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Abstract: It is well-known that performance of the classical algorithms for active noise control (ANC)
systems severely degrades when implemented for controlling the impulsive sources. The objective
of this paper is to propose a new recursive least squares (RLS) algorithm (and its variant) for being
implemented in the framework of ANC systems. The proposed RLS-based adaptive algorithm
employs an objective function designed to achieve robustness against the impulse type sources.
The derivation of the algorithm is quite straightforward; however, a few modifications have been
incorporated to address the application at hand. In order to improve upon the numerical stability
issue of RLS-based adaptation, it is suggested to employ smoothing while updating the inverse
correlation matrix. Furthermore, it is proposed to introduce a step size in the update equation of
the adaptive algorithm. This results in the fixed step-size modified filtered-x (MFx) robust RLS
(FSS-MFxRRLS) algorithm. As expected, a fixed value step size results in a trade-off situation for
convergence speed and steady-state misalignment. In order to address this issue of a trade-off
situation, the idea of a convex combined step size (CCSS) is introduced into the adaptive procedure to
develop the CCSS-MFxRRLS algorithm. When the ANC is started, the CCSS strategy (automatically)
selects a large-valued step size to achieve a fast initial convergence. As the ANC system converges at
the steady-state, the CCSS is automatically tuned to a small value which improves the steady-state
performance of the proposed CCSS-MFxRRLS algorithm. Extensive simulations have been designed
to mimic many scenarios for practical applications of ANC for impulsive sources. The simulation
results demonstrate that the proposed CCSS-MFxRRLS algorithm is very effective in many practical
scenarios involving ANC of impulsive sources.

Keywords: robust RLS adaptive filtering; active noise control; impulsive noise; convex-combined
step size

1. Introduction

The basic idea of active noise control (ANC), first conceptualized by P. Lueg in his US
patent [1], is very simple: two out of phase acoustic waves would result in a destructive
interference and hence cancel each other out. Therefore, any ANC system would essentially
generate an anti-phase (acoustic) noise-cancelling signal, which is combined acoustically
with the primary (disturbance or noise) signal generated from some noise source (for
example, exhaust fan, vacuum cleaner, power transformer, etc.). These two signals, being
anti-phase to each other, tend to cancel each other out [2]. Active noise and vibration control
is a well-researched area that has spread from academic research in a tight laboratory
settings to successful commercial products, thanks to great advancements in the modern
semiconductor technology. Many successful applications of ANC technology have been
reported in [3–8] (among others); however, the most popular is ANC headsets [9,10]. An
excellent survey on recent research trends and interesting applications for ANC systems
can be found in [11,12].
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Broadly speaking, the ANC systems can be classified as single-channel ANC or multi-
channel ANC, depending upon the number of sensors and actuators deployed to cover the
area of interest. Here, only single-channel ANC has been considered, and the presented
methods can be fairly easily extended for the multichannel ANC if needed. Furthermore,
we consider acoustic noise sources without loss of generality, as the presented methods can
be modified for application to active vibration control. In a basic setting of a single-channel
scenario, the ANC system generally comprises one primary/reference sensor (e.g., micro-
phone), one secondary actuator (e.g., loudspeaker), and one error sensor (e.g., microphone).

The objective of the reference microphone is to pick-up the reference/input noise prior
to it propagating via the primary path and appearing around the error microphone—the
location where the noise reduction is desired. An adaptive control filter generates the
secondary (cancelling) signal, which is propagated via the secondary path between the
loudspeaker and the error microphone. The ANC adaptive filter is adapted in such a
way that the secondary (cancelling) signal is anti-phase to the primary noise appearing
around the error microphone. This results in a destructive interference around the error
microphone; hence, the error microphone records the residual noise, which, in turn, is used
to guide adaptation of the control filter.

Due to the presence of a secondary (electro-acoustic) path between the cancelling loud-
speaker and the error microphone, the classical least mean square (LMS) algorithm [13,14]
cannot be directly implemented. In a variant of the LMS algorithm, the effect of the sec-
ondary path is compensated by employing a secondary path model to filter the reference
signal and then use this filtered-reference signal in the LMS update equation, resulting in
the so-called filtered-reference LMS, most commonly abbreviated as filtered-x (Fx) LMS
(FxLMS) algorithm [3]. The classical FxLMS algorithm has been a first choice for practical
ANC systems, mainly due to its reduced computational cost and simple implementa-
tion. However, the classical FxLMS algorithm suffers from slow convergence speed and
shows poor performance (being a stochastic gradient-based algorithm) for non-Gaussian
sources. In order to address slow convergence speed, different ANC algorithms have
been proposed with improved convergence properties, viz., (1) lattice-ANC systems [15];
(2) infinite impulse response (IIR) filter-based LMS algorithms called Filtered-u Recursive
LMS (FuRLMS) [16], and filtered-v algorithms [17]; (3) recursive least squares (RLS)-based
algorithms called FxRLS [3] and Fx Fast-Transversal-Filter (FxFTF) [18]; and (4) frequency-
domain-ANC systems (see [19] and references therein). Here, IIR-based structures have
inherent stability problems, RLS-based ANCS exhibit numerical instability issues, and the
other approaches mentioned above increase the computational complexity. These reasons
make FxLMS still a good choice for ANC applications. However, the FxLMS algorithm
does not appear as a viable choice for ANC of noise generated from non-Gaussian stable
sources of an impulsive nature.

In many practical situations, viz., office, infant incubators, punching and cutting machines
in industrial setups, traffic noise, gun shots and explosions, and noise in an MRI room, the
target noise is non-Gaussian [20–23]. Such a noise signal exhibits an impulsive nature and
hence can be better modeled by heavy tailed non-Gaussian (stable) distribution than Gaussian
distribution. In order to address poor performance of the FxLMS algorithm for impulsive
ANC systems, researchers have proposed many variants of the FxLMS algorithm, viz., Sun’s
algorithm [24], the thresholding FxLMS (Th-FxLMS) algorithm [25], the improved normalized
step-size-based FxLMS (INSS-FxLMS) algorithm [26], the Fx logarithmic LMS (FxlogLMS)
algorithm [27], and the Fx least mean M-estimate (FxLMM) algorithm [21,28,29]. Here, the
INSS-FxLMS algorithm may exhibit poor performance for strongly impulsive sources, the
FxlogLMS algorithm suffers from a problem of entering a dead zone during adaptation (due to
characteristics of log operation), and the rest of the algorithms require estimating appropriate
thresholding parameters such that reference and/or error signals are thresholded before
being used in the update process. Obtaining appropriate threshold parameter values may
pose a great challenge, especially if a suitable threshold needs to be estimated during the
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online operation of impulsive ANC systems. An excellent review of threshold adaptive ANC
algorithms for impulsive sources is found in [30].

