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Abstract: In this paper, we apply an effective method to evaluate relative tectonic activity by applying
several morph-tectonic indices that are useful in evaluating topography and tectonics. These indices
include stream length-gradient, asymmetric factor, hypsometric index, hypsometric curves, valley
floor width to valley height ratio, drainage basin shape, and mountain front sinuosity. The study
region of Wadi Al-Arish in northern Sinai Peninsula in northern Egypt is a natural laboratory to
examine relative tectonic activity levels for calculating morpho-tectonic indices of several catchments
and sub-catchments rather than an individual catchment. Northern Sinai, comprising the Waid
Al-Arish area, is characterized by several large inversion anticline folds. The cumulative results
extracted from morpho-tectonic indices ae presented as a new index, namely relative tectonic activity
level (RTAL), which we classified into four levels: low, moderate, high, and very high relative tectonic
activity. Therefore, the study region provides different levels of relative tectonic activity resulting
from fault patterns affecting the northern Sinai inversion forms. The paper examines the concept that
regions with various levels of tectonic activity are associated with specific values of RTAL.

Keywords: active tectonics; morphometric indices; relative tectonic activity level; northern Sinai;
Egypt

1. Introduction

Natural phenomena initiated inside the earth and/or near the surface can produce var-
ious natural hazards. These include earthquakes, volcanoes, floods, and avalanches [1–4].
Advances in using tectonic geomorphology, remote sensing, and geospatial analytical appli-
cations allow fundamental knowledge acquisition in our appreciation of the role of tectonic
evolution of active landforms in natural hazard assessment. Globally, catastrophes driven by
earthquakes provide significant obstacles to development plans and cause numerous deaths
and extensive damage. Seismic hazards in active regions have been investigated and evaluated
by many researchers [5–9]. The seismicity of the Mediterranean region has resulted in recent
seismic activity and earthquakes. Seismic sequence evolution, fault modeling, and stress
transfer methods were applied to investigate the 20 July, 17 Kos-Gökova Gulf earthquakes
in SE Aegean [10]. The authors of this study examined the effects of the main shocks and
the largest aftershock, and evaluated post-sequence effects by determining the region where
static stress increased. This was critical for seismic risk assessment. An earthquake focal
prediction mechanism model was applied in Italy by the authors in of [11]. They extracted
data from the latest stress map of Italy to initiate an effective model for predicting the next
large earthquakes. In Greece, Sentinel-1 SAR data were processed using InSAR techniques to
study the co-seismic and post-seismic faulting of the 2021 Northern Thessaly earthquakes [12].
In this model, the authors mapped the co-seismic displacement of the Verdikoussa, Elassona,
Tyrnavos events and the post-seismic displacement accompanied by the Tyrnavos event. In
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addition, they calculated the effect of co-seismic Coulomb stress changes resulting from the
seismic sequence on the neighboring faults, providing an effective model to assess regional
seismic risks. The authors of [6] examined relative active seismic development in southern
Spain. They characterized the area into different levels of seismic activity. The Hindu Kush in
NW Pakistan and NE Afghanistan is a highly deformed region resulting from an integration of
vertical and horizontal motion and interaction between deposition and erosion processes. This
region was evaluated using GIS techniques and defined into four classes of tectonic activity [7].
The author of [1] analyzed mountain fronts and river morphology of the Tuz Gölü Fault Zone
in central Anatolia to assess earthquake potential and regional seismic hazard along the entire
fault. A study of the Abu-Dabbab area in the eastern Desert of Egypt was discussed, and
at two potential derivers of seismicity were detected [9]. The evaluation of active spots and
uplifting signals over active faults, folds, uplifting catchments can be recognized by detailed
investigations of tectonic geomorphology applications. Investigating morpho-tectonic indices,
including stream length-gradient (SL), asymmetric factor (Af), hypsometric index (Hi), hypso-
metric curves (Hc), valley floor width to valley height ratio (Vf), drainage basin shape (Bs),
and mountain front sinuosity (Smf), are very powerful tools to assess and partly mitigate most
modern natural seismic-hazards.

