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Abstract: Assessing the stiffness of circular foundations is the key to evaluating their deformation;
thus, it is important for foundation design. The current determination methods for the stiffness
coefficient are either time-consuming or inaccurate. In this paper, a novel stiffness prediction model
has been proposed, using the decision tree (DT) algorithm optimized by particle size optimization
(PSO). The condition of the embedded foundation, the embedded depth (ZD/2R), the thickness of the
clay layer beneath the foundation base (T/2R), and the ratio of shear stiffness between clay and sand
(Gsand/Gclay) were used as input variables, while the elastic stiffness coefficients (Kc, Kh, Km, and Kv)
were used as output variables. The optimum DT model has undergone comprehensive validation,
and independent model verification using extra simulations. The results illustrate that PSO could
promote further increases in the capability of DT modeling in predicting stiffness coefficients. The
optimum DT model achieved a good level of performance on stiffness coefficient modeling. (The R
for the training set was greater than 0.98 for all of the stiffness coefficients.) The variable importance
analysis showed that the T/2R was the most significant variable for all stiffness coefficients, followed
by Gsand/Gclay. The optimum DT model achieved good predictive performance upon independent
verification, with the R being 0.97, 0.99, 0.99, and 0.95 for Kv, Kh, Km, and Kc, respectively. The
proposed reliable and efficient DT-PSO model for stiffness coefficients in layered soil could further
promote the safe and efficient utilization of circular foundations.

Keywords: elastic stiffness; circular footing; machine learning; soil–structure interaction

1. Introduction

Circular foundations have been used widely to support onshore and offshore infras-
tructures, such as transmission towers, oil-drilling platforms, pipeline end manifolds and
terminations, and offshore wind turbines [1]. These foundations are subjected to complex
loads from self-weight, environmental loads, and accidental loads (e.g., wind, wave, cur-
rent, storm, ship impact, etc.) [1]. Assessing their stiffness under vertical (V), horizontal
(H), and rotational (M) loads is key to predicting the deformation of the whole system.

Numerous studies have been conducted to determine the elastic stiffness of the circular
foundations at small strains and provide diagrams or explicit equations for foundation
design. For example, based on additional numerical studies and simple physical models,
an easy-to-understand dynamic stiffness calculation method was proposed by [2]. For
offshore foundations subjected to vertical, horizontal, and torque loads, which can be
idealized as rigid circular foundations, Ref. [3] derived a set of empirical expressions for
the elastic stiffness coefficients using a small strain linear-elastic perfectly plastic three-
dimensional finite element program. Ref. [4] used the scaled boundary finite element to
evaluate the load-displacement response of a circular foundation subjected to vertical,
horizontal, moment, and torsional loads, as well as the cross-coupling between horizontal
and moment loading conditions. However, all these existing studies are limited to a specific
circular foundation in a uniform soil layer, whereas in the field, foundation floors are
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usually layered with sand and clay. The complexity of the problem also makes it difficult
to propose a simple equation that can accurately predict the foundation stiffness under
different loading and embedding conditions.

Recently, Ref. [5] performed an extensive elastic analysis on circular foundations on
clay overlaying sand under general loading (VHM). The influence of the foundation’s
embedded condition, the thickness of clay layer beneath the foundation base, and the
ratio of shear stiffness between the clay and the sand on the foundation elastic stiffness
were quantified. Approximate design equations were proposed. However, limited by the
intrinsic feature of the explicit equation, the error in the prediction for certain conditions
can be greater than 25%. As the prediction of foundation stiffness under general loading is
a typical multi-input/output problem, it is difficult to capture the influence of all of the
factors with a simple explicit equation. In addition, three-dimensional elastic simulation is
time-consuming and requires extensive pre-experience. Therefore, it is meaningful to have
an efficient and accurate model for predicting the foundation stiffness, particularly for large
projects (e.g., offshore wind farms) where such calculations need to be conducted repeatedly.

The powerful ability of the machine learning (ML) technique in dealing with multi-
input/output problems offers us an alternative solution for foundation design. ML technol-
ogy can directly learn the relationship between the input variables and the output studied
and effectively solve complex nonlinear mapping problems. ML technology has been
widely used in many fields of geotechnical engineerings, such as parameter identifica-
tion [6], the development of constitutive models [7], the evaluation of soil liquefaction [8],
tunneling [9,10], and rock excavation [11,12]. Apart from the accurate prediction of the
outputs, the ML technique can also “smartly” select the most relevant inputs for each
output and help the researcher to identify the controlling failure mechanism.