In order to take into account the non-Gaussian nature of impulsive sources [31], the
filtered-x least mean p-power (FxLMP) algorithm minimizes p-power of the error signal
instead of the mean squared value [32]. Here, p is the fractional low-order moment which
appears to be a robust choice compared with the second order moment considered in the
derivation of the classical FxLMS algorithm [32]. The FxLMP algorithm does outperform
the FxLMS algorithm for impulsive ANC systems; however, the convergence speed of
the FxLMP algorithm is very slow, especially for strongly impulsive sources. Great effort
has been devoted to improving the performance of the classical FxLMP algorithm, and
many variants have been proposed [33–36]. It is worth mentioning that a suitable value of
the parameter p must be found in relation to the characteristic of the noise source, which
may be quite challenging in many situations. For several other robust cost-function-based
algorithms, for example the least-mean-kurtosis-based adaptive algorithm, the interested
reader is referred to [37].

This paper develops a robust adaptive algorithm (and its variant) for impulsive ANC
systems. The key features of the developed algorithm(s) are summarized as follows:

• It is well-known that the RLS-based adaptation exhibits a far better convergence speed
compared with the stochastic gradient-based adaptation (as in the LMS algorithm),
where the price to be paid is increased computational complexity. The computational
complexity may not be an issue with the recent advancements in semiconductor
technology; therefore, in order to realize a fast convergence speed, the proposed
algorithm is derived in the framework of an RLS-based adaptation.

• Instead of FxLMS-based ANC, the ‘modified Fx’ (MFx) LMS (MFxLMS)-based ANC
structure [38] is used to implement the proposed algorithm. The MFxLMS ANC
uses two copies of the ANC filter so that generation of the noise control signal and
adaptation of coefficients of the ANC filter are treated as separate processes. This
allows implementing advanced adaptive algorithms for ANC systems (for details,
see [38] and the references therein).

• In the classical FxRLS algorithm [3], the cost function is (deterministic) least squares
which is not well-suited for the application at hand, i.e., impulsive ANC systems. The
RLS-based adaptive ANC algorithm developed in this paper employs an objective
function expected to achieve robustness against impulsive sources. Furthermore, a
fixed step size (FSS) is introduced in the proposed algorithm while computing the the
increment vector, resulting in the FSS MFx robust RLS (FSS-MFxRRLS) algorithm for
ANC of impulsive sources.

• In order to address the issue of the numerical instability of the FxRLS algorithm [18], a
very simple solution of low-pass filtering is incorporated while computing the current
estimate of the inverse correlation matrix.

• In previous work, a convex-combined step size (CCSS) based modified normalized
FxLMS (CCSS-MNFxLMS) algorithm was developed [39,40]. Motivated by the re-
sult presented there, it is suggested to incorporate a similar strategy with the FSS-
MFxRRLS ANC algorithm and develop the proposed CCSS-based MFx robust RLS
(CCSS-MFxRRLS) algorithm.

A brief overview of the classical FxLMS and FxRLS algorithms is given in Section 2.
The details on the development and derivation of the proposed RLS-based ANC algorithms
are given in Section 3, and Section 4 presents results of the extensive numerical simulations.
A few remarks on the issue of computational complexity are also presented in this section.
Finally, Section 5 gives a few concluding remarks and directions for future work. A short
version of this paper was presented at [41].
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2. Classical ANC Algorithms
2.1. Classical FxLMS Algorithm

A block diagram of a single-channel ANC system [3] for duct applications is illus-
trated in Figure 1, where P(z) denotes the primary path present between the noise source
generating x(n) and the location of the error microphone. Here, S(z) is the secondary
acoustic path present between the loudspeaker and the error microphone. As shown in
Figure 1, the noise source is assumed to be of impulsive nature, further described while
discussing the simulation results presented later. The reference signal x(n) is propagated
via P(z) and appears as the disturbance d(n) around the location of the error microphone.
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Figure 1. Block diagram of a filtered-x (Fx) LMS-based ANC structure.

Assuming that the ANC filter w(n) z←→ W(z) (having impulse response w(n)) is a
finite impulse–response (FIR) filter of coefficient length L, the corresponding ANC filter
output signal y(n) can be expressed as

y(n) = w(n) ∗ x(n),

= wwwT(n)xxx(n), (1)

where www(n) = [w0(n), w1(n), . . . , wL−1(n)]T and xxx(n) = [x(n), x(n− 1), . . . , x(n− L+ 1)]T

are the coefficient vector for W(z) and the corresponding reference signal vector, respec-
tively, and T and ∗ denote transposition and convolution, respectively. The ANC filter
output signal y(n) is filtered via S(z) to give the cancellation signal y′(n) which is acousti-
cally combined with d(n) to generate the residual error signal e(n) being expressed as

e(n) = d(n)− y′(n)

= d(n)− s(n) ∗ y(n)

= d(n)− s(n) ∗ w(n) ∗ x(n). (2)

It is important to mention that neither the disturbance signal d(n) nor the cancelling
signal y′(n) are directly accessible; y(n) is generated from the ANC filter and then only
e(n) is picked-up by the error microphone. Assuming slow adaptation of the ANC filter
W(z) allows rearranging the convolutions in (2) and re-writing the expression for e(n) as

e(n) = d(n)− w(n) ∗ x f (n),

= d(n)−wwwT(n)xxx f (n), (3)
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where xxx f (n) = [x f (n), x f (n − 1), . . . , x f (n − L + 1)]T is the Fx signal vector where
x f (n) = s(n) ∗ x(n). The the classical FxLMS algorithm is based on minimizing the
mean-squared-error (MSE)

ξMSE(n) = E{e2(n)} ≈ e2(n), (4)

which results in the following updated equation for the FxLMS algorithm [3,4]

www(n + 1) = www(n) + µe(n)xxx f (n), (5)

where µ is a FSS parameter. In (3) and (5), the Fx signal x f (n) can be computed using the

secondary path modeling filter ŝ(n) z←→ Ŝ(z) as x f (n) = ŝ(n) ∗ x(n) (see Figure 1).

2.2. Classical FxRLS Algorithm

The classical FxLRS algorithm considers the following deterministic least squares
(LS)-based cost function [42]

ξLS(n) =
n

∑
i=1

λn−ie2(i), (6)

where λ is the exponential forgetting factor. Using (3), e(i) is the a posteriori error given as

e(i) = d(i)− xxxT
f (i)www(n), (7)

where www(n) is the currently available estimate of the ANC control filter. Computing the
gradient of ξLS(n) and equating it to zero

∂ξLS(n)
∂www(n)

= −2
n

∑
i=1

λn−ixxx f (i)e(i) = 0, (8)

and then following the derivation for the standard RLS algorithm as in [42], we arrive at
the following computations for the classical FxRLS algorithm for ANC systems:

uuu(n) = ΦΦΦ(n− 1)xxx f (n), (9)

kkk(n) =
uuu(n)

1 + xxxT
f (n)uuu(n)

, (10)

ΦΦΦ(n) = λ−1ΦΦΦ(n− 1)− λ−1kkk(n)uuuT(n), (11)

www(n) = www(n− 1) + ε(n)kkk(n), (12)

where kkk(n) is the Kalman gain vector which, in addition to (10), can be equivalently
expressed as kkk(n) = ΦΦΦ(n)xxx f (n) [42], and ε(n) is the a priori estimation error expressed as

ε(n) = d(n)− xxxT
f (n)www(n− 1), (13)

which requires the previous coefficient vector www(n− 1) and information about d(n). Un-
fortunately, the latter is present only in the acoustic domain and is not directly accessible.
Another important issue to circumvent is the poor numerical stability of the classical FxRLS
algorithm for ANC systems [3,18]. Nevertheless, it is well-known that RLS-based adaptive
filters exhibit faster convergence compared to the stochastic-gradient-based LMS adaptive
filters, though at a cost of increased computational complexity. Considering that modern
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digital hardware allow implementing complex algorithms, it is worth developing FxRLS-
based adaptive filtering solutions for practical applications. In the following- we explore
developing a new FxRLS algorithm based an an objective function well suited for impulsive
ANC systems.

