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[SM1] A brief overview of AI: machine learning (ML) and deep learning (DL) in EEG analysis 

 

[SM1.1] A rough sketch of ML methods used for EEG data analysis 

 

We live today in a world of big data. Finding patterns in such data to classify the data or predict future 

outcomes is increasingly the task of artificial intelligence (AI), in particular machine learning (ML). In 

contrast to classical methods of analysis such as statistics, where knowledge methods are defined in a 

relatively fixed way [57], ML computer algorithms are created that can learn from their mistakes and 

improve through experience. Such learning may be ‘supervised’, ‘unsupervised’ or ‘semi-supervised’. 

In supervised learning, the algorithm is ‘trained’ on a set of previously labelled input data to create a 

‘model’ or template for learning that will then be able to estimate outputs for unseen, unlabelled data 

in the future. In unsupervised learning, the algorithm is used to uncover patterns (e.g., trends, 

subgroups or outliers) in unlabelled or unclassified input data. ‘With unsupervised learning, there is 

no right or wrong answer’ [58]. Semi-supervised learning combines the two, but with more unlabelled 

than labelled data. Whichever approach is taken, informative input features are identified in a process 

termed ‘feature selection’ (either manually, even ‘hand-crafted’, based on expert‐level knowledge or 

trial-and-error [59,60], or by the algorithm itself, without requiring domain expertise), and then 

analysed using a mapping function that generates output predictions from these features [61]. 

 

ML algorithms used for classification (‘classifiers’) include (1) ‘base’ classifiers, (2) ‘meta-methods’ 

using meta-features from the data that enable a data-driven rather than hand-crafted approach [62], 

and (3) ensemble methods that take as input several ‘base’ classifiers and their parameters [63]. Some 

methods, such as the popular AdaBoost, can be considered as ensemble meta-methods, so combining 

the attributes of two families of a classifier. From the papers located in PubMed on ML and EEG, the 

most frequently used supervised ML algorithm (base classifier) appears to be the Support Vector 

Machine (SVM) [64] (289 hits), followed by the ensemble Random Forest (RF) method [65] (98 hits), 

with base classifiers Linear discriminant analysis (LDA) [66] (78 hits) and Logistic regression (LR, not 

to be confused with Linear Regression) [67] (56 hits) being the next most popular. Several review papers 

confirm that these are the most commonly used approaches in ML (e.g., [68]). SVM in its simplest form 

is a binary linear classifier but has many variants [69]. RF is a popular and powerful method, ‘ensemble’ 

because it is based on multiple decision trees, using Bootstrap Aggregation (or ‘bagging’) [70], where 

data is repeatedly resampled, and a final consensus decision taken. LDA is useful where groups are 

predetermined [71]. LR is often considered inferior to SVM and may require regularisation for optimum 

results [72]. 

 

Unsupervised ML algorithms include clustering (98 hits) (e.g., microstate analysis [73]) and principal 

component analysis (PCA) (46 hits)] [74]. A useful overview of algorithms is provided by Jason 

Brownlee [75]. 

 

Hybrid models may combine several different ML methods, both supervised and unsupervised [76]. 

 

A common issue in ML, and more particularly in DL, is ‘overfitting’ when a model shows more 

accuracy on the training data but less on the test data or unseen data [77]. This may occur, for example, 
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when the model is too complicated and as a result learns more about the particular details (e.g., noise, 

random error) of the training data than the genuine relationships that may exist within the data. The 

model then becomes incapable of generalising to other input. If more data is not available for training, 

it may be necessary to reduce the complexity of the model, remove unnecessary features, use ‘cross-

validation’ (splitting the training data into multiple smaller ‘folds’) or ‘regularisation’ (shrinking some 

model parameters, even to zero, using a separate tuning parameter to ‘penalise’ the flexibility of the 

model) [78]. 

 

A typical ML (or DL) pipeline consists of four main phases or steps, as depicted in Figure S1. After data 

are ‘ingested’, they may be transformed in some way, for instance, normalised or standardised, as in 

any other computation pipeline, to best expose their unknown underlying structure to the learning 

algorithms to be used [79]. The data (or the extracted features) will also need to be validated, to check 

that the pipeline is appropriate for their analysis. To improve results, ‘Features’ (i.e., particular 

characteristics) may also be extracted from the data – in a process called ‘feature extraction’, ‘feature 

engineering’ or ‘featurisation’ – rather than simply inputting the raw data. 

