heat pumps and air-conditioning equipment, whereas the heating is mainly carried out by
natural gas, oil and pellet-fueled boilers, and—to a lesser extent—by heat pumps or split
units in heating mode. Hourly temperature data (dry bulb and dew point) for locations in
high-demand areas of the system are usually considered. Another environmental variable
that affects electricity consumption is the ambient air humidity, usually reported in the form
of more complex indices such as the relative humidity (RH), dew point (DP) temperature,
or wet bulb (WB) temperature. However, the correlation of any one of these indices with the
total load is not straightforward. On the other hand, since the effect of ambient temperature
and humidity on the electricity consumption is conveyed through the heating or cooling
requirements, we considered, as a good practice, to correlate the total daily load in GWh
with the heating degree-days instead. These are routinely reported on a daily basis by all
weather stations. This correlation is presented in Figure 10 for a typical weather station in
the Athens area during 2021.
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Figure 10. Correlation of the total daily electricity load in GWh with the daily heating degree-days
(Psychico station, year 2021).

As seen in Figure 10, the correlation of the total daily load with the daily heating
degree days during the heating season is significantly better than the correlation with
ambient temperature seen in the previous Figure. This hints at a possibly better training
ability of the machine learning models to be employed in the predictions.

Moreover, cooling degree days are also reported on a daily basis by all weather stations
since they give an estimate of the necessary energy consumption for space cooling during
the summer. Again, a correlation of the total daily load in GWh with the cooling degree
days of a typical weather station in Athens, shown in Figure 11 reveals a clear positive
correlation whenever five cooling degree days are exceeded daily.

Figure 11. Correlation of the total daily electricity load in GWh with the daily cooling degree days
(year 2021).

As already observed for the cooling season, the correlation coefficient of the total daily
load with the daily cooling degree days is significantly higher than the correlation with the
heating degree days. Based on the above findings, in the current work, we preferred to use
the daily heating and daily cooling degree days instead of the DB and the DP temperature.
The required weather data are significantly more simple and easy to acquire since they
refer to just two daily values instead of the two 24 h vectors required by the usual practice.
Moreover, the daily weather forecast required for the day-ahead forecast requires just a
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single value (daily heating or cooling degree days) instead of 48 values, involving the
forecasted hourly values of DB and DP temperatures. To summarize our model training
approach, the following input parameters are selected for training:

• Heating degree days (daily for a representative meteorological station);
• Cooling degree days (daily for a representative meteorological station);
• Hour of day;
• Day of the week;
• Holiday/weekend indicator (0 or 1);
• 24 h lagged load (hourly resolution);
• 168 h (previous week) lagged load (hourly resolution).

3. Neural Network Selection

As already discussed in the introduction section, a significant volume of research
work has been carried out in the last decade, especially concerning the application of
deep learning in the electrical utility industry, including power system fault detection and
classification, load and power forecasting, wind speed and irradiance forecasting for wind
and PV energy system, power quality detection, etc. As regards applications in short-term
power load forecasting, the more advanced deep learning models are usually applied in
specific cities or communities. On the other hand, the complex nature of the problem of
electrical load forecasting on a country basis requires special attention to the type of data to
be employed for the training. Since there is no possibility of reconstructing the problem
of forecasting the total load demand of a country, with 1 h resolution, by adding a very
large number of distribution units covering cities and counties that could be addressed
with advanced ML models trained by numerous input data of more local character. Based
on the above reasoning, our selected approach must be checked for effectiveness, starting
from the simplest types of shallow neural networks and comparing them to the prediction
accuracy of the state-of-the-art commercial forecasting platforms.

To this end, the following two types of simple, feed-forward ANNs were selected for
comparative testing in our investigations.

3.1. FF ANN

Due to the fact that the above-mentioned inputs must be assimilated in a complex
way to match the training target points, a feed-forward neural network is very well suited
for this type of time series forecasting. Neural networks have a proven ability to fit multi-
dimensional mapping problems arbitrarily well, given consistent data and enough neurons
in their hidden layers. The first neural network to be applied is the well-known, simple
form of a feed-forward artificial neural network (FF ANN) with one hidden layer, or MLP,
with sigmoid hidden neurons and linear output neurons.