In light of the preceding discussion, this study aimed to develop an efficient ML-based
model to predict the stiffness of circular footings on clay overlying sand. The decision tree
(DT) modeling technique, optimized by particle swarm optimization (PSO), was adopted
in this study. DT is one of the most widely used ML algorithms in geotechnics, which is
characterized by robust modeling and high interpretability [13]. Regarding the stiffness of
circular foundations in layered soil, ref. [5] performed an extensive study and established a
database of stiffness coefficients covering a wide range of foundation and soil conditions.
Therefore, the simulation results of [5] were used to train and validate the model. After
the comprehensive model training and validation based on the above-mentioned database,
a series of independent elastic simulations on circular footings were performed to verify
the general applicability of the trained model; The results show that using the trained
ML model to simulate each new case can be completed within several seconds with a
high level of accuracy. A comprehensive model interpretation was also performed to
quantify the importance of each input to each output and to reveal the evolution of the
controlling mechanism. We found that ML-based model can not only provide an accurate
prediction for the problem, but also help to understand the intrinsic correlation and the
underlying mechanism.

2. Research Methodology

Figure 1 illustrates the whole methodology of this study, which includes the following
main parts: dataset collection and pre-processing, model construction and evaluation,
model interpretation and visualization, and independent verification of the model.

2.1. Dataset Collection Based on Numerical Simulation

This study is concerned with circular foundation stiffness under general loading
(VHM) on clay overlying sand. Three different embedded conditions were considered,
as shown in Figure 2, including a surface foundation, an embedded foundation with a
cavity above, and a fully embedded foundation. For a typical foundation, there were
four dimensionless elastic stiffness coefficients, including Kc, Kh, Km, and Kv. A detailed
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explanation of the elastic stiffness of a foundation system under general loading can be
found in [5].
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The dataset used in this study was collected from a series of comprehensive, three-
dimensional elastic simulations conducted by [5]. The details of the simulation program
are summarized in Table 1. During the numerical simulation, the base was fixed in respect
to all three translational directions, while vertical boundaries were fixed in the lateral
directions and were free to move vertically. The distance between the footing base and
the sand layer (T/2R), the stiffness ratio between the sand and the clay (Gsand/Gclay), the
embedded condition (surface, embedded with cavity above, and fully embedded), and the
embedment depth ratio (ZD/2R) were selected as inputs, while the dimensionless elastic
stiffness coefficients, including Kc, Kh, Km, and Kv, were the outputs of the training model.
Different from other variables, the embedded condition is categorical data, which needs
to be transformed into numerical data. In this study, the transformation from categorical
data to numerical data was performed using the one-hot encoding [14,15]. After the
transformation, the embedded condition was represented by three independent variables,
namely case 1 to case 3.

Thus, the final dataset used for modeling consisted of 6 input variables and 4 output
variables, for a total of 567 samples. That was, 81 input and output combinations for case 1,
and 243 input and output combinations for cases 2 and 3, respectively.
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Table 1. The simulation programs in [5] and this study.

Embedded Condition Embedded Depth, ZD/2R Distance to the Sand Layer,
T/2R

The Ratio of Shear Stiffness,
Gsand, Gclay

model training

Case 1 0 0, 0.125, 0.25, 0.375, 0.5, 0.75,
1, 1.5, 2, 3, ∞ 1, 5, 10, 15, 20, 25, 30, 35

Case 2 0.5, 1, 2 0, 0.125, 0.25, 0.375, 0.5, 0.75,
1, 1.5, 2, 3, ∞ 1, 5, 10, 15, 20, 25, 30, 35

Case 3 0.5, 1, 2 0, 0.125, 0.25, 0.375, 0.5, 0.75,
1, 1.5, 2, 3, ∞ 1, 5, 10, 15, 20, 25, 30, 35

This study: numerical
model validation

Case 1 0 0, ∞ 1

Case 1 0 0.5 5

This study: training
model evaluation

Case 1 0 2.5, 5 5, 10, 20, 40

Case 2 1.5 2.5, 5 5, 10, 20, 40

Case 3 1.5 2.5, 5 5, 10, 20, 40

2.2. Dataset Pre-Processing

To speed up the model training and enable the predictive performance comparable,
the dataset needs to be standardized. In this paper, the Z-score standardization method
was employed (Figure S1). In this method, the original data is standardized as follows:

x∗ =
x− µ

σ
(1)

where µ is the mean of all sample data, σ is the standard deviation of all sample data, x is
the data before normalization, and x∗ is the normalized data used for model training.

