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Abstract: With the widespread use of end devices, online multi-label learning has become popular as
the data generated by users using the Internet of Things devices have become huge and rapidly up-
dated. However, in many scenarios, the user data are often generated in a geographically distributed
manner that is often inefficient and difficult to centralize for training machine learning models. At the
same time, current mainstream distributed learning algorithms always require a centralized server
to aggregate data from distributed nodes, which inevitably causes risks to the privacy of users. To
overcome this issue, we propose a distributed approach for multi-label classification, which trains
the models in distributed computing nodes without sharing the source data from each node. In our
proposed method, each node trains its model with its local online data while it also learns from the
neighbour nodes without transferring the training data. As a result, our proposed method achieved
the online distributed approach for multi-label classification without losing performance when taking
existing centralized algorithms as a reference. Experiments show that our algorithm outperforms
the centralized online multi-label classification algorithm in F1 score, being 0.0776 higher in macro
F1 score and 0.1471 higher for micro F1 score on average. However, for the Hamming loss, both
algorithms beat each other on some datasets, and our proposed algorithm loses 0.005 compared to
the centralized approach on average, which can be neglected. Furthermore, the size of the network
and the degree of connectivity are not factors that affect the performance of this distributed online
multi-label learning algorithm.

Keywords: distributed learning; online learning; multi-label classification

1. Introduction

Label classification is a general task in machine learning, and multi-label classification
builds on this by allowing each instance to be able to belong to a collection of multiple
categories. Many mature multi-label classification algorithms have been developed, with
numerous experiments demonstrating their performance. However, these approaches
cannot be applied straightforwardly in real-world application scenarios due to various
issues. For example, in the era of big data, where the Internet of Things (IoT) devices are
widespread, privacy protection and big data communication cost need to be addressed
by specialized technologies. Then, online multi-label classification (OMLC) learning algo-
rithms are proposed to tackle these challenges by directly processing and discarding the
incoming data. Because of the efficiency and fast processing of data by these algorithms,
such algorithms are widely used in real-world applications, such as Twitter, Facebook,
Instagram postings and RDF Site Summary (RSS) feeds [1].

Although OMLC algorithms can handle most real-life scenarios very well, in recent
years, data generation has changed with the era of big data. In real-world applications, a
large amount and variety of data are generated by a wide range of computing devices, such
as home appliances, surveillance cameras, monitoring sensors, actuators, displays, vehicles
and so on [2]. However, traditional online multi-label learning algorithms [3–5] can only
process online data and train models independently at each computing node, which is
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incompatible with the data generation approach, and the additional communication costs
are inevitable. In addition, unnecessary transfer steps inevitably increase the chance of
being attacked. For example, multiple channels, such as WiFi, could easily attack user
data, thus affecting its performance [6]. Moreover, avoiding user data leakage is also
very important. Many technologies such as Privacy Enhancing Technologies or private
synthetic data generators have been proposed and applied to protect users’ data [7]. This
type of security risk can be completely avoided if it is possible to avoid redundant raw
data transfers.

Current mainstream online learning is devoted to solving performance problems caused
by, for example, concept drift, missing features, missing labels and data imbalance [8].
Extending online learning to distributed contexts has not received sufficient attention.
Moreover, research on multi-label classification problems in the distributed domain lacks
consideration of online data use, and there is no practical distributed online multi-label
learning method.

We propose a novel distributed approach for the OMLC problem (DOML), which
updates the local model by allowing each node in the network to self-coordinate by trans-
mitting only parameters. With this approach, each node can achieve the performance of
a centralized multi-label classification algorithm by having data interact with its neigh-
bours only and inferring the global model without exposing local data. In our proposed
algorithm, the interaction of the metric models and the self-renewal process of each node
are parallel, so the efficiency gains from the distributed algorithm are guaranteed. We
compared our proposed algorithm with traditional batched learning algorithms and online
learning algorithms using a classical dataset. We confirmed that our proposed algorithm has
a performance that does not lose out to traditional centralised algorithms in a distributed
scenario where the source data are not transferred.

The remainder of the article is organized as follows. The next section discusses the
current state of the multi-label classification problem and introduces the distributed least
squares iterative method. This is followed by an explanation of the method for transforming
real-world IoT networks into an abstract graph representation. The subsequent section
shows the mathematical derivation of the distributed constrained optimization problem
and gives an iterative update method. The next section shows the computational flow of
the DOML algorithm. The next section presents the comparative experiments and discusses
the results, while the conclusions section summarizes this work and then points out future
research directions.

2. Related Work

In this section, we first introduce the background, category and representative algo-
rithms of multi-label classification. After that, the second subsection will focus on online
learning, which is more suitable for realistic scenarios and relevant to our proposed ap-
proach. Finally, in the third subsection, we introduce the distributed least squares iterative
approach, which is the basis for our proposed DOML algorithm.