 

 
Figure S1. The main phases of a typical ML/DL pipeline: Data ‘ingestion’ and preparation, Model 

building and training, and Model deployment and prediction, with scoring assessment and feedback 

loops (Tony Steffert, adapted from Lazzeri 2019 [80]). 

 

Also important will be ‘Feature selection’ (selecting the best subset of features to use), or other methods 

of ‘dimensionality reduction’, required in to speed up training and avoid the so-called ‘curse of 

dimensionality’ – the result of trying to analyse small amounts of data with many variables. The volume 

of the ‘feature space’ then ends up being very large, and the data in that space are sparsely scattered, 

thus representing only a small and very likely non-representative sample [81,82]. 

 

Once the data is prepared, the next step is to choose a model and then train it. The model can be selected 

based on prior knowledge or using an automated method. The model’s ‘hyperparameters’ will also 

need tuning – default hyperparameters are highly unlikely to work well initially, as are the model 

parameters, estimated or learned from the data and often saved as part of the model’s specific internal 

settings [83]. Algorithm hyperparameters and some well-known automated methods of selecting 

models and tuning their hyperparameters are mentioned in Sections SM1.3 and SM1.6, below.) 

 

If the dataset is sufficiently large, a training set can be randomly selected from it, and the remaining 

data – with the same probability distribution as the training set – ‘held out’ unseen for testing the model 

once it is developed (usually an iterative process). This is to evaluate the performance of the model on 

data that was not used to train the model. Using the train-test split approach may also help with 

computational efficiency. There is no generally fixed train-to-test proportion [84], but a 2/3 to 1/3 split 
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can be a good place to start [85]. A further dataset, also unseen and sometimes called the validation 

dataset, can be used to check that ‘data leakage’ has not occurred (in other words, that information from 

outside the training dataset has somehow been used to create the model) [84], and to tune the model 

hyperparameters. Confusingly, sometimes the term ‘validation set’ is used to refer to what is described 

here as the ‘test set’ [86]. Figure S2 shows the overall training, validation, and test set pipeline. 

 

 
Figure S2. Training, validation, and test set pipeline. The percentages shown are those used in this 

study. (Tony Steffert, adapted from Ng 2020 [87]). 

 

For smaller datasets, the resampling method of k-fold cross-validation is generally used to estimate 

how well the model performs, instead of a train-test split. This involves randomly dividing the set of 

observations into k groups, or ‘folds,’ of approximately equal size, the first fold being treated as a 

validation set, and the method being fitted on the remaining (k – 1) folds. Values of k are often selected 

as 5 or 10, as these have been shown empirically to yield test error rate estimates that suffer neither 

from excessively high bias nor from very high variance [84]. 

 

Once the model has been trained, it must be evaluated. One relatively straightforward way of doing 

this is to use a ‘confusion matrix’ (see below, p. 5). 

 

Some advantages and disadvantages of the main ML algorithms used in EEG research are listed in 

Table S1. 

 

Table S1. Some advantages and disadvantages of the main ML algorithms used in EEG research. (See 

Abbreviations list in paper for interpretation.) 

Algorithm  Some advantages Some disadvantages 

SVM  Linear and stable [88]. Widely 

considered the most powerful training 

method. Generalises well, useful for 

small data [89], but also robust for multi-

column data [90,91]. Low computational 

complexity [35]. Robust against 

overtraining [92] and outliers [90]; 

binary [64] but may be adapted for 

multiclass classification [93]. Less prone 

to overfitting than some other methods 

[94]. Although primarily for 

classification, SVM may also be adapted 

for regression analysis [95]. 

Poor learning for nonlinear data (but can 

use with nonlinear kernel function), 

performs poorly for abnormal or noisy 

data [91]; multiclass classification have 

usually to be reduced to multiple binary 

classifications. Slow for large data (high 

algorithmic complexity and extensive 

memory requirements [94]); does not 

perform well if classes overlap; selecting 

appropriate kernel function and 

hyperparameters is important and may 

not be easy [90]; a ‘black box’ whose 
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inner workings may be hard to follow 

[58]. 