The Sinai Sub-plate has a complicated deformation at its boundaries with the African,
Eurasian, and Arabian plates. Many processes, such as inter-plate vertical and horizontal
motion, and intra-plate adjustments between crust and mantle, played a key role in the
Sinai sub-plate’s geodynamic evolution [13]. These processes accelerated the uplifting and
rifting that determined sub-plate active tectonic structures and shaped its morphology in
the form of topographic fractures [14]. The Sinai sub-plate is located between latitudes
27◦45′–29◦55′ and longitudes 32◦40′–34◦50′ and bounded by the Aqaba and Suez Gulfs
from the east and west, respectively. It terminates at the Mediterranean Sea in the north
and the Red Sea in the south (Figure 1). The Wadi Al-Arish catchment is the scope of this
study which is considered the largest drainage catchment in the Sinai Peninsula, covering
parts of Egypt and Palestine.
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This paper aims to (a) apply several quantitative, morpho-tectonic indices to examine
quaternary tectonic evolution, (b) investigate tectonic anomalies due to tectonic changes
and, (c) expand our knowledge about morphological changes and the effect of seismic
hazards. While the relative tectonics of Wadi Al-Arish are not yet well recognized, studies
on tectonic geomorphology aid in understanding recent tectonic signals and anomalies.

2. Study Area

The Wadi Al-Arish catchment is in northern Egypt and covers most of the Sinai
Peninsula. It flows northward to the Mediterranean Sea (Figure 1). The mouth of Wadi
Al-Arish is occupied by Al-Arish City. The Wadi Al-Arish catchment is located between
29◦00′ and 31◦00′ N and 33◦05′ and 34◦45′ E, covers ~23,300 km2, and occupies ~36% of
the total area of the Sinai Peninsula. Mostly, water tributaries come from Sinai (~91%) and
a few drain from the neighboring El-Naqb Desert [15–17]. Wadi Al-Arish drains the central
highlands of the Peninsula and its upstream courses come from El-Egma and El-Teeh
plateaus [16].

The geology of the Sinai Peninsula has been investigated, defined, and mapped
by many researchers [18–21]. The local lithology of Wadi Al-Arish has been remapped
based on previous works and geological maps of Egypt prepared by Conoco and General
Petroleum Corporation of Egypt [18] (Figure 2). The oldest exposed surface lithology in
Wadi Al-Arish belongs to the Jurassic age, represented by Safa and Masajid Formations
and made up of coal-bearing continental clastics with some marine carbonates with a
few fossils, and marine shelf limestone with shale intercalations at the base. The Lower
Cretaceous age is represented by the Risan’ Aneiza Formation, which is composed of basal
sandstone and conglomerate overlain by interbedded clastic and carbonate. The Upper
Cretaceous is represented from the oldest to the youngest by undifferentiated deposits; the
Raha Formation, Matulla Formation, and Suder Formation, respectively. The basal unit
of the Upper Cretaceous is made up of clastic and biogenetic carbonate comprising Raha,
Wata, Matulla, Qusier, and Duwi Formations. The Raha Formation consists of fossiliferous
limestone with shale intercalations and ouster beds. The Matulla Formation consists of
marine sandstone, marl, and shale. The Suder Formation was recognized as the youngest
lithology of the Upper Cretaceous age, and consists of uniform marine chalk with thin
shale intercalations. In Wadi Al-Arish, the Tertiary is represented by three units. They are
arranged from base to top as the Esna Formation, which is composed of greenish-grey open
marine shale, the Thebes Group (Egma Formation) that consists of bedded marine chalky
limestone with a chert band, and the Plio-Pleistocene deposits comprising the Shagara and
Marsa Alam Formations. The Quaternary deposits of the Wadi Al-Arish are represented
by undifferentiated Quaternary deposits, stabilized dunes, wadi deposits, and sand dunes
from the base to top, respectively. Figure 2 illustrates the geology of the entire study area.