The values of several important parameters of the FF ANN employed are presented
in Table 1. The network training function updates weight and bias states (expressed in
vector form xk) according to the Levenberg–Marquardt back propagation optimization
algorithm [39]:

xk+1 = xk −
[
JT(xk)J(xk) + µkI

]−1
JT(xk)v(xk) (1)

where J is the Jacobian, µk is the value of mu at step k, and v(xk) is the vector of the
components of the modeling error (sum of squares) [40]. As µk is increased, the algorithm
approaches the behavior of the steepest descent algorithm with small learning rate [39]:

xk+1
∼= xk −

1
µk

JT(xk)v(xk) = xk −
1

2µk
∇F(x) (2)

as µk decreases to zero, the algorithm becomes Gauss–Newton.
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Table 1. Design parameters of the specific type of FF ANN applied, along with the hyper-parameter
values related to the training procedure.

ANN Type FF

ANN Dimensions
Inputs 7
Layers 2
Outputs 1
Input Delays 0
Layer Delays 0
Weight Elements 160

ANN connections:
Bias Connections: [1; 1]
Input Connections: [1; 0]
Layers Connections: [0 0; 1 0]
Output Connections: [0 1]

ANN Training hyper-parameters
Maximum Epochs 1000
Maximum Training Time Inf
Performance Goal 0

Minimum Gradient 1.00 × 10−7

Maximum Validation Checks 6
µk 0.001
µk decrease ratio 0.1
µk increase ratio 10
Maximum µk 1.00 × 1010

The algorithm begins with µk = 0.001 (Table 1). If a step does not yield a smaller value
for the modeling error, the step is repeated with µk multiplied by a factor of 10 (Table 1).
If a step reduces the modeling error, then µk is divided by 10 for the next step. Thus, we
approach Gauss-Newton, to provide faster convergence. The algorithm provides a nice
compromise between the speed of Newton’s method and the guaranteed convergence of
the steepest descent.

The FF ANN is implemented by the use of the open-source platform Tensorflow [41].
The input layer includes seven input nodes, namely, heating degree days, cooling degree
days, hour of day, day of week, holiday/weekend indicator, 24 h lagged load, and 168 h
lagged load. The hidden layer comprises 20 neurons, each containing a sigmoid activation
function [42]. Training involves the fitting of a complex curve through the training data.
This is affected by employing loss minimization algorithms, as well as the corresponding
weights and biases optimization. Since this type of complex fitting procedure is employed
in the day-ahead prediction, it excludes erroneous or noisy information from the dataset.
This explains why the required quality assurance procedure must be included in the
preprocessing of the reported electricity demand data to correct any reporting errors or
missing values [43–45]. Validation is performed with one dataset, which corresponds to the
actual demand year 2022. In the specific runs, we did not consider overfitting, which would
require further validation datasets and observation of possible decrease in the modeling
error associated with an increase in the validation error [46].

3.2. Feed-Forward Back Propagation Neural Network

A more complex type of neural network examined is a feed-forward back-propagation
neural network (BPNN) with two fully connected hidden layers [47]. This type of network
has already been successfully applied to forecasting problems of complex systems with
highly nonlinear behavior affected by several parameters [14,48,49]. For a single-layer
network, the error is an explicit function of the network weights, and its derivatives with
respect to the weights can be easily computed. In multilayer networks with nonlinear
transfer functions, the relationship between the network weights and the error is more
complex [39]. The goal of BPNN is to update each of the network weights so that the neural
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network can approximate its output to the desired target. The error between the neural
network output and the desired target can be written in the form of a cost (or loss) function,
where Ok is the output and tk is the desired target for a specific time step:

E =
1
2 ∑

k∈K
(Ok − tk)

2 (3)

The objective is to minimize this cost function by updating the weights and biases
during the training process, which, for the specific type of network, is an iterative process.
It starts with forward propagation with the training dataset, which computes an initial
output and then compares it to the reference values (targets) to calculate the loss function.
The loss is back-propagated using a series of partial derivatives with respect to each FNN’s
internal parameters (weights and biases). Thus, the values of these parameters are updated,
and a new iteration starts. The iterative process ends with the fulfillment of convergence
criteria or when the maximum number of epochs is attained. At regular intervals during the
training iterations, a separate test dataset is employed to validate the accuracy of the BPNN.
This procedure is similar to the one employed to train the feed-forward ANN described in
Section 3.1.

The Adam optimization algorithm is employed for training the specific ANN, as
mentioned in Table 2. It is an extension of the classical stochastic gradient descent procedure,
which computes individual adaptive learning rates for different parameters from estimates
of the first and second moments of the gradient [50]. Training methods with a derivative-
based optimization algorithm, such as Levenberg–Marquardt or Adam, may be trapped in
local minima; hence, they should be repeated to ensure they lead to an appropriate ANN.

Table 2. Design parameters of the deep BPNN, along with the hyper-parameter values related to the
training procedure.