2.1. Multi-Label Classification

The multi-label classification problem aims to associate an unseen object with a prede-
fined set of labels depending on its features. This kind of problem has various real-world
applications, including but not limited to text categorization [9–13], bioinformatics [14,15],
medical diagnosis [16], image/scene and video categorization [17], genomics, map la-
belling [18], marketing, multimedia, emotion, music categorization, etc. In 2007, Tsoumakas
and Katakis grouped the existing multi-label classification methods into two main cat-
egories: (a) problem transformation (PT) methods and (b) algorithm adaptation (AA)
methods [19].
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As the name indicates, PT methods are generally concerned with converting a multi-
label classification problem into many single-label classification problems. One of the
most frequently used methods is the Binary Relevance method [20], which was proposed
by Boutell et al. in 2004. This algorithm breaks down the multi-label learning problem
into a set of independent binary classification problems, where each binary classification
problem corresponds to a possible label in the label space, and then combines the results
of these binary classification problems. Because it can handle data with many labels in a
linear proportion to the number of labels, it is appropriate for various practical purposes.
However, the Binary Relevance method, confirmed in [21,22], essentially disregarded the
interdependence of labels.

On the other hand, algorithmic adaptation methods directly deal with multi-label
data by extending specific learning algorithms. The popular AA methods rely on
k-Nearest Neighbour (kNN) [23–28], decision tree (DT) [29,30], support vector machines
(SVM) [31,32], neural networks (NN) [33,34] and others. For example, multi-Label
k-Nearest Neighbour (ML-KNN) [26] is a multi-label lazy learning method derived from
the traditional K-nearest neighbours (KNN) algorithm. The algorithm determines the
K-nearest neighbours of each unseen occurrence in the training set. Following that, the
label set for unseen examples is chosen using the maximum a posteriori (MAP) principle
utilizing statistical information extracted from the label sets of these surrounding instances.

Beyond these two basic methods, there is another ensemble approach that combines
several classifiers to achieve better performance. Benefiting from these approaches, the perfor-
mance of traditional multi-label classification problems has become very reliable. However,
solving the multi-label classification problem in real-world scenarios is a new challenge.

2.2. Online Learning

In many real-world scenarios, the cost of storing large amounts of data is often a
significant expense. However, these costs could be saved by directly processing online data
in real time. In contrast to the traditional batched learning methods, online learning needs
to continuously update the training model according to the newly collected data. In the
OMLC problem, there are some common approaches based on PT, AA, and Ensembles of
Multi-Label Classification (EMLCs) [21,35,36].

Some popular PT methods for online multi-label learning in stationary streaming
data include OSML-ELM [37], dw-ELM [38], RLS-Multi [39], and AMLCM [40]. Similar to
batched learning, the advantage of PT methods in online multi-label learning tasks is the
ability to apply off-the-shelf single-label classifiers to multi-label scenarios directly. The
AA approaches, such as HTPS [41] and iSOUP-Tree [42], are another idea to solve this
problem which aims to make itself compatible with the multi-label stream data classification
problem. On the other hand, the EMLCs approach works by combining multiple weaker
classifiers into one stronger classifier which is more straightforward to scale and parallelise
than a single approach.

In 2020, Gong et al. [43] pointed out that existing OMLC studies have lacked analysis of
loss functions and have not considered label dependencies. Nevertheless, metric learning
can be used to optimize this problem. Their proposed online metric learning (OML)
method uses the projection of instances and labels to a lower dimension for comparison
and then uses an efficient optimization algorithm to learn a metric using the large marginal
principle. Although this method significantly improves performance, it relies on the
pre-trained model.

All OMLC methods mentioned in this subsection are listed in Table 1.
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Table 1. Online Multi-Label Classification methods.

Methods Type of Methods Description

OSML-ELM [37] PT OSM-ELM for online learning
dw-ELM [38] PT dw-ELM for OMLC

RLS-Multi [39] PT For imbalanced online data
AMLCM [40] PT AMRule problem for OMLC

HTPS [41] AA Multi-label data stream
iSOUP-Tree [42] AA Regression for classification

OML [43] EMLCs Enhance label dependencies

2.3. Distributed Least-Squares Iterative Methods

In traditional distributed algorithms such as federated learning, a centralized server is
necessary to collect and aggregate models from each independent node. Because of this,
a single node in such a setting can often only access its own database. However, this is
often inefficient in real-world scenarios considering various factors such as bandwidth,
time and privacy. A distributed algorithm that does not require a centralized server can
solve this problem significantly. In the field of multi-label classification problems, many
algorithms involve solving linear least-squares systems to be used to determine differences
between samples. Therefore, the study of distributed least-squares iterative methods is a
major point of our research.

The distributed least-squares iterative methods can be divided into four methods: Dis-
tributed Multi-Splitting method, Distributed Modified Conjugate Gradient Least-Squares
method, Distributed Least Mean Squares method, and Distributed Recursive Least-Squares
method. Each of these algorithms has advantages and disadvantages in different aspects
due to the differences in the calculation methods [44]. The original least-squares problem
is defined as Ax = b, and the matrix A and vector b are split and distributed to multiple
nodes. The following descriptions all refer to this definition.