DT Simple to understand, visualise and 

interpret; able to handle both numerical 

and categorical data; performs well even 

if assumptions are somewhat violated 

by the true model from which data were 

generated [70]; computationally cheap, 

able to train data that contains errors or 

missing values [96; construction does 

not require specialist domain 

knowledge; can handle high 

dimensional data [94]. 

Risk of overfitting; may be unstable; 

may not return the globally optimal 

decision tree [need to use within an 

ensemble learner]; tree biased if some 

classes dominate need to balance 

dataset] [70]; requires a large volume of 

data for accurate results [96]; output 

attribute must be categorical and limited 

to one output attribute [94]. 

RF  Can handle highly correlated features, 

outliers, and missing data; performs 

well on imbalanced data; no problem 

with overfitting [90] compared with DT 

(Decision Tree); easier to understand 

than SVM; useful for small training 

samples [97] or large datasets [65]; can 

handle both discrete and continuous 

data [35]; can be used for classification 

or regression; provides estimates of 

which variables are important for 

classification [65]. 

‘Black box,’ so hard to understand 

process [90]. 

LDA  Linear and stable [88]; supports both 

binary and multi-class classification 

[98]; may be used with small samples 

[99]. 

Requires linear, normally distributed 

data; not robust to outliers or noise [100]; 

the size of the smallest group must be 

larger than the number of predictor 

variables [71].  

LR  Simple, effective, input features do not 

need rescaling, hyperparameters do not 

require tuning [90]; computationally 

efficient, ease of regularisation; robust to 

noise and multicollinearity [91]. 

Not powerful; does not perform well if 

features highly correlated or irrelevant 

[90]; unstable if classes well separated; 

for binary classification only [101], but 

multinomial forms also exist [102]; 

prone to overfitting, requires all 

independent variables to be identified 

[91]; cannot be used with small samples 

[103]. 

Clustering  k-means clustering is the most popular 

clustering method [104], easy to 

implement, suited to large datasets 

[105]; ease in implementation, 

interpretation; computationally efficient 

[91]. 

Hierarchical clustering is inflexible and 

computationally costly; k-means is 

‘greedy,’ depending on initial and local 

conditions [105], so may not find the best 

solution; prediction of k is hard (no 

unique solution for a certain k); sensitive 

to outliers [91]. 

k-NN  k-Nearest Neighbours is simple, 

nonlinear, and stable; computational 

complexity decreases with increasing k; 

lends itself very easily to parallel 

implementations [94]; flexible [91]. 

Sensitive to the local structure of the 

data, so degraded by noisy or irrelevant 

features; does not cope with data of 

large dimension (‘highly susceptible to 

the curse of dimensionality’ [94]); 
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increasing k decreases performance; 

large storage requirements [94]. 

NB  Naïve Bayes nonlinear, stable; simple, 

low computation cost; can cope with 

large dimension or multiple classes; 

training and classification can be 

accomplished with a single pass over 

the data; robust to noise; requires only a 

small amount of data [96]; handles both 

discrete and continuous data [91]. 

Performs poorly when features are 

highly correlated; sensitive to data 

preparation method [96]; takes more 

runtime memory than SVM or simple 

LR, and is computationally intensive, 

especially if many variables [91]. 

PCA  Removes (correlated) features, to speed 

up the algorithm and reduce overfitting 

[106]. 

Data requires standardisation/scaling; 

components less interpretable than 

original features [106]. 

AdaBoost & 

variants 

low generalization error; easy to code; 

computationally efficient, applicable to 

complex tasks; flexible, easily modified 

and easily combined with other learning 

algorithms [96]. 

Sensitive to outliers, may be noisy when 

training; - needs a large sample and can 

lead to “unwieldy” compositions [96]; 

may perform less well than tree-based 

algorithms for some data [107]. 

  

[SM1.2] Input and output in ML methods used for EEG data analysis 

 

All types of EEG data features can be provided as input to [supervised] ML algorithms: whether time-

domain, frequency-domain, complexity/nonlinear or entropic. Connectivity (spatiotemporal or 

network) measures can also be used. A useful, though the non-exhaustive, list is provided in [108]. 