3. Proposed Algorithm
3.1. Derivation of Robust FxRLS Algorithm

It is important to mention that the classical FxLMS and FxRLS algorithms are, respec-
tively, based on MSE cost function ξMSE(n) (4) and LS cost function ξLS(n) (6) which are
not robust for noise sources of impulsive nature. In order to develop a robust objective
function for the impulsive ANC systems, we consider the following function [43]

f (n) = E
{

1
1 + βe2(n)

}
, (14)

where β is a constant selected empirically. It is noticed that f (n)→ 0 for impulsive sources
and hence would be robust in mitigating the effect of impulsiveness. On the basis of
function f (n) in (14), following an LS-based objective function is proposed to derive the
RLS-based algorithms presented in this paper

ξm(n) =
n

∑
i=1

λn−i
{

1
1 + βe2(i)

}
, (15)

where the subscript m signifies ‘modified’ objective function (in comparison with the
standard LS cost function in (6)), and e(i) is the same as expressed in (7). In order to
minimize the error signal e(n) so that reduced residual noise appears around the error
microphone, the objective function ξm(n) in (15) must be maximized. This can be achieved
by computing the gradient of ξm(n) and equating it to zero as

∂ξm(n)
∂www(n)

= 0, (16)

which results in the following equation

n

∑
i=1

λn−im(i)xxx f (i)e(i) = 0, (17)

where the parameter m(i) is given as

m(i) =
{

1
(1 + βe2(i))2

}
. (18)

Substituting (7) in (17) and performing some straightforward computations, we obtain
the following normal equations

RRRm(n)www(n) = pppm(n) ⇒ www(n) = ΦΦΦm(n)pppm(n), (19)

where RRRm(n) is the (modified) weighted correlation matrix given as

RRRm(n) =
n

∑
i=1

λn−im(i)xxx f (i)xxxT
f (i), (20)

and pppm(n) is the (modified) weighted cross-correlation vector being expressed as

pppm(n) =
n

∑
i=1

λn−im(i)xxx f (i)d(i), (21)
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and ΦΦΦm(n) = RRR−1
m (n) denotes the so-called inverse correlation matrix. Following the

derivation of the classical RLS algorithm [42,44], we obtain

uuum(n) = ΦΦΦm(n− 1)xxx f (n), (22)

kkkm(n) =
uuum(n)

λ
m(n) + xxxT

f (n)uuum(n)
, (23)

ΦΦΦm(n) = λ−1ΦΦΦm(n− 1)− λ−1kkkm(n)uuuT
m(n), (24)

www(n) = www(n− 1) + ε(n)kkkm(n), (25)

where kkkm(n) is the ‘modified’ Kalman gain vector which, in addition to (23), can be
equivalently expressed as kkkm(n) = m(n)ΦΦΦm(n)xxx f (n), ε(n) is the a priori estimation error
as given in (13), and m(n) may be computed from (18). As noted from the above details,
the derivation of the proposed algorithm is quite straightforward; however, there are many
issues from the viewpoint of implementation for impulsive ANC systems and are tackled
in the following subsections.

3.2. A Few Practical Considerations

With reference to the (modified) RLS algorithm given in (22)–(25), the a priori estima-
tion error ε(n) required in the coefficient update equation (25) would require the current
value of d(n) (see (13)). As stated earlier, d(n) is not directly accessible in the ANC setup,
and only the residual error signal e(n) is available via the error microphone (see Figure 1).
Therefore, it is proposed to implement the developed RLS-based algorithm in an MFx-based
ANC structure instead of the classical Fx-based ANC structure shown in Figure 1. For
details on the convergence properties of an MFx-based ANC structure, the interested reader
may see [38] and references therein.

A block diagram for the proposed FxRLS algorithm-based ANC system implemented
in an MFx structure is shown in Figure 2, which employs two copies of the secondary path
modeling filer Ŝ(z). One copy of Ŝ(z) is used to ‘filter’ the reference signal x(n) to obtain
the Fx signal x f (n). The other copy of Ŝ(z) is used to filter the ANC filter output signal
y(n) to obtain an estimate of the canceling signal ŷ′(n), which in turn is combined with
e(n) to obtain an estimate of the disturbance signal d̂(n) as

d̂(n) = e(n) + ŷ′(n),

= e(n) + ŝ(n) ∗ y(n), (26)

which is used to modify (13) as

ε(n) ≡ g(n) = d̂(n)− xxxT
f (n)www(n− 1). (27)

As shown in Figure 2, the MFx-based ANC structure employs two copies of ANC filter
W(z) where the coefficients of the adaptive one are updated using ε(n) ≡ g(n) instead
of e(n). As in the update equation (12) of the classical FxRLS algorithm, the increment
vector (to update the coefficients of the control filter) in (25) in the proposed algorithm is
computed as a product of the (modified) Kalman gain vector (23) and ‘estimated’ a priori
estimation error (27). Additionally, we suggest to introduce a step size µ to have a control
over the adaptation, and hence, the adaptation in (25) is proposed to be modified as

www(n) = www(n− 1) + µg(n)kkkm(n). (28)
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After adaptation, the coefficients of the adaptive one are copied to the main ANC filter
W(z) responsible for generating y(n) which will be used in performing noise cancellation.
Equation (23) shows that computing the (modified) Kalman gain vector in the proposed
algorithm requires computing m(n) (as defined in (18)). Considering (18) and the above
modification, the parameter m(n) in the proposed algorithm is suggested to be computed as

m(n) =
{

1
(1 + βe2(n))2

}
≈
{

1
(1 + βg2(n))2

}
. (29)

Finally, considering the application at hand for ANC of impulsive noise sources, a
smoothed version of the inverse correlation matrix in (24) is computed as

ΦΦΦm(n) = ζΦΦΦm(n− 1) + (1− ζ)
[
λ−1ΦΦΦm(n− 1)− λ−1kkkm(n)uuuT

m(n)
]
, (30)

where 0 � ζ < 1 is the forgetting factor. The resulting FSS-MFxRRLS ANC algorithm
essentially replaces (24) and (25) with (30) and (28), respectively.
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Figure 2. Block diagram of ANC structure employing proposed RLS-based adaptive algorithms.