Historical and instrumental seismicity of the Sinai Peninsula have been investigated by
many researchers [22–27]. Twenty-five seismic events have been reported between 95 BC
and 1910 AD at various localities with different intensities [28]. The reported intensities
were based on recorded damage, which indicates heterogeneous behavior in space or
time (Figure 3). Instrumentally, earthquakes have been reported in Egypt since 1903, and
seismographs have been used since 1962 by the installing an observation station in the
Helwan area, south of Cairo [24]. In the Sinai Peninsula, signals of earthquakes were
recorded from 1900 to 1997 from a number of seismological stations. The main earthquakes
of Sinai and surrounding areas are illustrated in Figure 3.
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Tectonically, the Sinai sub-plate is a triangular continental block bounded between the
African and Arabian plates and the Anatolian microplate [13,29–31]. The Sinai sub-late is
locked eastward by the sinistral transform Dead Sea fault and its extension in the the Gulf of
Aqaba. Recent remarks and evidence from marine geophysical studies identify the Gulf of
Suez and its northward extension as the western boundary of the Sinai sub-plate [13,26,32].
The motion of this sub-plate is still under debate [13,14]. Regarding the motion of Sinai
relative to the African plate, seismological and GPS studies indicate the dominance of slab-
pull motion rather than ridge push forces [14]. Author of [14] indicates that the southern
part of the Gulf of Suez is dominant by an extensional regime accompanied by sinistral
motion, which is in agreement with the kinematic models of the authors [33–35]. The
splitting of the Sinai sub-plate from the African plate in the Miocene within the Red Sea
opening event frameworks, has continued to the present time [36–38]. The Suez rift was
opened and linked to the Red Sea in the Miocene period [39,40]. Generally, the latest
Miocene provides evidence of reducing tectonic activity along the Suez rift zone [13,37]
concurrent with the Aqaba rift opening [13]. The movement of the Sinai sub-plate relative
to the Dead Sea transform fault is estimated to be about 8–9 mm/year [41]. On the other
hand, about 1 mm/year was recorded for the extensional motion along the Gulf of Suez
rift [37,42]. The general tectonic styles and trends of faulting provide four main structural
frameworks observed in the central and northern Sinai sub-plate, and the Suez and Aqaba
gulfs [13]. The Wadi Al-Arish region has different morphological features according to its
tectonic and topographic setting, in addition to lithological types [17]. The authors of [16]
stated that morphological variations, including differences in elevation and position, are
the main cause of variance in temperatures during a given season. Structurally, the Wadi
Al-Arish region is highly affected by different structural elements (Figure 4). In the central
part, two prominent structural features can be recognized. These are the Minsherah Abu
kandu and the Ragabet El-Naam Shear zones cross Wadi Al-Arish providing NE-SW and
E-W trends, respectively with a variable displacement up to 2.5 km [43,44] (Figure 4). This
shear zone references the southernmost edge of the Early Mesozoic passive continental
margin and the Syrian Arc tectonic front in the north [13,43]. Fractures/Faults over the
study area indicate two main fractures systems with NW-WNW and NE-ENE trends. The
authors of [17,45] state that these fractures and/or faults play an important role in the
incision and trending of the majority of drainage systems. For example, over the southern
part of Wadi Al-Arish there is compatibility between major trending of the faults/fractures
and the main courses of the water systems. In the northern province that comprises
Wadi Al-Arish, the deformation style has complex tectonics and large uplifting blocks of
Mesozoic anticline folds oriented mostly N65◦–85◦E, as a result of the Syrian Arc System
major tectonic [13] (Figure 4) [17]. Based on mircotectonic analysis of the northern province
by [46,47] the Cretaceous/Paleocene shortening structures were initiated from E-W to
WNW-ESE by horizontal compression. The Gulf of Suez rift zone has NW-oriented normal
faults of varying lengths in the Phanerozoic cover [13]. In addition, the basement rocks are
fractured by strike-slip faults with subordinate normal and reverse offsets [13]. Based on a
focal mechanism solution and shear analysis, the tectonic style in the Gulf of Aqaba was
investigated and modeled, characterizing compressional strain accompanied by sinistral
motion faults [34,48,49].
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Figure 4. Shaded relief image (data from SRTM-30 resolution) of Wadi Al-Arish showing frac-
tures, folds, and shear zones; modified after [18]. Blue hollow polygons indicate the classified
catchments/sub-catchments of the study area.

3. Data and Methods

Raster and vector data (DEM and topographical maps) data were processed extract the
different morpho-tectonic data. According to [50], catchments can be classified based on
sizes into major catchments (≥100 km2) and sub-catchments (<100 km2) (Figure 5). Basic
geometric parameters including area, perimeter, and average elevation were extracted
for the watersheds of the study area to provide preliminary dimensions of the different
watersheds (Table S1, see Supplementary data). The watersheds were classified and
recognized into 146 catchment/sub-catchment utilization greater than the fourth order.

Generally, geomorphic indices provide a quantitative method for deeper interaction
between erosion and depositional processes, including river systems, valley morphology,
and crossing profiles, as well as tectonically controlled features such as fault walls and
extensions [6]. Active tectonic indices may result in anomalous signals along mountain
scarps or in drainage systems [6,7,9,51]. These anomalies can be recorded by many local
change signals from uplifting and subsidence movements [6]. This section is designed to
calculate several geomorphic indices in catchments/sub-catchments of the Wadi Al-Arish
major catchment (Figure 1) and classify them into different tectonic classes according to
values of each index. Following the approach of [6,7], the resulting classes of each index
are summed and divided into classes of relative seismic activity.
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3.1. Stream Length-Gradient Index (SL)