Figure 3 illustrates the data distribution of inputs and outputs after standardization.
Noted that the embedment condition after preprocessing was not shown since a one-hot
encoding was employed. The average values of the input variables differ little, but the
distribution varied greatly. The distribution of Gsand/Gclay between 0 and 1 was relatively
uniform, but T/2R was mainly concentrated in 0–0.25. Similarly, the average values of Kc,
Kh, and Km outputs were around 0.2, and the distribution was also concentrated between 0
and 0.3. However, the average value of Kv was about 0.5, and the data distribution range
was 0.2–0.7.
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2.3. Machine Learning Modeling

Before constructing the model, the dataset needs to be divided into a training set and
a testing set. Among them, the training set is used to train the model, i.e., to learn the
relationship between the inputs and the output. The testing set is treated as the independent
“new” data to evaluate the generalization capability of the trained ML model [16]. In this
study, we used a random split to divide 70% of the data into a training set, and the
remaining 30% was used as a testing set [17]. DT and PSO were used to construct a hybrid
model. Notably, the random splitting was repeated 10 times, and the average result was
regarded as the representative performance during comparison.

The DT is a graphical method of intuitive use of probability analysis that has been
widely used for regression and classification problems [18]. The DT technique employs a
tree structure to support the decision-making process. In DT, each internal node represents
a test on an attribute, each branch represents a test output, and each leaf node represents a
category. The decision rules are updated during the DT training process to minimize the
discrepancy between the actual and estimated outputs, such as the mean squared error
(MSE) for regression problems and the Gini index for classification problems [19]. For the
prediction of each new data instance, the model will start with the root node and move
downward until reaching the leaf node. The output of the leaf node will be the prediction
for this data instance. The DT has been used widely in geotechnical engineering for its
flexibility and interpretability [20]. Figure 4 shows a typical DT structure.
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The PSO is a population-based optimization algorithm proposed by [21]. PSO has been
widely used in geotechnical engineering due to its simple operation, easy implementation,
and rapid convergence to the optimal solution.

PSO imitates the swarm behavior of insects, birds, fish, etc., when they are cooper-
atively searching for food. Each member of the group is constantly changing its search
mode by learning from its own experience and the experience of other members [22]. The
solution space is efficiently searched by a particle swarm or population. The first population
of particles or individuals is initialized randomly in the solution space. Specifically, the
velocity vi and position xi of each particle is randomly initialized [23]. The selected fitness
function is used to evaluate the performance of each particle, and then the vi and xi of
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each particle will be updated. After multiple generations, the optimal solution is obtained
(Figure 5). The update strategy is shown as follows:

vt+1
i = w× vt

i + c1 × r1(pt
best,i − xt

i ) + c2 × r2(gt
best − xt

i ) (2)

xt+1
i = xt

i + vt+1
i (3)

where vt
i and vt+1

i represent the velocity of the i individual at t-th and (t + 1)-th genera-
tion, respectively; xt

i and xt+1
i represent positions of i-th individual; w, c1, and c2 are the

inertia parameter, the cognitive influence parameter, and the social influence parameter,
respectively; r1 and r2 are random values between 0 and 1; pt

best,i and gt
best represent the

best position of an individual and the group’s best position at t-th generation.
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The performance of the DT model on a specific dataset is controlled by hyper-parameters.
Thus, we used PSO to tune the hyper-parameters of the DT model. Table 2 summarizes the
PSO parameters employed in this study [24,25].

Table 2. PSO parameters employed in this work.

Parameters Settings Parameters Settings

Fitness function The cross-validation
performance (R) Population size 200

Maximum generation 50 w (1 + random)/2
c1 1.8 c2 1.8

Note: “random” represents a random value between 0 and 1.

Based on the suggestions and preliminary tests in the literature [26–28], the hyper-
parameters that needed to be tuned and their ranges were determined: the maximum
depth limited by the DT when building subtrees (max_depth: 3–15), the minimum number
of samples required for the splitting of an internal node (min_samples_split: 2–15), the
minimum number of samples included in the leaf node (min_samples_leaf: 1–15), and the
maximum percentage of variables considered during splitting (max_features: 0.4–1.0).

K-fold cross-validation (CV) was employed for the evaluation of the training perfor-
mance. In k-fold CV, the training set is further divided into k-folds. Model training is
performed using (k-1) folds and the remaining fold is used for validation [29]. The training-
validation process is repeated k times, such that the whole training set is predicted. The
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average performance derived from the k-fold CV is taken as the training performance of the
model. Considering the convergence and computational time, k was set as 5 in this study.