Distributed Multi-Splitting Method works by parallelising the stationary iterative
method based on a well-known single splitting. Parallelisation uses a space decomposition
method that splits the matrix A into blocks to split the original problem into more minor
local problems [45,46]. As the algorithm splits matrix A and assigns computational tasks to
different nodes, each iteration needs to pass through all the nodes in the network.

Distributed Modified Conjugate Gradient Least-Squares method is based on a dis-
tributed variant of the Modified Conjugate Gradient Least-Squares method. A common
approach to solving the least-squares problem is to minimize it by solving the normal
equation. The resulting method, the Conjugate Gradient Least-Squares method, is often
used as the basic iterative method for solving least-squares problems. Yang and Brent [47]
improved the Conjugate Gradient Least-Squares method and described an improved conju-
gate gradient least-squares method to reduce inner product global synchronization points
and improve parallel performance. The method can also be applied to distributed scenarios
and is called the Distributed Modified Conjugate Gradient Least-Squares method.

Distributed Least Mean Squares Method allows each node to make an estimation
based on local data and calculate the optimal global solution by exchanging the estimation
results only with its neighbours. The advantage of this method is that only the exchange of
local data is necessary. However, as a cost, it has a relatively slow convergence rate.

Distributed Recursive Least-Squares Method was developed by Sayed and Lopes [48].
This method achieves an exact recursive solution by appealing to collaborative techniques.
It requires circular paths in the network to be computed node-by-node. This method has
the advantage of a fixed number of iterations, but its drawback is the need to exchange
large dense matrices between nodes.

3. Problem Definition

This section describes the scenario in which our proposed DOML algorithm is used
and abstracts the real-world IoT environment into a mathematical representation.
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In a real-world network environment, all computer devices can communicate with
other devices on the same network. Geographically nearer devices can often transfer
information directly, while more remote devices must pass through multiple devices to
share data. Furthermore, in general, information transfer between devices is bidirectional.
Thus, it could be supposed that there is a network composed of m computing nodes in
which two nodes that can communicate directly with each other are called neighbours. The
value of variable m should be a positive integer. An undirected graph G can describe the
connection of the entire network, where the vertices represent the computing nodes and
the edges indicate the neighbours. The proposed network structure is shown in Figure 1.
In a real network, multiple terminal devices can continuously obtain and exchange data
with neighbouring devices in real-time. Each terminal device is considered a separate node
in our supposed network and obtains local data Xi and Yi. Neighbour nodes can exchange
data with each other, thus forming our supposed undirected graph network.

Each node will continuously obtain streaming data of instances with their correspond-
ing labels, and refer to each instance-label pair as an example. Let xt ∈ Rd denote an
instance collected at time t and its corresponding labels by yt ∈ {1, 0}q, where d and q
denote the number of features and labels of the data, respectively. The instances and their
corresponding labels accumulated over a while on a node i are denoted as Xi ∈ Rni×d

and Yi ∈ {0, 1}ni×q, respectively. The index number of i is counting up from 1. Note that
each row of the Xi is the transpose of an instance xt, and the same row of its correspond-
ing Yi is also the transpose of the corresponding labels yt for the single instance xt. ni
denotes the number of examples accumulated on the node i. The overall instance matrix
X = col {X1, X2, . . . , Xm}, representing the block matrix in the shape of [X′1, X′2, . . . , X′m]′,
similarly its corresponding label matrix, is Y = col {Y1, Y2, . . . , Ym}. X and Y composed the
overall dataset across the entire network where the instance and the label belong to the
same example and should appear at the same position of the matrix.

Node 
1

Node 
3

Node 
2

Node 
4

Node 
n

X1, 
Y1

X1, 
Y1

X1, 
Y1

X1, 
Y1

X1, 
Y1

Real World 
IoT Network

Abstracted 
Garph
Presentation

Figure 1. The real-world network scenario with its corresponding abstract graph presentation.

4. Distributed OMLC Algorithm

This section first introduces an overview of an approach to construct distributed
constrained optimization problems by using a graph-theoretic approach for the DOML
algorithm. Subsequently, the second subsection describes the mathematical derivation of
the DOML algorithm and gives the specific method for iterative updates.
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4.1. Abstracted Problem Formulation

The task of multi-label classification is to find a function h : X → Y mapping from
the instance space to the label space in the most efficient way, where X ∈ Rd stands for
the d-dimensional instance space and Y ∈ {1, 0}q stands for the label space with q labels.
Considering that the data are stored in a centralized way, then the initial problem can
be reduced to a global least-squares problem. The global problem for the whole network
is described as projecting each instance to the label space as close as possible through a
projection matrix P ∈ Rd×q,

P = arg minP∈Rd×q
1
2

∥∥P′X′ −Y′
∥∥2

F (1)