Other features to be considered could include cordance [109], microstates [110], blink or other eye 

movement descriptors [111], spectral edge or centroid frequencies [112,113], the bispectral index [114], 

dimensionality [115] and LORETA results [116]. Feature selection will depend on the research area and 

the specific objectives of the tasks undertaken. 

 

ML SVM or RF algorithm outputs may be categorical, in the form of a limited set of values, when used 

for classification, or a range of numerical values, when used for regression. LDA is used for 

classification, so its output is categorical, whereas this is strictly speaking not the case for PCA [117] or 

LR [118], which simply models the probability of output in terms of input.  

 

Whatever the output, some form of metric is used to describe how well the algorithm has performed. 

The usual metrics for binary classification are receiver operating characteristic (ROC) curves, together 

with the area under the curve (AUC), as well as associated measures such as sensitivity, specificity, 

accuracy, and the Matthews correlation coefficient (MCC) [119,120]. Another option is to create a 

‘confusion matrix,’ whose size depends on the number of classes to be obtained from the test set. The 

confusion matrix provides a useful summary of prediction results while at the same time casting light 

on any errors being made by the classifier, as well as the types of errors that are being made [82]. In his 

useful post on the topic, Brownlee includes a link to a confusion matrix online calculator made available 

by Marco Vanetti [121]. The calculator is simple to use and can accommodate multiclass classification, 

although there is no accompanying documentation. Cohen’s kappa is often used as a metric for 

confusion matrices, comparing Observed Accuracy with Expected Accuracy (random chance). Unlike 

other metrics, such as Accuracy, the kappa value takes into account the possibility of chance agreement, 

and is therefore considered a more robust measure of a model's performance. Kappa can be used to 

evaluate a single classifier or to evaluate classifiers amongst themselves [122]. Vanetti’s calculator 

provides kappa and overall accuracy as outputs. However, the F1-score (or F-measure) may also be more 

appropriate for imbalanced data than Accuracy [123], and for binary data the Matthews correlation 

coefficient may be more informative and useful than either F1 or Accuracy [119]. 



6 
 

 

[SM1.3] Algorithm hyperparameters in ML 

 

Algorithm hyperparameters are settings used to control an algorithm’s behaviour [124] and are 

important to ‘tune’ for optimum performance. In one meta-learning study of six SVM hyperparameters, 

the most important were found to be ‘gamma’ (γ), the kernel density estimator, and ‘complexity’ (C), a 

constant that controls the trade-off between model simplicity and model fit. Of six hyperparameters for 

RF, the minimum samples per leaf and a maximal number of features for determining the split were 

the most important [125]. A useful list of hyperparameters, ensemble and other methods for most of 

the algorithms considered here is provided in papers on Auto-WEKA, one of the first automated ML 

systems, a software package for combined selection and hyperparameter optimisation of classification 

algorithms [63,126]. Another automated ML package that includes another such list, and that may out-

perform Auto-WEKA, is Auto-sklearn [127]. Auto-Keras is a corresponding package for Keras (see 

below), but for DL rather than ML (sometimes known as ‘shallow’) models. Auto-Keras has been 

claimed to outperform several traditional hyperparameter-tuning methods and state-of-the-art neural 

architecture search methods [128]. 

 

[SM1.4] A rough sketch of DL methods used for EEG data analysis 

 

DL methods are necessarily unsupervised, so that hand-crafted feature extraction or feature selection 

are not needed [129]. The architecture of DL models is such that they not only contain input and output 

‘layers’ (their basic building blocks), but also many others that are ‘hidden,’ with each layer taking 

information from previous layers and in turn passing information on to the next layer, so ultimately 

from input to output. When the training dataset is sufficiently large, DL enables automated feature 

selection, so that results can be highly accurate even without incorporating domain expertise [61]. 