2.4. Performance Evaluation

In this paper, correlation coefficient (R), explained variance score (Evar), mean abso-
lute error (MAE) and mean squared error (MSE) were selected as evaluate indicators of
predictive performance [30], which can be calculated as follows:

R =

N
∑

i=1
(y∗i − y∗)(yi − y)√

N
∑

i=1
(y∗i − y∗)2

√
N
∑

i=1
(yi − y)2

(4)

Evar= 1−
Var

{
yi − y∗i

}
Var{yi}

(5)

MAE =
1
N

N

∑
i=1
|yi − y∗i | (6)

MSE =
1
N

N

∑
i=1

(yi − y∗i )
2 (7)

where N is the number of samples; yi and y∗i are the actual and estimated value of the
i-th instance; y and y∗ are the average values of the actual and estimated outputs; and Var
represents the variance.

2.5. Model Interpretation

To promote ML-aided knowledge discovery, various methods were employed to inter-
pret the ML models. In this study, two different methods, including variable importance
score and partial dependence plots (PDPs) [31], were adopted.

• Variable importance score

Variable importance is scored according to how useful the input variables are to
predicting the target variable [32]. There are many types and calculation methods of variable
importance. For the DT algorithm, the importance score is obtained based on the reduction
of the Gini coefficient or entropy, which can be achieved with the feature_importances_
attribute in scikit-learn.

• Partial dependence plots (PDPs)

Unlike variable importance, which assigns a score for each variable, partial dependence
plots (PDPs) show how variables affect model predictions. More specifically, PDPs not
only reflect the significance of each input variable to the output, but they also indicate
how that input variable will influence the output, i.e., negatively or positively [33]. PDPs
can highlight the marginal effect of one or two variables on the prediction results of ML
models. Due to the non-parametric characteristics of many ML algorithms, PDPs can reveal
linear and nonlinear variables, making them easy to understand with high explanatory
power [34].

2.6. Independent Model Verification

In addition to the database in [5], extra simulations were also performed in this study
to provide an independent evaluation dataset. All the simulations were performed using
the FE software Abaqus 6.14 [35]. The FE mesh in Figure 6 (Case 2, ZD/2R = 1.5, T/2R = 0.5)
is typical of the meshes employed in all analyses. Considering the symmetry of the problem,
only half of the pile–soil system was modeled. Just as in [5], the footing has a radius of
R and a thickness of R/50. The soil domain was chosen as 200R (R is the radius of the
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foundation) in diameter and 200R in depth. Both the soil and foundation were simulated
with eight-node linear strain brick elements (i.e., ‘C3D8’). A sensitivity analysis with the
model doubling the mesh density and geometric dimensions showed a difference of less
than 3% of the stiffness coefficients. The interface behavior between the pile and soil
was assumed to be fully rough and modeled using the “tie” constraint in Abaqus. The
soil was modeled by an elastic model, which is fully characterized by two parameters:
the shear modulus and Poisson’s ratio. In this study, Poisson’s ratio was assumed to be
constant values of 0.2 and 0.49 for sand and clay, respectively, while the ratio of shear
stiffness between clay and sand (Gsand/Gclay )varied from 1 to 40. In the end, a total of
108 extra elastic simulations were performed in this study, with 12 of them dedicated to
numerical model validation and the other 96 cases dedicated to the independent evaluation
of the trained model. Details about the simulations conducted in this study can be found
in Table 1.
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Table 3 shows the comparison of the elastic stiffness coefficients between the computed
values using the numerical model in this study and those from [5]. All the FE simulations
were performed on a computer, the CPU and RAM of which were Intel (R) Xeon (R) W-
2223 CPU @ 3.60 GHz and 16 GB, respectively. In total, it required more than 100 h to
finish all the simulations. As shown in the table, for all 12 simulation cases, the numerical
model in this study can predict the elastic stiffness coefficients of the foundation under
various loading conditions well. The maximum difference between this study and [5] is
less than 1%.

Table 3. Comparison of the elastic coefficients between this study and [5].