ANN Type FF BPNN

ANN Dimensions
Inputs 7
Layers 5

Hidden layers 2
Outputs 1
Number of hidden neurons 55

ANN connections:
Layer Connections: Fully connected
Normalization layer z-score
Additional Layer tanh layer
Additional Layer leaky ReLu layer

ANN Training hyper-parameters
Maximum Epochs 1000
Maximum Training Time Inf
Performance Goal 0
Learning Rate Drop Period 400
Initial Learning Rate 0.01
Learning Rate Drop Factor 0.1
Mini-batch size 1
Solver type Adam
Validation frequency 30

A comparative analysis of the results of applying the two types of networks with the
actual demand for various periods of 2022 takes place in the next section and is based
on the MAPE and the nRMSE error metrics. This type of performance metric is routinely
applied in load forecasting problems. They are expressed as follows:

MAPE =
100%

N ∑N
i=1
|Pfi − Pmi|

Pmi
(4)
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nRMSE =

√
∑N

i=1(Pfi − Pmi)
2√

∑N
i=1(Pmi)

2
(5)

where Pmi and Pfi are the actual and forecasted loads of hour i, and i = 1,2 . . . N is the
sequential number of hours in the time period examined.

4. Results and Discussion

Indicative results of the two models are presented, along with the respective values
of the modeling error metrics for 2002. All metrics are computed on the test datasets. In
addition to these metrics, plots of the error distribution as a function of the hour of the
day and day of the week are generated to spot specific weak points in the forecasting.
The various plots comparing the day-ahead hourly actual and forecasted load for typical
months for the year 2022 are generated and optically checked for specific instances of
prediction failure.

4.1. FF ANN

As an example, the actual demand values, on an hourly basis, are compared with the
day-ahead predictions with the FF ANN for January 2022 in Figure 12. The computation
time was less than 30 s and the code converged after less than 100 epochs. The values
of the respective statistical metrics for 2022 are shown in the same Figure to quantify the
prediction accuracy. The RMSE was 3.08 MW, MAPE was 3.66%, nRMSE was 0.049, and
MAE was 204 MW. Finally, MBE was 29 MW, which indicates a small over-prediction. On a
qualitative basis, it is interesting to see that the quality of prediction for January 2022 was
comparable to the prediction of the Greek system’s operator, presented in Figure 1. Again,
the most pronounced prediction failures are observed with regard to the morning peaks. It
should be mentioned here that the specific, comparable levels of prediction accuracy were
attained by a true day-ahead computation. That is, all 24 h of the next day were predicted.
No correction at noon was applied in this case.

Figure 12. Prediction with the FF ANN and validation of the Greek system’s demand for January
2022. MAPE and nRMSE means and standard deviations refer to the full year 2022.
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Further, it is interesting to look at the variance of the most important error metrics in
these predictions. To this end, Figure 13 presents the variation of the monthly MAPE and
nRMSE values for the official forecasts in comparison with the respective figures for the
FF ANN predictions. Although the mean values of MAPE and nRMSE were lower for the
official predictions, the standard deviations were observably higher than the respective
error figures of the FF ANN predictions. The reduced standard deviations in the FF ANN
prediction error metrics are a good indication for the lack of data overfitting problems.

Figure 13. Comparison of the variation of monthly MAPE and nRMSE for the official forecasts and
the FF ANN forecast during 2022.

Apart from the visual, qualitative inspection of prediction quality, it is interesting to
statistically assess the effects of the hour of the day and the day of the week in the FF ANN
prediction errors. In this context, Figure 13 presents a box plot of the error distribution of
forecasted load as a function of the hour of the day for 2022. A closer look at the box plots of
this figure confirms the intuitive observation that the prediction of the nighttime base load is
most confident. The other important finding is that the maximum prediction error, reaching
values of the order of 15%, was observed for the hours 16:00–18:00, which correspond to the
interval of returning from work. Again, this is expected by visual observation and affects
the prediction accuracy of the late afternoon peak of the Greek system, which is the most
difficult to address. This suggests that a significant part of the research effort should be
directed to the improved prediction of the peak load for the daily load curve.

As a second step in this direction, Figure 14 presents a box plot of the error distribution
of forecasted load as a function of the day of the week for 2022.

A comparison of the respective error box-plots in Figure 15 reveals that the weekdays
where the maximum prediction error is observed are Saturday (#7) and Monday (#2). The
reduced accuracy in the prediction of Saturday may be attributed to the fact that Saturday
and Sunday are both categorized as weekend days. However, although the behavior of the
system’s load on Sundays is very particular, lying in between the behavior of weekdays
and Sundays. Thus, it would be helpful to find a way to inform the artificial neural network
during the training about these differences. Simply allocating a third category for Saturday
was tested but did not improve the model’s prediction capabilities.
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Figure 14. FF-ANN forecasting: Box-plot of the error distribution of forecasted load as function of
the hour of day for 2022.