Topography development results from an interaction between erosion processes such
as rivers and streams over lithology with different rock strengths and soils [6,52]. The
interaction eventually provides a dynamic equilibrium [6]. The stream length-gradient
index (SL) was first recognized by [52] while studying the role of the strength of rocks and
soils in rivers of the Appalachian Mountain zone in a region of the southeastern part of the
United States [6]. This index is calculated as:

SL = (∆h/∆l)l

where (∆h/∆l) describes the local slopes of the streams being studied and l is the stream
length from the dividing point against midpoint center of the stream reach. The SL index
is a very effective parameter to assess relative tectonic signals. Usually, this index gives
values increasing along channels running over active spots and provides low values when
these run parallel to structural elements initiated by major tectonics such as strike-slip
faults [53].

3.2. Asymmetric Factor Index (Af)

The asymmetry factor (Af) is a parameter used to examine tectonic tilting along a
water system. The index can be calculated over a large region [6,54]. Af is calculated from:

Af = 100(Ar/At)



Appl. Sci. 2023, 13, 2659 8 of 19

where Ar indicates the area of the catchment to the right of the main trunk stream, and
At represents values of the total area of the drainage catchment. If the Af factor value is
close to 50, the catchment has little or no tilting with stable conditions of development. The
authors of [6,55,56] state that an Af factor below or above 50 may result from catchment
tilting, lithological structural control or active tectonics. In this paper, the values of Af are
calculated as Af-50, and provide the difference value between the observed value and the
neutral value of 50.

3.3. Hypsometric Integral Index (Hi)

The hypsometric integral index reflects the distribution of different elevations in
a landscape [57,58]. This index is calculated for a particular catchment area [7]. The
Hi index is described as the area below the hypsometric curves, and thus defines the
catchment volume that has no erosion evidence. The basic formula for calculating this
index [54,55,59] is:

Hi = (Elev Mean − Elev Min)/(Elev Max − Elev Min)

where mean, maximum, and minimum elevation points are extracted from a digital ele-
vation model using geospatial analysis software. The hypsometric integral is not direct
evidence for relative active signals. The hypsometric integral index provides convex curves
in the lower part and concave to convex in addition to convex in the upper part.

3.4. Drainage Basin Shape Index (Bs)

The shape of basins is an indicator of tectonic activity. In active tectonic areas, relatively
young basins have elongated shapes that are normal to topographic mountain slopes [6,60,61].
On the other hand, with less active tectonic signals, the basins have shapes that tend to be
semi-circular to circular. The basin shape index may be expressed by the following equation:

Bs = Bl/Bw

where Bi indicates the basin length extended between its headwaters and mouth [9], while
Bw describes the basin width at the basin widest strip. Regarding tectonic activity evalua-
tion, high values of Bs index indicate elongation basins and indicate high tectonic activity.
Bs lower values have a more circular-shaped basins with low levels of tectonic activity.

3.5. Valley Floor Width to Valley Height Ratio Index (Vf)

The Vf index is the ratio of the valley width to valley average height, [55]. This index
is calculated from the following equation:

Vf = 2Vfw/[(Eld − Ecs) + (Erd − Esc)]

where Vfw describes the width of the valley floor, Eld indicates the elevation of the left
valley wall, Erd indicates the elevation of the right valley wall, and Esc is the average
valley floor elevation. The Vf index discriminates between U-shaped valleys and V-shaped
valleys. U-shaped valleys have high values of Vf, while V-shaped valleys have low Vf
values. It is known that incision rate is associated with uplifting rate [7], and can be applied
to describe active tectonics. Accordingly, low Vf values indicate a high rate of uplifting and
incision, while high values of Vf indicate low uplifting and incision rates [62].

3.6. Mountain Front-Sinuosity Index (Smf)

The mountain front sinuosity index (Smf) is used to clarify the interaction between
erosion processes and tectonic actions. Erosive processes tend to produce more sinuous
mountain fronts through rivers and streams, whereas active tectonics result in straight
fronts, often associated with active geological structures [63,64]. This index is derived by:

Smf = Lmf/Ls
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where Lmf defines the total length of the mountain front along the mountain foot, while Ls
measures the straight line of the mountain front. Values of Smf are calculated from aerial
photography or topographic maps. However, the value extracted depends on the scale [63].
For more accuracy, large scale topographic maps are used to extract the Smf index values.
The value of this index is used to differentiate between tectonically active fronts and fronts
that are produced by erosional processes.