3.3. Developing the Convex Combined Step Size Approach

It is no surprise that, like any FSS-based adaptive algorithm, the proposed FSS-
MFxRRLS algorithm would also exhibit a trade-off situaiton for selecting the FSS: a large
step size gives fast convergence but poor steady-state performance, and a small value
would slow down the convergence speed while improving the performance at the steady
state. Such a trade-off situation can be overcome by considering a variable step size (VSS)
procedure which would automatically ‘tune’ the step size starting from a large value at
the start to a small value as time progresses [45–48]. This would help in achieving both a
fast initial convergence as well as a good steady-state performance. Recently, employing a
convex combination of two adaptive filters has gained some popularity [49], where one
adaptive filter is adapted using a large step size and the other using a small one. Their
outputs are combined using a (convex) mixing parameter such that the overall output is de-
cided by a fast converging adaptive filter (using a large step size) during the transient state
and by a slow converging adaptive filter (using a small step size) at the steady state [50,51].
Since both adaptive filters are adapted simultaneously, it is obvious that this approach
wound result in an increased computational complexity.
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As in the previous work [39,40] for FxLMS-based ANC, a CCSS is developed for
the FxRLS-based ANC algorithm described above. It is worth mentioning that the CCSS
approach borrows the concepts of the convex combination of adaptive filters, yet uses only
ONE adaptive filter to perform the adaptation [52,53] as explained below. The key idea
is to develop a time-varying step size, as in the classical VSS-based algorithms, however
by employing the concepts of a convex combination of adaptive filters. With reference to
Figure 2 for the proposed method, it is ‘assumed’ that two copies of W(z) (adaptive one)
are available to be updated according to (28) as

www1(n) = www1(n− 1) + µ1g(n)kkkm(n), (31)

www2(n) = www2(n− 1) + µ2g(n)kkkm(n). (32)

By selecting µ1 > µ2, it is understood that W1(z) shows fast convergence speed and
W2(z) would exhibit good performance at the steady-state. In order to combine these two
desired properties, the adaptive ANC filter W(z) can have a coefficient vector obtained
via the convex combination of coefficient vectors given in (31) and (32) for W1(z) and
W2(z), respectively,

www(n) = γ(n)www1(n) + (1− γ(n))www2(n), (33)

where γ(n) is a mixing parameter. It is a time-varying parameter (as explained later)
whose value must be selected in the range 0 ≤ γ(n) ≤ 1. From (31)–(33), we obtain the
following expression

www(n) = www(n− 1) + µ(n)g(n)kkkm(n), (34)

for updating the coefficient vector of the adaptive ANC filter W(z). In (34), www(n− 1) is the
convex combination of previous values of the coefficient vectors of W1(z) and W2(z) and
can be expressed as

www(n− 1) = γ(n)www1(n− 1) + (1− γ)www2(n− 1), (35)

and µ(n) is the CCSS which combines µ1 and µ2 via mixing parameter γ(n) as

µ(n) = γ(n)µ1 + (1− γ(n))µ2. (36)

From (34) and (36), it is noticed that γ(n) = 1 (γ(n) = 0) effectively means as if W(z)
is adapted using a large (small)-valued step size µ1 (µ2). As in any VSS-based algorithm,
we would like to have µ(n) ≈ µ1 at n = 0 to achieve fast convergence at the start-up
and µ(n) ≈ µ2 to obtain improved steady-state performance when n → ∞. This can be
achieved by designing the mixing parameter γ(n) in such a way that γ(n) = 1 at n = 0
and γ(n) → 0 as the ANC system converges at the steady state (n → ∞). One option to
have such a mixing parameter γ(n) is to consider the sigmoidal activation function as [51]

γ(n) =
1

1 + exp{−b(n)} , (37)

where b(n) is another adaptive parameter. Following a similar approach as presented
in [39,40], the parameter b(n) in the proposed algorithm is adapted using a stochastic
gradient algorithm to minimize the a priori estimation error g(n) ≡ ε(n) as follows

b(n) = b(n− 1)− µb
∂|g(n)|

∂b(n− 1)
, (38)

where µb is a small-valued FSS for the adaptive parameter b(n), employing |g(n)| (instead
of g2(n), for example) would result in a ‘sign’ adaptive algorithm which is expected
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to achieve robustness for the sources of impulsive nature. Using g(n) as given in (27),
(38) becomes

b(n) = b(n− 1) + µbsgn(g(n))xxxT
f (n)

∂www(n− 1)
∂b(n− 1)

. (39)

We consider the following chain rule to compute ∂www(n)
∂b(n) :

∂www(n)
∂b(n)

=
∂www(n)
∂µ(n)

· ∂µ(n)
∂γ(n)

· ∂γ(n)
∂b(n)

, (40)

where three partial derivatives on the right-hand side (R.H.S) are computed by considering
(34), (36) and (37), respectively, as

∂www(n)
∂µ(n)

= g(n)kkkm(n), (41)

∂µ(n)
∂γ(n)

= (µ1 − µ2), (42)

∂γ(n)
∂b(n)

= [γ(n)(1− γ(n))]. (43)

Combining (41)–(43) in (40) and replacing n→ n− 1, the update rule in (39) becomes:

b(n) = b(n− 1) + µbsgn(g(n))(µ1 − µ2) (44)

[γ(n− 1)(1− γ(n− 1))]xxxT
f (n)g(n− 1)kkkm(n− 1),

where a few modifications are suggested as follows: sgn(g(n)) is replaced with sgn(g(n− 1))
(in order to align with the error signal g(n− 1)) and (µ1 − µ2) (being a scalar constant) is
assumed to be absorbed with the FSS µb, and (44) becomes:

b(n) = b(n− 1) + µbsgn(g(n− 1))g(n− 1)[γ(n− 1)(1− γ(n− 1))]xxxT
f (n)kkkm(n− 1). (45)

Equation (45) dictates that the increment term (to be added to b(n − 1) from the
previous iteration) includes a product term [γ(n)(1− γ(n))]. This shows that b(n) would
not be updated when γ(n) → 0 or γ(n) → 1. One idea could be to add/subtract a
small positive number ε to/from γ(n) when γ(n) → 0/1. Yet another idea could be
looking at the evolution of γ(n) versus the adaptive parameter b(n), as shown in Figure 3
which essentially plots the expression in (37). We observe that γ(n) → 0 as b(n) → −∞
and γ(n) → 1 as b(n) → +∞. Considering this observation, b(n) is restricted between
[−2.49, 2.49], and the following simple approach is adopted [40]:

1. Update b(n) using (45).
2. Restrict b(n):

b(n) =
{
−2.49, b(n) < −2.49
+2.49, b(n) > 2.49

3. Compute γ(n) using (37).

(46)

From Figure 3, it is clear that by restricting b(n) within the range [−2.49, 2.49], it is
ensured that γ(n) is restricted in the range 0 < γ(n) < 1 (see vertical dashed lines shown
in Figure 3). Thus, the proposed CCSS-MFxRRLS algorithm replaces (24) with (30) and (28)
with (34), (36), (37), (45) and (46). A pseudo-code style summary of algorithms presented in
this paper is given in Table 1.
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Figure 3. Variation of sigmoidal activation function γ(n) vs. adaptive parameter b(n) (and selected
threshold values) in the proposed algorithm.

Table 1. The implementation summary of the proposed algorithms presented in this paper.