In a distributed scenario, the whole network is split by m nodes and each node only
has access to its local data. As a result, all instances and labels are reorganized into m local
instance sets, X1, X2, . . . , Xm and m local label sets, Y1, Y2, . . . , Ym. Under this scenario, the
global problem is reshaped as

P = arg minP∈Rd×q

m

∑
i=1

1
2
‖XiP−Yi‖2

F (2)

We provide each node with its own projection matrix Pi. When all nodes have the
same Pi, this problem is equivalent to Equation (2):

P∗ = arg minPi∈Rd×q

m

∑
i=1

1
2
‖XiPi −Yi‖2

F

s.t. P1 = P2 = . . . = Pm

(3)

At this time, an optimal projection matrix P∗, which fits the overall dataset, is obtained.
The problem of interest in this article is to find an iterative update of Pi for each node and
provide an algorithm that fits the distributed scenario.

4.2. Distributed Discrete-Time Update

To make it easier to handle the problem state in the last section, according to graph
theory [49], the network connection is described in a matrix form to better express the
constraints in (3). We define W to be the adjacency matrix for the graph G and the ij-th
entry of W is wij, representing the weighting parameter for the edge between the i-th and
j-th node, which should be a positive real number or zero. The range of index numbers i
and j starts from 1 and ends with the number of nodes in the network. Zero of wij means
no connection between the node i and j. Let D denote the degree matrix with each i-th
entry equal to the sum of the i-th row of W, where di = ∑m

j=1 wij.
Then, the Laplacian matrix L of the graph G is given by L = D−W. Note that L is

symmetric and positive semi-definite. To describe the constraints of Equation (3) in terms
of the Laplacian matrix, L̄ = L⊗ Id is defined, where ⊗ denotes the Kronecker product. To
adapt L̄, it could be defined that P̄ = col {P1, P2, . . . , Pm}, which summarized the projection
matrices for all nodes, and X̄ = diag{X1, X2, . . . , Xm}, which represents a block diagonal
matrix with the ith diagonal block equal to Xi.

Then, the original problem can be transferred to an equivalent global form as

P∗ = arg minPi∈Rd×q
1
2
‖X̄P̄−Y‖2

F

s.t. L̄P̄ = 0
(4)
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We use the Lagrange multiplier method to solve the problem state in Equation (4). The
Lagrangian function is defined as

G(P̄, B) =
1
2
‖X̄P̄−Y‖2

F Iq + B′ L̄P̄ (5)

where B ∈ Rmd×q, which is the Lagrange multiplier.
Setting the partial derivatives of G(P̄, B) with respect to the elements of P̄ and B to

zero, respectively, gives

∂G(P̄, B)
∂P̄

= X̄′(X̄P̄−Y) + L̄′B = 0

∂G(P̄, B)
∂B

= L̄P̄ = 0
(6)

Since L is symmetric, it could be deduced that L = L′. In order to break up the
whole system into parts, Equation (6) is disassembled into blocks as nodes. Introduce an
additional matrix βi for each node to split B as B = col {β1, β2, . . . , βm}; then, the following
equivalent equations could be obtained:

(X′i XiPi − X′iY) + ∑
j∈Ni

wij(βi − β j) = 0

∑
j∈Ni

wij(Pi − Pj) = 0
(7)

where Ni stands for the neighbours of node i.
In order to solve discrete-time updates between multiple nodes in the system, a

common way is to find the change of the state matrix, Ṗi and β̇i. Then, replace them with
Pi(t+1)−Pi(t)

∆t and βi(t+1)−βi(t)
∆t , respectively. t stands for the round of update. Motivated by

the discrete update ideas of Wang et al. [50], we define that

Ṗi(t) = −(X′i XiPi(t)− X′iY)

− ∑
j∈Ni

wij(βi(t)− β j(t))

β̇i(t) = ∑
j∈Ni

wij(Pi(t)− Pj(t))

(8)

with the mix use of Ṗi(t + 1), β̇i(t + 1) and Ṗj(t), β̇ j(t), for j ∈ Ni on the right-hand

side of Equation (8). In addition, we replace Ṗi and β̇i with Pi(t+1)−Pi(t)
∆t and βi(t+1)−βi(t)

∆t ,
respectively, where ∆t = 1

di
. For easy of derivation, ki will be used in subsequent content to

replace 1
di

. We give the result of the discrete-time update as

Pi(t + 1) = Pi(t)− ki[X′i XiPi(t + 1)− X′iYi]

− ki ∑
j∈Ni

wij(βi(t + 1)− β j(t))

βi(t + 1) = βi(t) + ki ∑
j∈Ni

wij(Pi(t + 1)− Pj(t))

(9)

Rewrite Equation (9) in the state form, moving all terms with (t + 1) moment to the
left-hand side and all terms with (t) moment to the right-hand side,[

Pi(t + 1)
βi(t + 1)

]
= E−1

i Fi (10)
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where

Ei =

[
Id + kiX′i Xi Id
−Id Id

]
(11)

Fi =

[
Pi(t) + ki ∑j∈Ni

wijβ j(t) + kiX′iYi
βi(t)− ki ∑j∈Ni

wijPj(t)

]
(12)

Lemma 1. The term Ei in Equations (10) and (11) is always invertible.