4. Results and Discussion
4.1. Morphotectonic Indices
4.1.1. Stream Length-Gradient Index (SL)

Values of the stream length-gradient index over the entire study area, extracted from a
30-m resolution digital elevation model and geospatial analysis are illustrated in Figure 6.
SL values were computed every 100 m over the main rivers and streams. Generally, in order
to define and classify different values of the index related to rock strength, various types of
rock resistance were recognized, from low rock resistance (silt, marl, sand, alluvial deposits,
and consolidated conglomerate), moderate rock resistance (schist and fillite, calcareous
sandstone, and travertine), to high rock resistance which are low level metamorphisms
(marble) [6,7].
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In this study, we observed that nearly all the lithology of the study area shows the
same level of rock resistance [1,5,7]. Therefore, we assume that the role of rock strength is
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negligible and that anomalies are related tectonic signatures. The SL index showed many
tectonic anomalies, particularly along the channels running over shear zones in the middle
part of the study area. Anomalies were observed due to high values over tectonic elements
and low values over active spots (Figure 6). Values of the SL index had variable distribution
over the whole study area. The highest and most anomalous values were observed along
the Minsherah Abu Kandu shear zone in the middle zone of the proposed area. Various
spots over the southern part of the study area had anomalously low SL index values over
various trending fractures (Figure 6). In the northern part, the lowest values of the SL index,
which were anomalously low for the area, occurred where the streams crossed the Libni
anticline fold. Along the southern portion of the study area, the SL index tended to have
relatively low values. An anomalous value of this index over a river parallel to Regabet
El-Naam shear zone was recorded due high values over a stream running over a shear
zone (Figure 6). Over the middle area, between the Minsherah Abu Kandu and Regabet
El-Naam shear zones, the values of the SL index were mainly low. A few higher SL index
values were related to tectonic signals. Along the Abu Kandu anticline fold, the SL index
had anomalously low values crossing the fold.

4.1.2. Asymmetric Factor Index (Af)

The values of Af-50 varied from −0.7 in sub-catchment 88 to −28.3 in sub-catchment
125. Based on this index, the catchments/sub-catchments were defined into four classes:
class 2 (nine catchments and 27 sub-catchments), class 3 (18 catchments and 29 sub-
catchments), and finally class 4 (20 catchments and 36 sub-catchments). To evaluate
relative active tectonics using this index, we calculated the absolute difference (values of
Af-50) from 1 to 146 catchments/sub-catchments. Structurally controlled features, such
as orientation of bedding, may provide an important impact of the asymmetry of the
different catchments [7]. Accordingly, we observed Af anomalies in the Magarah fold in
the northwestern part of the study area [9]. The results for this index are shown on Table S1
in the Supplementary data.

4.1.3. Hypsometric Integral Index (Hi)

We investigated Hi values and Hi curves. The Hi integral index values were between
0.30 in sub-catchment 57 and 0.51 in sub-catchments 56, 69, 94, 97. Our hypsometric analysis
showed some concave curves associated with values of 0.48 and 0.49 (results of hypsometric
curves are illustrated in Figure 7). Obtaining elevation values from digital elevation models
are necessary for computation of this index. The hypsometric integral values do not relate
directly to relative tectonic activity [6]. The value of this index is generally affected by
rock strength as well as some other parameters. High values of the Hi index generally
suggest a younger landscape that may developed by active tectonic events [7] (Figure 7).
High Hi values may also result from very recent incisions into a young surface resulting
from deposition processes. The authors of [6,7,9] assumed that convex lower part curves
may indicate uplift signals along an active fault, or uplifting signals resulting from recent
folding events. They also stated that Hi values greater than 0.5 result in convex curves.
Values descending from 0.5 to 0.4 indicate convex-concave or semi straight curves, and
values less than 0.4 are described by concave shapes (Figure 7). The hypsometric integral
index values were analyzed based on the utilization of all catchments/sub-catchments
of greater than the fourth drainage network order. Results for the hypsometric index are
presented on Table S1 in the Supplementary data.
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4.1.4. Drainage Basin Shape Index (Bs)

The drainage basin shape index was calculated for 146 catchment/sub-catchments.
The lowest Bs index value was recorded for catchment 15 in the northern part of the study
catchment, while the highest value was calculated for sub-catchment 115 in the southern
part of the study catchment, as 0.6 and 6.5, respectively. Generally, relatively young
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catchments of active regions tend to have elongated shapes normal to general topographic
slopes. The shapes of elongation catchments that provide lower tectonic signatures tend to
be circular [7,63]. High Bs values occur in elongation catchments, associated with relative
higher tectonic signals. A high rate of uplifting along mountain fronts results in steep
and elongated basins [65]. On the other hand, low Bs values are indicative of a more
circular-shaped catchments associated with relative low tectonics and widening of the
catchments produced from the mountain front [63,65]. Results of Bs index are listed on
Table S3 in the Supplementary data.