Initialization and Parameter Selection
L, M, www(0) = 000, ΦΦΦm(0) = δ−1III (δ = 0.04), γ(0) = 1, b(0) = 0, µb = 0.1, ζ = 0.99, λ ≈ 1.0 µ1, µ2, β

while {x(n), e(n)} available do
1. xxx(n) = [x(n), x(n− 1), · · · , x(n− L + 1)]T ; % Update signal vector
2. y(n) = xxxT(n)www(n); % ANC filter output
3. x f (n) = ŝ(n) ∗ x(n); % Filtered-x signal
4. d̂(n) = e(n) + ŝ(n) ∗ y(n); % Estimate of disturbance signal
5. xxx f (n) = [x f (n), x f (n− 1), · · · , x f (n− L + 1)]T ; % Update filtered-x signal vector
6. g(n) = d̂(n)− xxxT

f (n)www(n− 1); % Error signal for adaptation

7. m(n) =
{

1
(1 + βg2(n))2

}
; % Parameter in objective function

8. uuum(n) = ΦΦΦm(n− 1)xxx f (n); % vector for Kalman gain computation

9. kkkm(n) =
uuum(n)

λ
m(n) + xxxT

f (n)uuum(n)
; % Kalman gain vector

10. ΦΦΦm(n) = ζΦΦΦm(n− 1) + (1− ζ)
[
λ−1ΦΦΦm(n− 1)− λ−1kkkm(n)uuuT

m(n)
]
; % Inverse correlation matrix

11. www(n) = www(n− 1) + µg(n)kkkm(n); % FSS-MFxRRLS update equation
12. µ(n) = γ(n)µ1 + (1− γ(n))µ2; % Time-varying step-size
13. www(n) = www(n− 1) + µ(n)g(n)kkkm(n); % CCSS-MFxRRLS update equation
14. b(n) = b(n− 1) + µbsgn(g(n− 1))g(n− 1)[γ(n− 1)(1− γ(n− 1))]xxxT

f (n)kkkm(n− 1); % Adaptive parameter for γ(n)

15. b(n) =
{
−2.49, b(n) < −2.49
+2.49, b(n) > 2.49 ; % Threshold adaptive parameter b(n)

16. γ(n) =
1

1 + exp{−b(n)} ; % Sigmoidal activation function

end while

1 In 3 and 4, it has been assumed that ŝ(n) z←→ Ŝ(z) is an FIR filter of length M.
2 Proposed FSS-MFxRRLS algorithm = 1–11.
3 Proposed CCSS-MFxRRLS algorithm = 1–10, 12–16.

4. Results and Discussion

This section provides detailed simulation results, where the objective is to demonstrate
the performance of the proposed RLS-based ANC algorithms in comparison with the
related existing algorithms: Sun’s algorithm [24], Th-FxLMS [25], INSS-FxLMS [26], and the
previous CCSS-NMFxLMS algorithm [39,40]. Additionally, a slightly modified variant of the
FxLMK algorithm [37], as presented in [40] is also included in the performance comparison.

4.1. Simulation Conditions

The experimental data provided with [3] are used to obtain FIR models for the acoustic
paths, and their characteristics are shown in Figure 4. It is worth mentioning that these
acoustic paths were measured for a practical ANC setup and have been used in many
previous works, including the seminal paper on impulsive ANC systems [24]. All adaptive
and fixed filters in various methods are also considered to be of the FIR type.
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Figure 4. Frequency response characteristics of FIR models for acoustic paths used in computer
simulations: (a) Magnitude response characteristics, and (b) phase response characteristics.

The impulsive noise source is assumed to be modeled as a standard symmetric α-
stable (SαS) distribution. The standard SαS distribution has no unique probability density
distribution (PDF) and can be better described by using the characteristic function of the
form [31]

ϕ(t) = e−|t|
α
, (47)

where α is called the characteristics exponent which signifies the ‘impulsiveness’ of the
standard SαS distribution and dictates the corresponding PDF. In fact, α may take any value
in the range 0 < α ≤ 2, where α = 2 corresponds to Gaussian PDF with zero impulsiveness,
and increased impulsiveness (PDF with outliers) is expected if the value of α is small.
Figure 5 presents one realization of the input signal x(n) obtained from a standard SαS
process with α = 1.1, α = 1.4, and α = 1.6, which are termed as severely impulsive, strongly
impulsive, and mildly impulsive for the results presented and explained in the following
sections. The variances of typical signals shown in Figure 5 are found to be 2.6313× 103,
0.2991× 103, and 0.0168× 103, for α = 1.1, α = 1.4, and α = 1.6, respectively. It is observed
that such reference signals are indeed of impulsive nature, and impulsiveness decreases as
the value of α increases.
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Figure 5. Typical alpha stable signals: (a) severely impulsive with α = 1.1 and variance 2.6313× 103;
(b) strongly impulsive with α = 1.4 and variance 0.2991× 103; (c) mildly impulsive with α = 1.6 and
variance 0.0168× 103.

Various case studies have been carefully designed to mimic practical scenarios involv-
ing application of ANC for impulsive sources. The performance metric to carry out the
performance comparison between various algorithms is the mean noise reduction (MNR)

MNR(n) = E
{

σe(n)
σd(n)

}
, (48)

where σe(n) and σd(n) denote an estimate of absolute values of e(n) and d(n), respectively.
Such estimates can be obtained via the low pass estimator as in (30). The results presented
below have been ensemble averaged for 100 realizations. Considering the nature of a noise
source, theoretical analysis to find values for various parameters is very challenging and
laborious, if not impossible. Therefore, extensive simulations have been performed to tune
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the parameters for various algorithms, as each algorithm adopts a different strategy and
control mechanism for impulsive ANC systems.

4.2. Choosing the Parameter β

Before proceeding to the presentation and discussion of the main results, it is important
to understand the impact of the parameter β. In this regard, the proposed FSS-MFxRRLS
algorithm is employed for ANC of a standard SαS process with α = 1.1 (see Figure 5a for a
typical signal drawn from such a strongly impulsive process). The FSS step size µ = 0.1
has been experimentally selected for fast convergence as well as good performance at the
steady state. The value of the parameter β has been empirically adjusted from a very small
value close to zero to a large value close to but less than unity, and the corresponding MNR
curves are presented (in a butterfly pattern) in Figure 6. For clarity of presentation, the
curves for β = 0.01 (small value close to zero) and β = 0.995 (a large value close to but less
unity) are plotted using “thick-bold” lines. Furthermore, a vertical panel and a wide panel
(plotted inside the main figure) are used to highlight the curves during transient and at
the steady state, respectively. It is interesting to note that choosing an appropriate value
for β poses a trade-off situation: too small a value may improve the convergence speed;
however, it would degrade the steady-state performance, and vice versa. Considering such
a behavior, the value of the parameter is selected as β = 0.75 for the rest of the experiments
presented in this paper.
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Figure 6. Effect of the parameter β on the noise reduction performance of the proposed FSS-MFxRRLS
algorithm with µ = 0.1.