Remark 1. In Equation (10), at each node i, the Xi and Yi terms originate only from node i itself.
Therefore, this update method satisfies the distributed requirements. As this method performs the
update in discrete-time, it is therefore capable of being used in an online manner.

We provide a fully distributed OMLC algorithm based on the mathematical model
discussed before that avoids the transfer of private data between individual nodes.

5. Our Proposed Algorithm

Once the network connection between nodes is set up, each node needs an iterative
update, as shown in Figure 2 and Algorithm 1. The steps in Algorithm 1 will be explained in
detail in the next paragraph. Followed by the update, each node would periodically broad-
cast the local Pi and Bi to all neighbour nodes and continuously listen for neighbouring
nodes’ broadcasted Pi and Bi. There are no strict requirements for broadcast frequency.

New Data 
Arrived

Store New 
Data

Prepare for 
Update

Listen for 
Neighours

Broadcast 
Local Model

Execute 
Update

Load 
Neighours’ 

Model

If Any 
Model is 
Received

Yes

No

Figure 2. The workflow of the DOML algorithm.

In Algorithm 1, the algorithm requires pre-defined balanced parameters and weighted
parameters with positive real numbers, one by default. The maximum instance capacity
s depends on the memory of the node device and will define the maximum number of
instances that could be cached on this edge device. In line 2, Xi and Yi denote the instances
accumulated by the current node. Their initial values could be empty and represent that
the node has not yet cached any instances. In line 4, the current node receives the Pj and β j
transmitted from the neighbouring nodes. Lines 5 through 6 indicate that the end device
of the current node fetched a set of pairwise instances (xt, yt) at time t and added them
to the cache. After this, each node will calculate the corresponding Ei and Fi based on
Equations (11) and (12), with i denoting the number of the current node. If the memory
requirements of Xi and Yi exceed the capacity of node i, Xs

i and Ys
i will be employed to

replace Xi and Yi by discarding some of the old data. After that, referring to line 16, the
algorithm updates and finally broadcasts the updated results to all neighbouring nodes
according to Equation (10), ending the current iteration.
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Algorithm 1 Single node update of the distributed OMLC algorithm

1: Input: weighted parameters {wij ∈ R|wij > 0}(i,j)∈G, maximum instance capacity s;
2: Initialize: Xi = Yi = ∅;
3: for t = 1, 2, . . . , do

4: Receive
[

Pj(t)
β j(t)

]
pairs for all neighbours j ∈ Ni

5: Receive pairwise instances: (xt, yt)
6: Append xt to Xi and yt to Yi
7: if ni < s then
8: Calculate Ei(Xi) by Equation (11)
9: Calculate Fi(Xi, Yi, Pj(t), β j(t)) by Equation (12)

10: else
11: Xs

i ← Xi {select s newest instance from Xi to Xs
i }

12: Ys
i ← Yi {select s newest instance from Yi to Ys

i }
13: Calculate Ei(Xs

i ) by Equation (11)
14: Calculate Fi(Xs

i , Ys
i , Pj(t), β j(t)) by Equation (12)

15: end if

16: Update
[

Pi(t + 1)
βi(t + 1)

]
pair by Equation (10)

17: Broad cast
[

Pi(t + 1)
βi(t + 1)

]
to all neighbours j ∈ Ni

18: end for

6. Experiment Setup

Since our DOML algorithm is developed to deal with a new scenario, our experimental
setup will evaluate our proposed DOML algorithm through the performance compared
with traditional approaches and large-scale network impact. All experiments are conducted
on a desktop with Intel Core i5-7500 @ 3.40 GHz and 16 GB RAM, running on Python 3.8
with a Windows 10 platform.

6.1. Evaluation Metrics

This section measures the performance of our proposed DOML algorithm in three
dimensions: accuracy, precision and recall. Therefore, in the experiment, the Hamming loss
and F1 score are measured because they are the most commonly used evaluation criteria for
assessing multi-label classification problems, for different cases to evaluate our proposed
DOML algorithm.

6.1.1. Hamming Loss

Hamming loss is a commonly used measure of accuracy in multi-label classification
problems. It is also the most intuitive measure of a classifier’s performance. A low
Hamming loss means that the trained classifier has higher accuracy.

6.1.2. F1 Scores

In multi-label classification problems, the F1 score is a special kind of F-score, which
is often used to evaluate the combined level of precision and recall of a classifier. A good
classifier corresponds to a high F1 score, which means that the classifier can identify more
positive examples and the identified positive examples have higher confidence.