4.1.5. Valley Floor Width to Valley Height Ratio Index (Vf)

Values of the Vf index vary with many factors, such as catchment size, rock type,
and stream discharge [6]. Thus, Vf values should be estimated and calculated for similar
geological conditions [7]. Values of this index were extracted along the main rivers of each
catchment/sub-catchment over the entire study area, with a distance between ~0.1 and
1 km depending on the size of the catchments/sub-catchments examined. The lowest Vf
value was recorded for sub-catchment 56 as 0.58 in the northern part, and the highest value
was estimated for sub-catchment 86 as 20.33 in the middle part of the study area. Results
for this index are shown in Table S4 in the Supplementary data. Both the lowest and highest
values were incised in similar geological conditions. The authors of [66] calculated Vf
index values in the SE Spain and suggested that valleys with Vf values >1 indicate tectonic
quiescence and major lateral erosion, and values <1 indicate active tectonic uplifting. The
work in [1] was carried out in central Anatolia in Turkey and stated that values >1.5 indicate
high activity, values between 1.5 and 2.5 moderate activity, and values >2.5 low activity.

4.1.6. Mountain Front-Sinuosity Index (Smf)

Values of the mountain front sinuosity index relate to active tectonics along different
fronts. In our work, 83 mountain segments were examined and evaluated (Figure 8).
Values of the Smf index were between 1.02 and 3.25. Results are shown in Table S5 in the
Supplementary data. The lowest Smf index value was observed along the middle-western
part of the study area (front segment 46) coincidental with the southern segment of the
Ragabat El-Naam shear zone and El-Mineidra El-Kebira anticline fold. However, all front
segments had relatively low Smf values along the Ragabat El-Naam shear zone. The highest
value of the Smf index was calculated for segment 15 in the western part of the study area.
The examined fronts of the study area are illustrated in Figure 8 and may be classified into
three main segment trends groups: front segments along the Minsherah Abu Kandu and
Ragabat El-Naam shear zones trends (e.g., segments 8, 9, 19, 22, 23, 44, and 46) showing a
nearly E-W trend; segments showing NW-SE trends (e.g., fronts 6, 21,24, 25, 59, 77, and 80)
and observed mainly in southern and eastern parts of the study area, and fronts showing
NE-SW trends such as segments 14, 15, 48, 66, 69 and 71. In most active tectonic fronts,
values are 1.0, and increase if uplift is ceased and erosional processes prevail. Lower Smf
values (1–1.5) indicate active tectonic fronts [1,9,67,68], while higher values of Smf (>2.5)
indicate active fronts [1,68]. The authors of. Ref. [6] calculated this index in southern Spain
using a digital elevation model, and acquired Smf values between 1.04 and 1.61. Values
below 1.1 indicated active tectonic signals, and values above 1.5 indicated inactive fronts.
The relative tectonic activity of the eastern Betic Cordillera was evaluated by the authors
of [66] by applying this index, and they recorded Smf values from 1.17 to 3.51. Values
lower than 1.4 indicated active tectonics signals, while values greater than 3 indicated low
activity fronts.
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4.2. Relative Tectonic Activity Levels Discussion