4.3. Scenario 1: Impulsiveness of Noise Sources

The objective of this case study is to understand the performance of various adaptive
algorithms for ANC of various impulsive sources with impulsiveness ranging from severe
to mild (a few typical examples of such signals are shown in Figure 5). In this regard,
Figure 7 shows detailed simulation results for the MNR performance of various algorithms
for a severely impulsive standard SαS process with α = 1.1. For clarity of presentation,
the performance of individual algorithms is presented in separate sub-figures (the curves
for the proposed algorithm are included in all sub-figures). Another objective of such a
presentation is to have a clear picture about the variation of the step-size parameters (given
in the legend of each sub-figure) for the respective algorithms.
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Figure 7. Detailed simulation results for severely impulsive noise source with α = 1.1: (a) Sun’s
algorithm [24]; (b) Th-FxLMS algorithm [25]; (c) modified FxLMK algorithm; (d) INSS-FxLMS
algorithm [26]; (e) effect of step-size parameter in the proposed FxRLS-based impulsive ANC algo-
rithms; (f) performance comparison between various algorithms: (1) Sun’s algorithm (µ = 1× 10−8);
(2) Th-FxLMS algorithm (µ = 1× 10−6); (3) Th-FxLMS algorithm (µ = 5× 10−6); (4) modified FxLMK
algorithm (µ = 1× 10−4); (5) modified FxLMK algorithm (µ = 5× 10−4); (6) INSS-FxLMS algorithm
(µ = 1× 10−4); (7) INSS-FxLMS algorithm (µ = 5× 10−4); (8) previous CCSS-NMFxLMS algorithm
(µ1 = 1.0, µ2 = 1× 10−2); (9) FSS-MFxRRLS algorithm (µ = 0.1); (10) FSS-MFxRRLS algorithm
(µ = 0.5), (11) Proposed CCSS-MFxRRLS (µ1 = 1.0, µ2 = 0.05).
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Figure 7a shows that Sun’s algorithm is unstable even for a very small-valued step
size. The reason lies in the fact that the noise source is of a severely impulsive nature,
and the simple thresholding procedure in Sun’s algorithm is unfortunately not able to
handle it. Figure 7b–e show MNR results for FSS-based Th-FxLMS, modified FxLMK,
INSS-FxLMS, and the proposed FSS-MFxRRLS algorithm, respectively. It is evident that
an FSS indeed results in a trade-off situation as discussed earlier: it is almost impossible
to realize both fast convergence speed and good steady-state performance. It is in fact
noticed that the steady-state performance of these algorithms severely deteriorates for
a large-valued step size being selected for a fast convergence speed. Finally, Figure 7f
shows performance comparisons between various algorithms where two curves have been
selected for each FSS-based algorithm, one for a small step size and one for a large step
size. It is observed that the previous CCSS-NMFxLMS and the proposed CCSS-MFxRRLS
algorithms achieve fast convergence speed and good steady-state performance, with the
proposed CCSS-MFxRRLS algorithm outperforming the rest of the algorithms, the reason
being the time-varying step size µ(n) as explained below.

The experiments for the proposed FSS-MFxRRLS algorithm help in deciding the
step-size parameters µ1 and µ2 in the proposed CCSS-MFxRRLS algorithm. Note that
FSS-MFxRRLS gives the fastest convergence speed for µ = 1.0 and good steady-state
performance for µ = 0.05; the CCSS µ(n) in the proposed CCSS-MFxRRLS algorithm is
computed using µ1 = 1.0 and µ2 = 0.05. For this choice of step-size parameters and
the simulations results presented in Figure 7, the corresponding evolution of various
parameters in computing the CCSS is shown in Figure 8. Here, Figure 8a–c plot variations
of the adaptive parameters b(n) (operations (14) and (15) in Table 1), the mixing parameter
γ(n) (operation (16) in Table 1), and the time-varying step size µ(n) (operation (12) in
Table 1), respectively. As described earlier and as shown in Figure 8, the adaptive parameter
b(n) is close to +2.49 at the start-up which ensures γ(n) is close to unity, and as the ANC
system converges, the adaptive parameter b(n) is automatically tuned to −2.49 which
makes γ(n)→ 0. This ensures fast convergence speed by selecting µ(n) close to µ1 at the
start-up, and good steady-state performance by adjusting µ(n)→ µ2.

The simulation results for the standard SαS process with α = 1.4 (less impulsive as
compared with the previous experiment for α = 1.1) are presented in Figure 9. The noise
source is strongly impulsive yet, as indicated by the signal shown in Figure 5b which is a
typical signal drawn from such process. As in the previous experiment, detailed simulations
have been performed to tune the step-size parameters. A similar performance comparison
is observed as in the previous experiments: (1) Sun’s algorithm becomes unstable even
for a very small step size, (2) FSS-based (Th-FxLMS, modified FxLMK, INSS-FxLMS, and
FSS-MFxRRLS) algorithms show slow convergence for a small valued step size, and their
performance severely degrades for a large-valued step size, (3) the step size in the FSS-
MFxRRLS algorithm can be tuned to give a better performance then the existing algorithms;
however, the issue of trade-off situation for performance in transient-state and steady-state
remains as it is, (4) both the previous CCSS-NMFxLMS and the proposed CCSS-MFxRRLS
algorithms address the trade-off - thanks to being equipped with the CCSS approach,
and (5) the proposed CCSS-MFxRRLS algorithm outperforms the rest of the algorithms
considered in this simulation study.
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Figure 8. Evolution various parameters in the proposed CCSS-MFxRRLS for severely impulsive
noise source with α = 1.1: (a) the adaptive parameter b(n); (b) the mixing parameter γ(n); (c) the
time-varying CCSS µ(n).
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Figure 9. Detailed simulation results for strongly impulsive noise source with α = 1.4: (a) Sun’s
algorithm [24]; (b) Th-FxLMS algorithm [25]; (c) modified FxLMK algorithm; (d) INSS-FxLMS
algorithm [26]; (e) effect of step-size parameter in the proposed FxRLS-based impulsive ANC algo-
rithms; (f) performance comparison between various algorithms: (1) Sun’s algorithm (µ = 1× 10−8);
(2) Th-FxLMS algorithm (µ = 1× 10−6); (3) modified FxLMK algorithm (µ = 1× 10−4); (4) INSS-
FxLMS algorithm (µ = 5× 10−4); (5) previous CCSS-NMFxLMS algorithm (µ1 = 1.0, µ2 = 1× 10−2);
(6) FSS-MFxRRLS algorithm (µ = 0.1); (7) proposed CCSS-MFxRRLS (µ1 = 1.0, µ2 = 0.05).