6.1.3. Datasets and Baseline Methods

We use seven benchmark datasets: CAL500 [51], Corel5k [52], Emotions [53], Enron,
Medical [54], scene [20] and yeast [55] as Table 2 shown to perform the experiment. These
benchmark datasets are collected from several different domains in the real world. In
addition, the dimensions of the datasets are also varied to test the adaptability of the
algorithm to different situations.
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We compare the performance of our algorithm with the Online metric learning for
Multi-Label classification (OML) [43] method, which has been verified to outperform other
state-of-art online multi-label prediction methods. In addition, take this as a baseline
method of the OMLC algorithm. In our experiment, we use the same parameters as the
author: M is set to 100,000, m is set to 0.00001, and k is set to 10.

Moreover, the ML-KNN [26] is a lazy learning algorithm that has been verified to
outperform some well-established multi-label learning algorithms. Hence, ML-KNN is
taken as the baseline of a batched learning algorithm, where both OML and our algorithm
are based on it but use a different distance measurement method in place of the original
Euclidean distance.

The performance of the algorithms is measured by Hamming loss, Macro-F1 and
Micro-F1, which can show the comprehensive performance of the algorithms in solving a
multi-label classification problem.

Table 2. Statistics of multi-label benchmark datasets.

Datasets Number of Instances Number of Features Number of Labels Domain

CAL500 502 68 174 music
Corel5k 5000 499 374 images

Emotions 593 72 6 music
Enron 1702 1001 53 text

Medical 978 1449 45 text
scene 2407 294 6 image
yeast 2417 103 14 biology

7. Results

Comparative experiments have been conducted on the overall performance of the
proposed algorithm and the adaptability of the method for large-scale networks. In this
subsection, we present a specific analysis of each of these two experiments.

7.1. Performance Comparison with Centralized Methods

This experiment compares the performance of different algorithms when processing
the same number of datasets, of which DOML uses a fully connected network with three
nodes to achieve the best results. In order to evaluate the overall performance of DOML
with the current well-performance online multi-label algorithms and batched multi-label
algorithms, the entire dataset will be equally distributed among the three nodes in DOML.
In this way, each piece of data in the dataset will be called only once by each algorithm.
In DOML, all parameters wij are set to one, respectively, while s is set to infinity. The
algorithm only runs an iteration when a new instance is received.

7.1.1. Hamming Loss Evaluation

Table 3 and Figure 3 compare the Hamming loss of the KNN algorithm, the OML
algorithm and the DOML algorithm for different datasets.

Table 3. Hamming loss of different algorithms with full benchmark datasets.

KNN OML DOML

CAL500 0.1325 0.1310 0.1359 ± 0.0007
Corel5k 0.0093 0.0094 0.0114 ± 0.0003
Emotions 0.2937 0.2979 0.2851 ± 0.0161
Enron 0.0522 0.0610 0.0479 ± 0.0006
Medical 0.0251 0.0292 0.0242 ± 0.0050
scene 0.0989 0.1820 0.2294 ± 0.0375
yeast 0.1210 0.1254 0.1362 ± 0.0008

The numbers in bold highlight the best performing of the three algorithms.

We can see that the three algorithms have comparable performance in most datasets.
In this experiment, we simulated DOML with three independent nodes, i.e., each node has



Appl. Sci. 2023, 13, 2713 11 of 18

only one-third of the source data. Therefore, each node in the DOML algorithm lacks source
data compared to the KNN and OML algorithms. The experimental results demonstrate
that our proposed DOML algorithm can compensate for the disadvantage of the lack of
source data at a single node through node communication.

Hamming Loss

CAL500

COREL5K

EMOTIONS

ENRON

MEDICAL
SCENE

YEAST
0

0.05

0.1

0.15

0.2

0.25

0.3

KNN
OML
DOML

Figure 3. Hamming loss of different algorithms with full benchmark datasets.

7.1.2. F1 Score Evaluation

Table 4 and Figure 4 compare the differences in F1 scores between traditional KNN,
OML and DOML methods for different datasets.

Macro F1 Score
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Micro F1 Score
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Figure 4. F1 score of different algorithms with full benchmark datasets.
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Table 4. F1 Score of different algorithms with full benchmark datasets.

Macro F1 Score Micro F1 Score

KNN OML DOML KNN OML DOML

CAL500 0.0563 0.0490 0.0614± 0.0035 0.3425 0.3370 0.3364± 0.0157
Corel5k 0.0118 0.0000 0.0174± 0.0066 0.0365 0.0000 0.1524± 0.0246
Emotions 0.3853 0.2566 0.3823± 0.0646 0.4573 0.3722 0.4415± 0.0661
Enron 0.0858 0.0173 0.1054± 0.0082 0.4540 0.2693 0.5483± 0.0161
Medical 0.1659 0.1111 0.1599± 0.1037 0.3217 0.1102 0.3304± 0.2344
scene 0.6916 0.0029 0.2028± 0.0857 0.6986 0.0031 0.3297± 0.0973
yeast 0.4840 0.4144 0.4656± 0.0177 0.8109 0.8034 0.7861± 0.0050

The numbers in bold highlight the best performing of the three algorithms.