The application of morpho-tectonic indices along continental-scale features has been
discussed in many studies [6,57,63,69,70]. Various analyses have been applied to the rela-
tionship between two morphometric indices (Smf and Vf) to present a primary quantitative
model of the levels of tectonic activity of mountain fronts. Combining these two indices in-
dicates tectonic activity classes [1,6,62,63,66]. Accordingly, some researchers have modeled
a relationship between Smf and Vf values showing the distribution of these values along
main rivers and streams, and along front segments [5,63,66]. In our research, we calculated
morpho-tectonic indices for better landscape evaluations regarding tectonic activity levels.
Generally, the indices have been classified by relative tectonic signals detected over the
entire catchment [6,7,63,67,69]. In the present study, we applied the method of [6] that eval-
uates each index of a particular class of activity to model the relative tectonic activity classes
of the Wadi Al-Arish catchment. To check the validity of our method, we probed many
recent works. Relative tectonic classes were investigated along the southwest border of the
Sierra Nevada in southern Spain by the authors of. [6]. The boundaries of the studied levels
changed with a single index; thus, for the purpose of this study, the boundaries selected
were generally matched with changes in the various index value ranges. In this study, we t
focused only on areal features (catchments and sub/catchments) and averaged the results
from the same bodies or features. In addition, many researchers (e.g., [9,70]) state that
studying catchments may indicate uplift and subsidence signals and rates, and the origin of
seismicity. The calculated indices were arbitrarily classified into three classes: high tectonic
activity expressed (class 1), moderate tectonic activity named (class 2), and low tectonic
activity (class 3). In this study, a new major average index (A/L) was defined as the relative
tectonic activity level (RTAL) and estimated for all studied indices with four levels: level
1 defining very high tectonic activity signals (A/L between 1 and 1.5); level 2 with high
tectonic activity signals (2 ≥ A/L > 1.5); level 3 with moderately active tectonics signals
(2.5 ≥ A/L > 2), and level 4 with low tectonic activity signals (A/L > 2.5) (Table 1). The
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average indices of A/L and values of RTAL are shown in Table 1 for 146 catchments/sub-
catchments of Wadi Al-Arish (check Figure 4 for catchments/sub-catchments positions
and locations).

Table 1. Classification of the RTAL (relative tectonic activity levels) in Wadi Al-Arish.

Catch. A/L RTAL Catch. A/L RTAL Sub-C. A/L RTAL

1 1.80 2 50 2.25 3 98 2.50 4
2 2.75 4 51 1.75 RTAL 99 3.00 4
3 2.50 4 Sub-C. A/L 2 100 2.50 4
4 2.25 4 52 2.00 4 101 2.50 4
5 2.75 4 53 2.25 4 102 1.75 2
6 2.50 4 54 2.50 3 103 1.75 2
7 3.00 4 55 2.25 2 104 2.25 3
8 1.75 2 56 2.00 4 105 1.75 2
9 1.75 2 57 2.50 4 106 2.25 3

10 1.75 2 58 2.75 4 107 2.00 2
11 2.75 4 59 2.75 4 108 2.50 4
12 2.50 4 60 2.75 3 109 2.75 4
13 2.50 3 61 2.25 4 110 1.50 1
14 2.50 4 62 2.75 3 111 2.50 4
15 2.50 3 63 2.50 2 112 2.50 3
16 2.25 3 64 2.00 2 113 2.00 2
17 2.25 4 65 2.00 3 114 1.75 2
18 2.50 4 66 2.25 4 115 2.00 2
19 2.25 3 67 2.75 2 116 2.25 3
20 2.75 4 68 2.00 2 117 2.25 4
21 2.50 4 69 2.00 4 118 2.00 2
22 2.50 4 70 2.50 4 119 1.75 2
23 2.75 4 71 2.75 2 120 2.75 4
24 2.50 4 72 1.75 3 121 2.00 2
25 2.50 4 73 2.25 2 122 2.50 4
26 2.25 3 74 1.75 3 123 1.50 1
27 2.25 3 75 2.25 4 124 2.50 4
28 2.50 4 76 2.50 4 125 2.00 2
29 2.75 4 77 2.50 4 126 2.25 3
30 2.25 3 78 2.50 2 127 2.50 4
31 2.50 3 79 2.00 3 128 1.75 2
32 2.00 4 80 2.25 4 129 2.25 3
33 2.50 3 81 2.75 2 130 2.75 4
34 2.00 2 82 2.00 4 131 2.00 2
35 2.25 3 83 2.50 2 132 2.50 4
36 2.00 2 84 1.75 3 133 2.75 4
37 2.50 3 85 2.25 3 134 2.25 3
38 2.50 3 86 2.25 4 135 2.00 2
39 2.50 3 87 2.75 3 136 2.50 4
40 2.50 3 88 2.25 4 137 2.50 3
41 1.75 2 89 2.50 3 138 2.25 3
42 2.00 2 90 2.25 3 139 2.75 4
43 2.00 2 91 2.25 3 140 1.75 2
44 2.75 4 92 2.25 4 141 2.25 3
45 2.25 3 93 2.75 3 142 2.25 3
46 2.50 3 94 2.25 3 143 2.25 3
47 2.25 4 95 2.25 2 144 2.50 4
48 2.25 3 96 1.75 3 145 2.00 2
49 2.25 4 97 2.25 4 146 2.50 4