Figure 15. FF-ANN forecasting: Box-plot of the error distribution of forecasted load as function of
the day of week for the year 2022.

4.2. Deep FF BPNN

The training progress of the two-hidden layers’ FF-BPNN was tested by setting a
different number of maximum epochs in the range 20–2000. The computation time was
about an order of magnitude higher than the simple FF ANN; that is, it takes about 2 min
to run 1000 epochs on a standard laptop PC. The results are presented in Figure 16 in terms
of the attained RMSE of the normalized predicted values of load demand, which is seen to
stabilize at a little higher than 0.025 for 2022 predictions.

The normal evolution of convergence can be observed in this Figure without any signs
of over-fitting. The model is seen to gradually assimilate the useful information contained
in the training data. A high rate of drop in RMSE was observed for the first 400 epochs,
which was set as the duration of the learning drop period (Table 2). The respective results of
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the predicted versus actual demand are presented in Figure 17 for the example of January
2022. The values of the selected performance metrics for 2022 are shown in the same Figure:
MAPE, µ = 3.56% with σ = 0.42%; nRMSE, µ = 0.049 with σ = 0.006. Compared with the
shallow FF ANN model presented in Figures 12 and 13, the mean value of MAPE was a
little lower, however, it was higher than the official predictions. However, the standard
deviation of MAPE was observably higher than the respective values for both the FF ANN
and the official predictions. This may be due to a somewhat higher tendency of the deep
networks for data over-fitting, which is not a problem here anyway, as explained above.

Figure 16. Training progress of deep feed-forward neural network after 20–2000 epochs, as seen by
the prediction RMSE for 2022.

Figure 17. Prediction and validation of system’s demand for January 2022, FF-ANN after 81 epochs
versus deep NN after 1000 epochs. Modeling error metrics are shown for deep FNN predictions for
the whole year 2022.
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These values were only a little better than those obtained with the simple FF ANN
model, as shown in Figure 12. That is, the additional complexity and CPU time required to
run the deep FNN model (a few minutes run on a laptop compared to less than a minute for
the FF ANN) did not seem to reward. For comparison, the respective predicted values with
the simple FF ANN are drawn in the same diagram. It seems that both types of models
incorporated, to a high degree, the information contained in the training dataset. This
observation is further supported by the fact that the error metrics of both models are directly
comparable to those of the Greek system’s operator’s forecasting (Figure 1). Moreover,
an optical comparison of the two figures points to the similar forecasting behavior of all
three models. Similar instances of prediction failures with various types of ANN have
been frequently reported by other researchers in different countries [19]. Thus, the cause
of specific, short periods of prediction failure should be attributed to the lack of some
additional types of training input.

In order to further research this issue, we start with a comparison of the two alternative
models’ performance against the actual demand for July 2022 (Figure 18). As already
reported in Section 2, July and August are more demanding in terms of forecasting, because
of the high fluctuations in electricity demand for air conditioning. On the other hand,
the models are proven effective in predicting the system’s peak demand exceeding 9 GW
during 25–28 July. However, both models fail to predict the high levels of demand for
the weekend 16–17 July, as shown in detail in Figure 19. The maximum relative error in
prediction stays at the same high levels with the official prediction (see Figure 7). In order
to better understand the situation and investigate possible ways to improve forecasting
accuracy, it is useful to plot, in the same figure, the respective fluctuation of ambient
temperatures as recorded by the Psychico weather station during this period.
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Figure 18. Prediction and validation of system’s demand for July 2022, FF-ANN after 81 epochs vs.
Deep NN after 1000 epochs.

The temperature during the night before the 16th was seen to stay at about 23–26 ◦C.
Beginning at 06:00 and during the morning hours, we observed a significant increase in
ambient temperature, which continued to a maximum of 35 ◦C between 14:00 and 15:00.
Then, a gradual drop in ambient temperature was observed after late afternoon. However,
the temperature did not drop to its normal nocturnal levels during the second day and
started to ascend earlier Sunday morning. This should place an unexpected burden on
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the air-conditioning systems and produce a very pronounced morning peak for Saturday
and Sunday. The high electricity consumption levels could be attributed to the very high
increase of tourists in Greece during this period, which unexpectedly increased the filling
rate of hotels and other tourist residences.
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for the deep NN.