KNN algorithms generally have higher F1 scores in all datasets, both Macro F1 scores
and Micro F1 scores. This is because the KNN method is a batch lazy learning algorithm.
Compared to online learning, the training of KNN methods always considers all the data in
the dataset, so KNN methods should have better performance than online algorithms. Com-
pared with the KNN method, the traditional OML method shows a significant disadvantage
in terms of F1 scores. However, our proposed DOML method does not lose performance in
F1 scores in most datasets but also has better training results in COREL5K and ENRON
datasets. Our proposed algorithm improves the recall and precision of the model through
the mechanism of distributed communication compared to the traditional OML.

7.2. Performance Analysis in a Large-Scale Distributed Environment

This experiment will evaluate the performance of DOML with different numbers of
nodes and different network connections. This experiment is set up with 20 and 100 nodes
and evaluates different networks with 25% connectivity, 50% connectivity and full connec-
tivity, respectively.

A connectivity of n% represents that n% of the edges are used compared to a fully
connected network with the same number of nodes. We also evaluated the performance
shown by the OML algorithm when having the same dataset with a single node of DOML
as a reference. Other parameters remain the same as in the previous experiment. At the
same time, we make the traditional OML algorithm use the data with the same amount
as a single node in the DOML algorithm as a reference to eliminate the effect of different
network sizes causing the variation of data volume in a single node.

7.2.1. Hamming Loss Evaluation

Tables 5 and 6 show the Hamming loss of the DOML algorithm with different network
connectivity for a network of 20 nodes and 100 nodes, respectively. This result is also
summarized in Figure 5 for comparison. At the same time, we evaluate the performance of
the traditional OML algorithm with the same number of datasets as a single node in the
DOML algorithm as a reference.

Table 5. Hamming loss of DOML in a 20-node network with different connectivity and OML with
the same amount of instances as each node.

DOML OML

25% 50% 100% -

CAL500 0.1511 ± 0.0098 0.1486 ± 0.0112 0.1489 ± 0.0112 0.1499
Corel5k 0.0130 ± 0.0015 0.0126 ± 0.0015 0.0125 ± 0.0015 0.0110
Emotions 0.3556 ± 0.0545 0.3531 ± 0.0479 0.3886 ± 0.0792 0.3564
Enron 0.0556 ± 0.0034 0.0559 ± 0.0035 0.0539 ± 0.0032 0.0639
Medical 0.0306 ± 0.0014 0.0311 ± 0.0017 0.0314 ± 0.0019 0.0300
scene 0.2663 ± 0.0259 0.2651 ± 0.0272 0.2647 ± 0.0275 0.2919
yeast 0.1687 ± 0.0344 0.1609 ± 0.0265 0.1605 ± 0.0287 0.1332

The numbers in bold highlight the best performing of the three algorithms.
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Table 6. Hamming loss of DOML in a 100-node network with different connectivity and OML with
same amount of instances as each node.

DOML OML

25% 50% 100% -

CAL500 0.1954 ± 0.0450 0.1954 ± 0.0450 0.1954 ± 0.0450 0.1499
Corel5k 0.0145 ± 0.0051 0.0147 ± 0.0051 0.0145 ± 0.0049 0.0124
Emotions 0.4422 ± 0.1048 0.4422 ± 0.1048 0.4422 ± 0.1048 0.4695
Enron 0.1027 ± 0.0380 0.0955 ± 0.0311 0.0881 ± 0.0239 0.0665
Medical 0.1133 ± 0.0833 0.1133 ± 0.0833 0.1133 ± 0.0833 0.0300
scene 0.2656 ± 0.0846 0.2667 ± 0.0857 0.2743 ± 0.0933 0.2919
yeast 0.2094 ± 0.0751 0.2009 ± 0.0673 0.2099 ± 0.0756 0.1310

The numbers in bold highlight the best performing of the three algorithms.

First, we can observe that the DOML algorithm obtains nearly the same Hamming loss
results for various datasets with different network connectivity. Therefore, we can conclude
that the Hamming loss of the DOML algorithm is not affected by the connectivity of the
training network. However, as the size of the network increases, the number of training
nodes increases, and the Hamming loss of the DOML algorithm increases. This means that
the DOML algorithm loses accuracy when more nodes are involved in the training network.
As the network size increases, the number of data assigned to each node is reduced, thus
making each node have more difficulty with obtaining accurate results.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

YEAST

SCENE

MEDICAL

ENRON

EMOTIONS

COREL5K

CAL500

Hamming Loss

25% con 20 nodes DOML
50% con 20 nodes DOML
100% con 20 nodes DOML
OML
25% con 100 nodes DOML
50% con 100 nodes DOML
100% con 100 nodes DOML
OML

Figure 5. Hamming loss of DOML in a 100-node network with different connectivity and OML with
same amount of instances as each node.