The Wadi Al-Arish catchment was investigated using morpho-tectonic indices for the
first time, and low tectonic activity signals covered the largest parts of the study catchment.
The tectonic analysis show that the high values (low tectonic signals) for the RTAL were
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observed in the north to northwest parts of Wadi Al-Arish region. Additionally, some of
these signals were recorded in the south and northeast parts asw well. Moderate tectonic
levels were found mainly in the northeast part of the study region with some signals in
the south and middle parts. The RTAL index indicated high tectonic activity varying
from large occurrences to small in the northeast, south, southeast, and north, respectively.
High tectonic activity signals were recorded only in a very small part along the Ragabet
El-Naam Shear zone. The distribution of the different tectonic activity levels is illustrated in
Figure 6. Over the study region, level 4 (lowest tectonic activity level) covers 9701.79 Km2

(47.52%) as estimated by RTAL; 31.91% (6515.26 km2) has moderate relative tectonic level
as estimated by RTAL (class 3); high relative tectonic level (class 2) comprises (20.42 %)
4169.66 km2; while the smallest areas of the study region were recorded for class 1 (very
high relative tectonic level), at 29.45 km2 (0.14%). Therefore, half of the study area is covered
by class 4 (low relative tectonic activity) and another half is divided mostly between class
3 and 2. Within different tectonic regions with greater active tectonic levels, the index
values provided different estimations and classification ranges [6,7]. Accordingly, RTAL
could also provide different values and boundaries between levels of relative tectonic
activity. Our approach is based on regions that define different relative tectonic activity
levels (Figure 9). The morpho-tectonic indices may reflect anomalies in the drainage
systems or catchments/sub-catchments areal calculations [6,7,54]. These anomalies could
be caused by the local tectonic signals resulted from uplifting or subsidence. Different
anomalies were recorded in different regions. In [6,7] anomalies along mountain fronts
and in drainage system in southern Spain and the Hindu Kush in northwestern Pakistan
and NE Afghanistan, are discussed, respectively. The authors of [9] discuss anomalies
along normal, active faults in the central eastern Desert of Egypt. In the present study,
RTAL reflects a number of anomalies associated with structural control of folding and shear
zones (Figure 9). Magarah, Libni, minsherah, Arif El-Naga, and El-Mineidra El-Kebira are
folds associated with the lowest level of tectonic activity signals, and were recorded as
RTAL anomalies.
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5. Conclusions

Studies on tectonic geomorphology, surface uplifting, and drainage catchments play a
key role in present-day studies of active tectonic signals in intra-plates regions. Morpho-
tectonic indices are very useful in evaluating the influence of active tectonics. These
indices are advantageous, being computed from ArcGIS and remote sensing datasets over
intra-plate regions to identify morpho-tectonic anomalies accompanied by active tectonics.
This technique is valuable in the northern Sinai sub-plate where different tectonic types
were observed, and no studies on active tectonics on absolute dates have been recorded.
Based on values resulting from morpho-tectonic indices, including stream length-gradient
(SL), the asymmetric factor (Af), the hypsometric integral (Hi), drainage basin shape (Bs),
valley floor width to valley height ratio (Vf), and mountain front sinuosity (Smf) indices
along Wadi Al-Arish in northern Sinai of Egypt, a combination overall index (RTAL)
was developed and evaluated that was used to divide the studied landscape into four
distinct levels of relative tectonic activity. Values of SL, Hi, and Bs indices were high
along major tectonic elements in the study region. The values of Af ranged from −0.7
into −28.3 indicating a wide range of basin asymmetry due to tilt block tectonics. Low
Vf values indicated that the various valleys are steep, deep, and narrow indicating a
high rate of incision processes resulting from tectonic uplift. The Smf index had values
between 1.02 and 3.25, indicating active tectonics for the majority of the mountain fronts.
These indices are very effective for assessing seismic risk, and are estimated from ArcGIS
software and remote sensing data as useful tools to recognize anomalies related to seismic
activity. Analysis of relative tectonic activity based on the overall index (RTAL) was used
to divide the Wadi al-Arish landscape into four levels of tectonic activity. The study area
was mainly comprised of very low class 4 activity (47.52%), with tectonic activity ranging
from large to small in the northeast, south, southeast, and north, respectively. Moreover,
RTAL reflected many anomalies related to structural control of folding and shear zones, the
lowest level of tectonic activity signals associated with the Magarah, Libni, minsherah, Arif
El-Naga, and El-Mineidra El-Kebira folds. Finally, we applied a very effective method to
test the hypothesis of relative tectonic activity assessment, but further, detailed evaluation
is required for Quaternary geo-chronology and major tectonic element characteristics with
significant major tectonic displacements.
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