A closer look at the comparison curves of Figure 19 reveals further instances of
prediction failure. One of these events is 8 July, when a significant over-prediction of
load occurred for both models (Figure 20). This should be correlated with the sudden
drop in ambient temperatures, shown in the same figure in the example of the Psychico
weather station, and a drop in humidity by shifting to NE winds, which suddenly reduced
the need for air-conditioning. Both neural networks over-corrected their prediction for
the next day, Friday 9 July, which obviously led to an over-prediction failure this time.
Another important failure was observed on Wednesday, 20 July, when a sudden increase
in ambient temperatures could not be addressed with the required fast response by both
neural network models.

A real-world application of the two FF ANN methods described was carried out
according to the following procedure. The computer code was run at midnight of each
day to predict the 24 h values of load for the next day. The input data for the FF ANN
comprise the following variables and sets: (i) Heating degree days (one value predicted
daily by the meteorological service for the Psychico meteorological station). (ii) Cooling
degree days (one value daily for the Psychico meteorological station). (iii) Time series of
the recorded hourly Greek system load values up to midnight. Data uncertainty exists only
for the prediction of heating and cooling degree days for the next day, which is equivalent
to the day-ahead prediction of the mean daily temperature.

Improvements in the specific aspects of model performance would require a further
increase in synergy between the machine learning models and empirical models, incor-
porating a faster response of the system’s demand to weather conditions by means of an
improved transfer function with responses on the order of one hour. To this end, it would
be helpful to record the system’s demand at an increased frequency (once every 15 min),
following the example of other European countries [33].
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Figure 20. Incident of Thursday 7–Saturday 9 July: load prediction failure of both models during a
sudden change to drier weather conditions and ambient temperature drop.

5. Conclusions

This paper applies two standard types of FF ANN models with a novel, simple, and
specially designed input training dataset for day-ahead short-term electricity load forecasting
in the Greek electricity market. The basic meteorological input comprised the daily heating
and cooling degree days from a representative station of Athens. Additional input was the
hour of the day, day of the week, a holiday/weekend indicator, and the 24- and 168-hour
lagged load of the system. The forecasting capabilities of the two models were compared
with the respective predictions of the Greek system’s operator’s model against the actual data
reported in the European platform. The mean value of MAPE of the FF ANN predictions
for the 12 months of 2022 was 3.66% (σ = 0.30%) vs. 2.61% (σ = 0.33%) of the official predic-
tions, and the nRMSE was 0.049 (σ = 0.005) vs. 0.036 (σ = 0.005) of the official predictions,
respectively. However, our forecasts are true 24-hour-ahead predictions without the noon
correction, which is routinely applied by the system’s operator. The results suggest that the
proposed approach based on a simple and robust FF ANN model, aided by the new design
and specific structure of input data, achieves the major goal in 24-hour-ahead prediction. It
performs equally well with commercial state-of-the-art tools in day-ahead load forecasting.
Specific instances of failure were analyzed, being common to all prediction methodologies
and tools examined. They comprise periods with rapid temperature drops with weather
changes during summer, which lead to unexpected sudden drops in electricity load for
air conditioning. In the future, the effect of incorporating further weather parameters on
short-term load forecasting will be examined in the form of air humidity and wind average
speed and prevailing direction. Moreover, economic and societal events that may impact grid
operation in the form of tourist resident numbers during summer may also be highlighted.
Finally, the behavior of Saturday could be distinctively studied and taken care of as a third
day typology, instead of just discriminating between workdays and weekends/holidays.
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Nomenclature (Acronyms)

ANN Artificial Neural Network
BPNN Back-Propagation Neural Network
CNN Convolutional Neural Networks
DA Deterministic Annealing
DB Dry-Bulb Temperature
DL Deep Learning
DP Dew Point Temperature
DSO Distribution System Operator
ENTSO-E European Transparency Platform
FF Feed Forward
GRU Gated Recurrent Unit
IPTO Independent Power Transmission Operator
ISO Independent State Operator
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MBE Mean Bias Error
ML Machine Learning
MLP Multilayer Perceptron
MR Multiple Regression
MTLF Medium-Term Load Forecasting
nRMSE Normalized Root Mean Square Error
PV Photovoltaic
RBF Radial Basis Function
RH Relative Humidity
RMSE Root Mean Square Error
RNN Recurrent Neural Network
SDA Stacked Denoising Autoencoder
SOM Self-Organizing Map
STLF Short-Term Load Forecasting
SVM Support Vector Machine
SVR Support Vector Regression
TCN Temporal Convolutional Networks
TSO Transmission System Operator
WB Wet Bulb Temperature
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