7.2.2. F1 Score Evaluation

Tables 7 and 8 present the DOML algorithm’s F1 scores for a 20-node network and 100-node
network, respectively, with varying degrees of network connectivity. Figures 6 and 7 compare
the performance of the macro f1 score and the micro f1 score under different network
conditions, respectively. In the experiment of F1 scores, we can observe a large variance
in the DOML results. It is especially more obvious in larger networks. This is due to
the differentiation caused by a large number of nodes. We use the middle value of the
maximum and minimum values as a reference to consider the F1 score performance of all
nodes in the DOML algorithm.
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Table 7. F1 Score of DOML in a 20-node network with different connectivity and OML with same
amount of instances as each node.

Macro F1 Score Micro F1 Score

DOML OML DOML OML

25% 50% 100% - 25% 50% 100% -

CAL500 0.0773 0.0725 0.0720 0.0569 0.3331 0.3423 0.3358 0.3014
Corel5k 0.0054 0.0058 0.0040 0.0009 0.0829 0.0761 0.0681 0.0430
Emotions 0.2061 0.2207 0.1864 0.0838 0.2638 0.2622 0.2273 0.1692
Enron 0.0577 0.0587 0.0657 0.0124 0.4141 0.4356 0.4570 0.2233
Medical 0.0281 0.0259 0.0254 0.0000 0.0974 0.0903 0.0892 0.0000
scene 0.1133 0.1090 0.1442 0.0478 0.2341 0.2377 0.2509 0.1603
yeast 0.2624 0.2668 0.2820 0.2845 0.6889 0.7086 0.7120 0.7841

The numbers in bold highlight the best performing of the three algorithms.

Table 8. F1 Score of DOML in a 100-node network with different connectivity and OML with the
same amount of instances as each node.

Macro F1 Score Micro F1 Score

DOML OML DOML OML

25% 50% 100% - 25% 50% 100% -

CAL500 0.0672 0.0672 0.0672 0.0369 0.3173 0.3173 0.3173 0.2746
Corel5k 0.0016 0.0020 0.0017 0.0009 0.0798 0.0862 0.0791 0.0382
Emotions 0.1708 0.1708 0.1708 0.1497 0.3167 0.3167 0.3167 0.2914
Enron 0.0232 0.0214 0.0211 0.0362 0.2312 0.2217 0.2055 0.4457
Medical 0.0122 0.0122 0.0122 0.0000 0.0670 0.0670 0.0670 0.0000
scene 0.0577 0.0582 0.0585 0.0478 0.1275 0.1295 0.1299 0.1603
yeast 0.2357 0.2483 0.2154 0.2862 0.5381 0.5718 0.4908 0.7894

The numbers in bold highlight the best performing of the three algorithms.
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Figure 6. Macro F1 Score of DOML in a 100-node network with different connectivity and OML with
same amount of instances as each node.



Appl. Sci. 2023, 13, 2713 15 of 18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

YEAST

SCENE

MEDICAL

ENRON

EMOTIONS

COREL5K

CAL500

Micro F1 Score

25% con 20 nodes DOML
50% con 20 nodes DOML
100% con 20 nodes DOML
OML
25% con 100 nodes DOML
50% con 100 nodes DOML
100% con 100 nodes DOML
OML

Figure 7. Micro F1 Score of DOML in a 100-node network with different connectivity and OML with
same amount of instances as each node.

As shown in Tables 7 and 8, the DOML algorithm has a better F1 score than the OML
algorithm in most cases when the same amount of data is called by a single node. This
is because the DOML algorithm obtains the common features in the whole network by
self-coordination. In addition, as shown in Figures 6 and 7, the same dataset with the same
network size but different connectivity has almost the same distribution of F1 scores. This
indicates that networks with different degrees of connectivity do not significantly affect the
results of the DOML algorithm.

Hence, we can conclude that our proposed DOML algorithm can effectively derive a
model that better fits the global characteristics through autonomous node coordination.

8. Conclusions

Distributed multi-label algorithms without centralized servers have great potential for
application in real-world situations. However, there is still a research gap in implementing
these problems. This article proposes a novel distributed multi-label classification learning
method without a central server based on the distributed least-squares method. This
approach succeeds in building a self-coordinated network structure, thus removing the
centralized servers. This allows the potential for privacy data leakage or backdating to
be eradicated on the transmission side. Experimental results show that our proposed
DOML algorithm is not inferior to existing centralized algorithms in terms of Hamming
loss and F1 score, and outperforms traditional centralized algorithms in some datasets.
Meanwhile, we find that the DOML algorithm is a constant trade-off between the pursuit
of local optimality and convergence with neighbouring nodes’ data, which effectively
suppresses the overfitting situation. At the current stage, we have implemented distributed
online multi-label learning methods under a static network. However, in real situations, the
network is often unstable. Future work will include the improvement and experimentation
of our proposed algorithm for dynamic networks.
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