Figure 10 presents the simulation results for various impulsive ANC algorithms for the
standard SαS process with α = 1.6 (mildly impulsive case). It is noticed that all FSS-based
algorithms perform far better than the benchmark Sun’s algorithm—in fact, Sun’s algorithm
is convergent only for a very small step size and hence exhibits extremely slow convergence
speed. Furthermore, the proposed CCSS-MFxRRLS algorithm does not require any tuning
for the parameter values, yet gives the best performance.
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Figure 10. Detailed simulation results for a mildly impulsive noise source with α = 1.6. (a) Sun’s
algorithm [24]; (b) Th-FxLMS algorithm [25]; (c) modified FxLMK algorithm; (d) INSS-FxLMS
algorithm [26]; (e) effect of step-size parameter in the proposed FxRLS-based impulsive ANC algo-
rithms; (f) performance comparison between various algorithms: (1) Sun’s algorithm (µ = 1× 10−7);
(2) Th-FxLMS algorithm (µ = 1× 10−5); (3) modified FxLMK algorithm (µ = 1× 10−4); (4) INSS-
FxLMS algorithm (µ = 1× 10−3); (5) previous CCSS-NMFxLMS algorithm (µ1 = 1.0, µ2 = 1× 10−2);
(6) FSS-MFxRRLS algorithm (µ = 0.1); (7) proposed CCSS-MFxRRLS (µ1 = 1.0, µ2 = 0.05).
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4.4. Scenario 2: Sources with Mixed Stable Distribution

Consider a mixed stable distribution F(x) as

F(x) = τFα1(x) + (1− τ)Fα2(x), (49)

where Fα1(x) and Fα2(x) denote stable distributions with characteristic exponents α1 and
α2, respectively, and τ is the mixing parameter selected between 0 ≤ τ ≤ 1.

Three situations have been considered. In the first experiment, the values for char-
acteristic exponents have been selected as α1 = 2.0 and α2 = 1.1. For α ≡ α1 = 2.0, the
corresponding standard SαS distribution is Gaussian, and for α ≡ α1 = 1.1 the corre-
sponding distribution is severely impulsive. The mixing parameters has been selected as
τ = 0.5, which indicated that 50% of (randomly selected) samples have been generated
from the standard SαS distribution with α ≡ α1 = 2.0 (Gaussian), and the rest of 50%
(randomly selected) samples have been drawn from the standard SαS distribution with
α ≡ α1 = 1.1 (severely impulsive). Figure 11a shows one realizations of a typical reference
signal obtained from such a mixed distribution (49). It is noticed that the generated signal is
indeed severely impulsive with variance being estimated to be 5.4953× 103. In the second
experiment, the parameters in (49) have been selected as τ = 0.75, α1 = 2.0, and α2 = 1.1.
This choice of parameter values shows that the 75% of (randomly selected) samples have
been generated from standard SαS distribution with α ≡ α1 = 2.0 (Gaussian), and merely
25% (randomly selected) samples are from standard SαS distribution with α ≡ α1 = 1.1
(severely impulsive). Since majority (75%) of samples have been (randomly) drawn from
the Gaussian distribution, this situation would correspond to less impulsive nature as
compared with the previous case for τ = 0.5. A typical signal drawn from such a mixed
distribution is shown in Figure 11b with the corresponding variance being estimated to be
0.5527× 103. In the third experiment, the parameters in (49) have been selected τ = 0.75,
α1 = 2.0, and α2 = 1.6. In this case, the samples from non-Gaussian stable distribution
are from a less impulsive source compared with the previous examples. A typical signal
drawn from such a mixed distribution is shown in Figure 11c, which has a variance of
0.0042× 103 and looks more or less a Gaussian signal as impulses are less frequent as
compared with the signals shown in Figure 11a,b. The simulation parameters have been
adjusted experimentally as in the previous experiments.

The simulation results for noise sources having a mixed characteristics stable distribu-
tion (49) with τ = 0.5, α1 = 2.0, and α2 = 1.1 are presented in Figure 12. It is interesting to
compare these results with those presented in Figure 7 which considered 100% samples
being drawn from the standard SαS distribution with α = 1.1. In the current experiment,
though 50% of the samples have been (randomly) drawn from the Gaussian distribution,
the performance of the existing algorithms is still very poor compared with that of the
proposed algorithm. The sole reason is the severely impulsive nature of the source signals.
The proposed CCSS-MFxRRLS algorithm can handle the strongly impulsive source well
and demonstrates the best performance among the algorithms considered in this paper.

The simulation results for noise sources having a mixed characteristics standard SαS
distribution (49) with τ = 0.75, α1 = 2.0, and α2 = 1.1 are presented in Figure 13. Though
most of the samples (75%) come from Gaussian distribution, it is observed that Sun’s
algorithm still fails to show any convergence. Furthermore, the rest of the FSS-based
algorithms require tuning the step parameters as well as exhibit a trade-off situation for the
fast convergence and good steady-state performance. It is noticed that the proposed CCSS-
MFxRRLS algorithm clearly demonstrates the best performance among the algorithms
considered in this paper.
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Figure 11. Typical alpha stable signals generated from mixed distribution (49): (a) 50% samples from
α = 2.0 (Gaussian) and 50% samples from α−stable distribution with α = 1.1 (variance of shown
signal is found to be 5.4953× 103); (b) 75% samples from α = 2.0 (Gaussian) and 25% samples from
α−stable distribution with α = 1.1 (variance of shown signal is found to be 0.5527× 103); (c) 75%
samples from α = 2.0 (Gaussian) and 25% samples from α−stable distribution with α = 1.6 (variance
of shown signal is found to be 0.0042× 103).
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Figure 12. Detailed simulation results for reference signals from mixed distribution (49) with τ = 0.5,
α1 = 2.0, and α2 = 1.1: (a) Sun’s algorithm [24]; (b) Th-FxLMS algorithm [25]; (c) modified FxLMK
algorithm; (d) INSS-FxLMS algorithm [26]; (e) effect of step-size parameter in the proposed FxRLS-
based impulsive ANC algorithms; (f) performance comparison between various algorithms: (1) Sun’s
algorithm (µ = 1× 10−8); (2) Th-FxLMS algorithm (µ = 5× 10−6); (3) modified FxLMK algorithm
(µ = 1× 10−4); (4) INSS-FxLMS algorithm (µ = 1× 10−4); (5) previous CCSS-NMFxLMS algorithm
(µ1 = 1.0, µ2 = 1× 10−2); (6) FSS-MFxRRLS algorithm (µ = 0.1); (7) proposed CCSS-MFxRRLS
(µ1 = 1.0, µ2 = 0.05).
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Figure 13. Detailed simulation results for reference signals from mixed distribution (49) with τ = 0.75,
α1 = 2.0, and α2 = 1.1: (a) Sun’s algorithm [24]; (b) Th-FxLMS algorithm [25]; (c) modified FxLMK
algorithm; (d) INSS-FxLMS algorithm [26]; (e) effect of step-size parameter in the proposed FxRLS-
based impulsive ANC algorithms; (f) performance comparison between various algorithms: (1) Sun’s
algorithm (µ = 1× 10−8); (2) Th-FxLMS algorithm (µ = 1× 10−5); (3) modified FxLMK algorithm
(µ = 1× 10−4); (4) INSS-FxLMS algorithm (µ = 5× 10−4); (5) previous CCSS-NMFxLMS algorithm
(µ1 = 1.0, µ2 = 1× 10−2); (6) FSS-MFxRRLS algorithm (µ = 0.1); (7) proposed CCSS-MFxRRLS
(µ1 = 1.0, µ2 = 0.05).