 

The starting point to DL algorithms, and the simplest of them, is the MultiLayer Perceptron (MLP) 

[130], composed of layers of ‘perceptrons’, or linear binary classifiers, themselves modelled on 

biological neurons, with each neuron in one layer connected to every neuron in the next layer (so ‘fully 

connected’). An MLP is thus an example of a feed-forward ‘Artificial Neural Network’ (ANN) [131], 

with more than one hidden layer [130]. A slightly less constrained (more general) form of the neural 

network, with not all layers necessarily fully connected, is known as a ‘Deep Neural Network ‘(DNN) 

(already defined earlier). A useful – if technical – outline of DL algorithms, methods and applications 

is the DL textbook by Goodfellow et al. [124]. 

 

From the review papers located in PubMed on DL and EEG, the most frequently used DL algorithms 

appears to be Convolutional Neural Networks (CNN) [35,132] (257 hits), a natural extension to MLP in 

which ‘convolution’ (closely related to cross-correlation) is used instead of matrix multiplication in at 

least one layer [131], Long-Short Term Memory (LSTM) (76 hits), based on Recurrent Neural Networks 

(RNNs) [68,133] (50 hits) and DNN themselves (46 hits). RNNs are themselves an extension of Feed-

Forward Neural Networks (FFNN) [130] (4 hits). Some reviewers considered that RNN performs 

significantly better on time series data while CNN is good for tasks like image classification [134] and 

is the most used method in several fields [132,135]. CNNs are not limited to 1-or 2-dimensional data, 

i.e., time-series or image data (there are even 2.5D and 7D versions of CNN [136,137]). After CNN, 

LSTM is the next most-used method in several reviews of DL for medical applications, followed by 

RNN and auto-encoders (AE) [135]. 

 

Deep Belief Networks (DBN), or Neural Networks (NNs) with multiple hidden layers, are another 

method [139] (9 hits), as are auto-encoders AE) (91 hits), often stacked (SAE) [132] (27 hits). An auto-

encoder is an unsupervised learning algorithm that applies ‘backpropagation,’ with target values equal 

to the inputs (i.e., with both input and output layers having the same scale) [139]. Other algorithms 
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used include variants of Gradient Descent (GD) [91] or (cascaded) Restricted Boltzmann machine 

(RBM) [140], for example, but no EEG review papers located via PubMed included such methods. 

 

Hybrid models may combine several different DL methods or a mix of ML and DL methods. Combining 

predictions from several models can be an elegant way to increase performance, increasing diversity 

among base classifiers. Ensemble models like bagging, boosting, and stacking are as possible in DL as 

in ML [141]. Multi-model Fusion Neural Networks (MFNN) are another possibility [139]. 

 

A frequent issue in EEG research is a low samples-to-features ratio, which can lead to overfitting, so 

severely reducing the effectiveness of DL and its generalisability. One way of overcoming this is to use 

‘data augmentation’ (DA). There are many DA methods, but they can be divided into four main families 

– random transformation (e.g., warping and stretching), pattern mixing (e.g., interpolation, including 

SMOTE or Synthetic Minority Oversampling TEchnique), generative models (e.g., Generative 

Adversarial Networks (GAN) [142]) and decomposition (e.g., Independent Component Analysis, ICA) 

[143]. These are not all necessarily appropriate for all types of DL. For instance, the hybrid LSTM-CNN, 

also known as an LSTM-FCN (Long-Short Term Memory Fully Convolutional Network) was found in 

one review to react poorly to DA, particularly when the number of patterns per class is small. MLP 

(Multilayer Perceptron) also did not respond well but to a lesser extent. Window warping and slicing 

were the most generally useful DA methods [143]. 

 

DA is increasingly used in EEG research, with Sliding window (SW) being the most common method, 

although with no consensus as yet on the best overlapping percentage to use between consecutive 

windows. Noise addition and GAN were also frequently used, and all three methods provided useful 

improvements in accuracy. Resampling approaches were less useful [144]. 

 

In the papers reviewed by Lashgari et al., the Sliding window method was used with both CNN and 

LSTM, GAN with CNN, SVM and others, and Noise addition with CNN, LSTM, and their combination, 

as well as with SAE. 

 

Keras is an application programming interface (API) linked to TensorFlow, one of the major 

frameworks used in DL. Both Keras and Tensorflow itself are very commonly used [135]. TensorFlow 

was given the top rating for framework performance in one review [139]. 

 

DL methods require some form of ‘accelerator’ to reduce power consumption and increase processing 

speed because they are computationally demanding. This can take the form of a dedicated central 

processing unit (CPU) or Graphics Processing Unit (GPU) capable of parallel processing. The latter is 

more economical to run [139]. 

 

Some advantages and disadvantages of the main DL algorithms used in EEG research are listed in 

Table S2. 

 

Table S2. Some advantages and disadvantages of the main DL algorithms used in EEG research. (See 

Abbreviations list in paper for interpretation.) 

Algorithm  Some advantages Some disadvantages 

CNN  Hand-crafted feature selection not 

required; robust against noise; does not 

need a feature extraction step, as can 

self-learn from input data [129]; pre-

processing may not be needed [130]; 

invariant to transformations [145]  

Requires a lot of data to learn; 

computationally expensive [129], as 

many test runs may be needed to tune 

parameters [146]; performance highly 

dependent on hyperparameters [35]; 

often called ’black boxes’, as it is not easy 

to understand what goes on inside the 



8 
 

model [147]; in general, notoriously 

difficult to interpret [148]; 

unsupervised, so may not achieve 

accurate segmentation; may not handle 

heterogeneous data well [135]  

LSTM  Can process temporal or sequential 

information [74]; bidirectional LSTM 

(allowing both forward and reverse 

dependencies) may outperform 

standard LSTM, with fewer parameters 

required and thus fewer computing 

resources [149]; for some data, stacked 

LSTM may outperform LSTM or 

bidirectional LSTM [135]. 

As with other DL methods, training can 

be time-consuming [149]; sensitive to 

recording frequency [150]; may fail in 

the absence of obvious structure in input 

data [151]; huge memory requirements 

for network parameters [1152]; input 

data length has to be truncated or 

padded to a constant, finite number 

[153]; dropout difficult to implement; 

sensitive to different random weight 

initialisations [135]. 

RNN  Well-suited for time-series or sequential 

data; performs well on data with long-

term dependency [154]; bidirectional DL 

is possible; accurate [135]; identical 

parameters may be used across all steps 

[1155]. 

Complex and computationally intensive 

[135]; not easy to track long-term 

dependencies (gradient decay over 

multiple layers) [155]. 

DNN  Can be pre-trained as a DBN; efficient in 

representing high dimensional and 

correlated features [156]; able to cope 

with nonlinear relationships [157]. 

Computationally expensive to train, and 

to determine the training method and 

the hyperparameters [130]; may be 

difficult to interpret [158]. 

ANN  High tolerance to noisy data [94]. computational burden, prone to 

overfitting (requires long training time 

with large datasets), ‘Black box’ [94]. 

AE  It may be robust, with high accuracy and 

good scalability [135]. 

Liable to overfitting in its simplest form 

[159]; may become ineffective if errors 

are present in first layers [145]; training 

time may be high 155]. 

  

[SM1.5] Input and output in DL methods used for EEG data analysis 

 

Power spectral density (PSD), wavelet decomposition, and statistical measures of the signal (e.g., mean 

and standard deviation) are the three most common input formulations used in the studies reviewed 

by Craik et al. Nineteen of those used a wavelet transform, only 2 wavelet decomposition, and 6 used 

PSD [132]. In a review on Data Augmentation (DA) [144], raw time-domain signals were used in 36% 

of studies, and features calculated from the raw signals (the most common approach) in 49%). 

Spectrograms processed as images were used in 15%. 

 

For some methods (such as CNN) EEG data can be used ‘raw’ (unprocessed), with artefacts left in [130]. 

Otherwise, artefacts can be removed manually or algorithmically. Useful tables in the review paper by 

Craik et al. [132] indicate that, where the method was described, manual artifact removal (MR) was 

most common for SAE (3 of 7 studies), DBN (5 of 10) and Hybrid (4 of 10), with algorithmic removal 

(AR) often used for RNN (4 of 9). For CNN, 11 of 37 studies used MR, 9 used no removal and 1 used 

AR Many studies did not report the method used. 
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Craik et al. [132], in their useful review of DL for EEG data, indicate that numbers of convolutional 

layers in CNN models are generally between 1 and 7, although as many as 16 have been used, while 

between 1 and 6 fully connected layers and between 2 and 7 output layers are found. 