The simulation results for noise sources from a mixed distribution (49) with τ = 0.75,
α1 = 2.0, and α2 = 1.6 are presented in Figure 14. As described earlier, the reference signal
is mostly (75%) Gaussian, with (25%) impulsive samples coming from a less impulsive dis-
tribution as compared with the previous experiments. Therefore, all algorithms considered
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hereby show improved performance as compared with the previous experiments. Never-
theless, the FSS-based algorithms have a trade-off situation for the selection of appropriate
step-size parameters. The proposed CCSS-MFxRRLS algorithm does not suffer from such a
trade-off issue and achieves the best performance.
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Figure 14. Detailed simulation results for reference signals from mixed distribution (49) with τ = 0.75,
α1 = 2.0, and α2 = 1.6; (a) Sun’s algorithm [24]; (b) Th-FxLMS algorithm [25]; (c) modified FxLMK
algorithm; (d) INSS-FxLMS algorithm [26]; (e) effect of step-size parameter in the proposed FxRLS-
based impulsive ANC algorithms; (f) performance comparison between various algorithms: (1) Sun’s
algorithm (µ = 1× 10−6); (2) Th-FxLMS algorithm (µ = 1× 10−5); (3) modified FxLMK algorithm
(µ = 1× 10−4); (4) INSS-FxLMS algorithm (µ = 1× 10−3); (5) previous CCSS-NMFxLMS algorithm
(µ1 = 1.0, µ2 = 1× 10−2); (6) FSS-MFxRRLS algorithm (µ = 0.1); (7) proposed CCSS-MFxRRLS
(µ1 = 1.0, µ2 = 0.05).
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4.5. Scenario 3: Impulsive Sources with Time-Varying Characteristics

This scenario considers noise sources having time-varying characteristics from the
view point of the impulsiveness. At the start, the noise source is assumed to be modeled
as a standard SαS process of strongly impulsive nature having α = 1.4, exhibits severely
impulsive characteristics with α = 1.1 during the middle, and finally returns to strongly
impulsive behavior with α = 1.4 for the latter part of the simulation. A typical signal
drawn from such a standard SαS process is shown in Figure 15, where the vertical axis
is restricted to clearly show that the impulses are indeed more frequent in the middle
part. The corresponding simulation results averaged over 100 realizations are presented
in Figure 16. It is observed from the presented results that the existing algorithms work
fine provided that the step size is adjusted to a small value, which surely results in an
overall slow convergence speed. A large step size may improve the initial convergence
speed; however, may result in a poor performance when impulsiveness increases during
the middle portion of the simulation. The previous CCSS-NMFxLMS, the proposed FSS-
MFxRRLS and proposed CCSS-MFxRRLS algorithms do not require any further tuning in
the parameter values and keep the good performance for the whole duration of simulation.
Furthermore, the proposed proposed CCSS-MFxRRLS algorithm demonstrates the best
performance as compared with the rest of the algorithms.
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Figure 15. A typical alpha stable signal generated from changing characteristics.

4.6. A Few Remarks on Computational Complexity Comparison

Last but not least, it is worth giving a few remarks on the computational complexity
of various algorithms considered in this paper. With reference to [40], the computation
requirements for the existing algorithms can be summarized as follows:

• Sun’s algorithm [24] requires 2L + M + 1 multiplications per iteration, 2L + M− 2
additions/subtractions per iteration, and 1 comparison operation.

• The Th-FxLMS algorithm [25] requires 2L + M + 1 multiplications per iteration, 2L +
M− 2 additions/subtractions per iteration, and 2 comparison operation.

• The INSS-FxLMS algorithm [26] requires 3L + M + 4 multiplications per iteration,
2L + M + 1 additions/subtractions per iteration, and 1 division operation.

• The previous CCSS-NMFxLMS algorithm [39,40] requires 6L + 2M + 7 multiplica-
tions per iteration, 4L + 2M + 4 additions/subtractions per iteration, 1 comparison
operation, and 2 division operations.
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Figure 16. Detailed simulation results for reference signals from non-stationary SαS process with
varying α: (a) Sun’s algorithm [24]; (b) Th-FxLMS algorithm [25]; (c) modified FxLMK algorithm;
(d) INSS-FxLMS algorithm [26]; (e) effect of step-size parameter in the proposed FxRLS-based
impulsive ANC algorithms; (f) performance comparison between various algorithms: (1) Sun’s
algorithm (µ = 1× 10−8); (2) Th-FxLMS algorithm (µ = 1× 10−6); (3) modified FxLMK algorithm
(µ = 5× 10−5); (4) INSS-FxLMS algorithm (µ = 1× 10−4); (5) previous CCSS-NMFxLMS algorithm
(µ1 = 1.0, µ2 = 1× 10−2); (6) FSS-MFxRRLS algorithm (µ = 0.1); (7) proposed CCSS-MFxRRLS
(µ1 = 1.0, µ2 = 0.05).

Here, L denotes length of the FIR ANC filter W(z), and M is the length of the sec-
ondary path modeling filter Ŝ(z). Considering the execution summary of the proposed
algorithms presented in Table 1, it is straightforward to determine that the proposed
FSS-MFxRRLS algorithm (operations 1–11 in Table 1) would require 4L2 + 5L + 2M + 5
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multiplications per iteration, 3L2 + 3L + 2M− 1 additions/subtractions per iteration, and
4 division operations. In addition to these computations, the time-varying step size in the
proposed CCSS-MFxRRLS algorithm (operations 12, 14-16 in Table 1) would require L + 5
multiplications per iteration, L + 4 additions/subtractions per iteration, and 1 division,
1 comparison, and 1 exp{·} operation per iteration of execution. It is obvious that the pro-
posed algorithms, being based on an RLS-based adaptation, have an increased computation
complexity. However, the performance of the proposed algorithm is far superior compared
with the other LMS-algorithms considered in this paper for impulsive ANC systems, as
demonstrated by the extensive simulation results presented earlier. Therefore, the increased
computational cost may be considered as the price paid for an improved performance.

5. Conclusions

This paper has presented robust RLS-based adaptive algorithms for impulsive ANC
systems. Two variants of the proposed algorithm have been described. The first version
is based on an FSS and signifies the importance of robustness of the objective function
and further (ad hoc) modifications suggested in comparison with the classical FxRLS
algorithm. In the second variant, the CCSS strategy has been incorporated to address the
trade-off situation offered by the FSS-based one. Since theoretical analysis for non-Gaussian
stable processes is extremely difficult, if not impossible, extensive simulations have been
carried out. It is observed that the proposed CCSS-MFxRRLS algorithm achieves very fast
convergence even for severely impulsive sources. Furthermore, it demonstrates robust
performance for the non-stationary noise sources with time-varying characteristics from
the viewpoint of impulsiveness.

The proposed algorithms have been derived in the framework of classical RLS adaptive
filtering which has a higher computational complexity in comparison with the LMS-based
counterparts. The increased computational cost may be considered as the price paid for
robust performance. It is important to mention that ‘RLS-like’ adaptive algorithms can be
found in the literature which have reduced computational complexity [54–56]. In future, it
will be interesting to consider such RLS-like algorithms to develop robust algorithms for
impulsive ANC. In addition, it is very important to carry out theoretical analysis of the
developed algorithm. This poses a great challenge for the filtered-x structure as well as
impulsive nature of noise source and is left as a task for future work.
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