 

 

[SM1.6] Algorithm hyperparameters in DL 

 

In DL, hyperparameters such as learning rate, number of hidden layers in a neural network and 

regularisation strength are the variables that determine the architecture and behaviour of a model. 

Hyperparameter optimisation or choosing the best values for these variables in order to improve model 

performance (accuracy and speed), can be done using a variety of methods (e.g., grid search, random 

search or Bayesian optimisation). 

 

However, the parameter tuning process can be time-consuming and may require significant 

computational resources. Effects on data preparation, model building and training will also depend on 

the specific algorithms and techniques used. It is therefore important to consider carefully which 

hyperparameters to optimise and how to go about optimizing them in order to obtain the best possible 

results. 

 

There are now several algorithms available for hyperparameter optimisation, including several based 

on stochastic GD, such as Adam (Adaptive momentum estimation), a combination of GD with 

Momentum and Root Mean Square Propagation (RMSprop) [160]. Adam has been suggested as the 

default optimisation algorithm for DL training [79] and works well with the little tuning of 

hyperparameters except for learning rate [160], performing well during both testing and training 

phases of DL [161]. However, in some situations, Adam may be outperformed by Nadam (Nesterov-

Accelerated Adaptive Moment Estimation) in terms of stability, convergence rate, training speed and 

performance [162]. Some advantages of Adam are listed in [163]. For CNN, performance is highly 

dependent on hyperparameters such as the number of convolution layers, the size and number of 

kernels, the size and type of pooling windows used, and stride size. However, there is no specific 

strategy to choose their values, so performing a large number of iterations is the only way to determine 

the best values of the hyperparameters. 

 

For both ML and DL algorithms, ‘fusion’ methods may enhance performance. Fusion may occur at the 

data, feature, or decision level [164]. 

 

[SM2] The CNN-LSTM hybrid mode 

 

[SM2.1] A brief description of CNN 

 

The CNN model, developed originally for use with 2-D images, performs well on 1-D data such as the 

EEG. CNN usually includes three types of layers: 

 

(1) Convolutional layers, with learnable filters (kernels) that slide across pre-processed signals to 

extract local features from the input [165]. ‘Stride,’ or the step size of the filter sliding over the input 

[166], controls how the filter shifts around the input signal. A feature map results after repeated 

overlapping applications of the filter in the convolution step [167]. 

 

A 1-dimensional convolution layer (Conv1D) creates a convolution kernel that is convolved with the 

layer input over a single spatial dimension, without ‘flattening’. The input data for Conv1D may be 

padded (as mentioned above for LSTM) [168]. Weights are shared over different layers, which can help 

reduce parameters, speed up convergence to a solution and avoid overfitting [169]. 
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L2 regularisation (or ridge regression) in the convolution layer may also reduce overfitting, 

encouraging weight decay in sequential learning algorithms [170]. 

 

(2) Pooling, or down-sampling layers, to reduce dimension to prevent overfitting and decrease 

computational demand. Average pooling and Max pooling are two common methods used [75]. 

 

A CNN includes alternating convolutional layers followed by pooling layers 165]. 

 

(3) One or more fully connected layers, using an Activation function to introduce nonlinearity into the 

output [154]. 

 

  

The Activation function 

  

DL methods employ an ‘activation function’ that defines how the weighted sum of the input is 

transformed into an output from a node or nodes in a layer of the network. Most real-world data is 

not linearly separable; without introducing nonlinearity in some way, nontrivial classification would 

not be possible. Commonly used activation functions used in hidden layers are Rectified Linear 

Activation (ReLU), Logistic (Sigmoid) and Hyperbolic Tangent (Tanh). Nowadays, CNN and MLP 

mostly use ReLU [171], which makes for faster training than the Sigmoid or Tanh methods [165]; 

RNN (and LSTM) mostly use Sigmoid activation for recurrent connections and the Tanh activation 

for output. Output activation functions (used in the output layer) may be linear (or ‘no activation,’ 

used for regression problems), or Sigmoid or SoftMax (used for binary/ classification and multiclass 

classification, respectively) [172]. Of the 37 CNN studies analysed by Craik et al. [132], 22 used ReLU 

for the convolutional layers, and 27 used SoftMax for the final fully-connected layer. With SoftMax, 

the output can be interpreted as probabilities [173]. 

  

 

  

In Keras, a layer is most often also ‘dense,’ with each neuron (network point, node) in the layer receiving 

input from all neurons in the previous layer [174]. 

 

In Keras (or TensorFlow), models may be built using three different methods: Sequential API 

(application programming interface), Functional API or Model subclassing. The Sequential method is 

the simplest, allowing the creation of models layer-by-layer in a step-by-step fashion, but this is also a 

limitation. It does not allow models to share layers, or to have multiple inputs or outputs [175]. 

 

 
Figure S3. Generic CNN architecture (adapted from Shoeibi et al., 2021 [176] by Tony Steffert).  
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[SM2.2] A brief description of LSTM 

 

The LSTM is a subtype of RNN that overcomes the ‘vanishing gradient’ problem inherent in RNNs (but 

not necessarily the ‘exploding gradient’ of a nonconverging solution). ‘Vanilla’ LSTM is the most 

commonly used version of LSTM, with hidden layers containing LSTM ‘blocks’ that features three gates 

(input, forget, output), a single ‘cell’ (the Constant Error Carousel), an output activation function, and 

peephole connections within the block (Figure S4). The output of the block is recurrently connected 

back to the block input and all of the gates. The ‘forget gate’ and the output activation function are 

LSTM’s most critical components. learning rate and network size are the most crucial tuneable LSTM 

hyperparameters [177]. There are several subtypes of LSTM, including with or without a Forget Gate 

or ‘Peephole connection,’ stacked or bidirectional LSTM networks and multidimensional LSTM 

networks, and even convolutional LSTMs (ConvLSTM) [140]. However, Vanilla LSTM is likely to 

perform almost as well as variants [177]. More information on LSTM can be found, for instance, in Greff 

et al. 2017 [177]. 

 

Figure S4. Generic LSTM block, showing input, output and forget gates, a single ‘cell’ (the Constant 

Error Carousel), an output activation function, and peephole connections within the block  
(adapted from Greff et al., 2017 [177] by Tony Steffert). 

 

More on algorithm architecture 

 

For both CNN and LSTM, regularisation may be used to minimise overfitting, and in Keras, this is often 

done with ‘Dropout,’ a method that can be applied to convolutional, dense fully connected or recurrent 

layers, among others. During the training of the model, some of the layers’ nodes (or input units are 

dropped randomly, so that the model can simulate having many different network architectures. 

Rather like the addition of random noise in DA, this can improve performance, especially where there 

is a limited amount of training data [178]. ‘Recurrent dropout’ may be combined with this ‘conventional 

forward dropout’ to further improve results using LSTM [179]. 
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Once a model is created in Keras, it is configured (compiled) by setting various hyperparameters such 

as a number of epochs and batch size, the ‘loss function’ (or cost function) to be optimised, and the 

method of optimisation to be used (see above, Section 1.6). The loss function distils all aspects of the 

model down into a single number that then allows candidate solutions to be ranked and compared 

[171]. Backpropagation is an efficient method that may be used to compute the gradient of the loss 

function concerning a model’s parameters (weights) [124, p 259] and can be used to train NNs in 

conjunction with (stochastic) gradient descent [79]. 

The number of epochs is a hyperparameter of gradient descent that controls the number of complete 

passes through the training dataset, while batch size controls the number of training samples to work 

through before the model’s internal parameters are updated [167]. The loss function will vary, 

depending on the purpose of the model. Common loss functions include mean square error (for 

regression), binary cross-entropy (for binary classification) and categorical cross-entropy for multi-class 

classification [180]. As a loss function, cross-entropy is likely to perform better than traditional square 

error methods [180]. Cross-entropy is sometimes calculated from the related Kullback-Leibler 

divergence (relative entropy) [180]. 

Figure S5 shows a hybrid CNN-LSTM model, similar to that used in this study. 

 

  

Figure S5. Hybrid CNN-LSTM model, as used in this study, but without the Flatten layer 

(adapted from Kang et al. 2021 [181] by Tony Steffert). 
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