NO. Embedded
Condition ZD/2R T/2R Gsand/Gclay KV KH KM KC

1 Case 1 0 0 1 5.273
(0.04%)

4.578
(0.15%)

3.634
(0.80%)

−0.567
(0.60%)

2 Case 1 0 0.5 5 16.963
(0.30%)

7.030
(0.35%)

6.623
(0.8%)

0.408
(0.75%)

3 Case 1 0 ∞ 1 7.954
(0.14%)

5.353
(0.24%)

5.217
(0.60%)

−0.030
(1.00%)

Note: the value in the bracket represents the percentage of the difference between this study and [5].
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3. Results and Discussion
3.1. Hyper-Parameters Tuning

To improve model performance, regression indicator R was used as the objective
function of PSO optimization to tune the hyper-parameters. The hyper-parameters of the
models with Kc, Kh, Km, and Kv as target variables were tuned 5 times, and the average
performance R represented by the solid line was the final performance of the model. As
shown in Figure 7, the CV training performance gradually improved with the iteration
of PSO, and it was mainly realized in the first 10 iterations. Taking the Kc dataset as an
example, the average R-value increased from 0.982 to 0.987 after hyper-parameter tuning
and then remained unchanged, demonstrating the efficiency of PSO in fine-tuning the DT’s
hyper-parameters.
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(c) Km, and (d) Kv. Each generation took about 2 h to calculate.

Table 4 summarizes the optimal hyper-parameters for four datasets. As shown, the
optimal max_depth is in the range of 10 to 14, depending on the dataset. The min_samples
_split was determined to be 3 for Kc, while a constant value of 2 was determined for the
remaining three datasets. For the other two hyper-parameters, the same optimal values
were used for all datasets. Consistent with observations in a previous study [36], the
optimized results suggest that the performance of a typical DT model is mainly controlled
by the max_depth and is relatively insensitive to other hyper-parameters.
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Table 4. The optimal DT hyper-parameters after PSO tuning.

Hyper-Parameters Kc Kh Km Kv

max_depth 10 13 12 14
min_samples_split 3 2 2 2

Other hyper-parameters min_samples_leaf = 1, max_features = 1

3.2. Model Evaluation and Visualization

Figure 8 shows the model’s performance after tuning the hyper-parameters on the
datasets with Kc, Kh, Km, and Kv as target variables, respectively. The R and Evar values of
both the training and testing sets were higher than 0.9, and the MSE and MAE maintained
low values. In addition, the R values on four datasets were all higher than those before
hyper-parameter tuning (Figure S1). The above analysis not only showed that the PSO-DT
model had excellent prediction and generalization ability, but it also confirmed the role of
PSO tuning [37,38].
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Figure 9 presents a visual comparison of the actual and estimated dimensionless
elastic stiffness coefficients. The diagonal line in the figure represents the best prediction
curve, where the estimated output equals the actual output. As illustrated, the points were
distributed close to the diagonal line, indicating that an excellent prediction was achieved.
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The MSE values of the training and testing sets were small (less than 0.05), and the R-square
(R2) was higher than 0.99, which further confirmed the accuracy of the prediction.

Figure 10 presents a visualization of a DT for the Kc dataset. To maintain the inter-
pretation of the DT, the max_depth was restrained to 4 as an example. It should be noted
that good predictive performance (CV training performance = 0.96) was also achieved
under this condition. The decision rule, MSE value, the number of samples, and the mean
value can be identified in Figure 10. Only T/2R and Gsand/Gclay were employed during the
construction of the decision rules, implying the significance of these two input variables.
The variable importance will be further discussed in the following section.
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3.3. Model Interpretation

Figure 11 shows the variable importance score for different inputs for the four datasets.
As illustrated, T/2R was the most significant variable for all stiffness coefficients, with an
average variable importance score of around 0.58. This suggested that soil layering played
an important role in foundation stiffness. Furthermore, it can be seen that the importance
of the T/2R on the four stiffness coefficients was comparable, which means that the soil
layering affected the foundation’s kinematic behavior under all loading conditions. The
Gsand/Gclay also contributed greatly to the output, and its average variable importance
score was 0.30. Unlike the nearly equal influence of T/2R on all stiffness coefficients,
the importance of Gsand/Gclay was most significant for the vertical foundation stiffness
coefficient. The above results were in good agreement with the DT visualization results
in Figure 10. Comparatively speaking, the influence of other input variables on output
variables was relatively small, but it cannot be ignored. For example, embedment conditions
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had an obvious influence on the kinematic behavior of circular foundations under lateral
load, and the importance of Case 2 reached 0.2388.
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Figure 12 analyzes how the features T/2R, Gsand/Gclay, and ZD/2R affected the prediction
for the target variables Kc, Kh, Km, and Kv. T/2R had the greatest influence on the stiffness
coefficient and was negatively correlated with Kh, Km, and Kv. Within a certain T/2R range
(normalized T/2R < 0.2), the values of Kh, Km, and Kv decreased rapidly with the increase
in T/2R. When the value of T/2R was greater than 0.2, Kh, Km, and Kv tended to remain
unchanged. While Kc first increased and then decreased with the increase in the T/2R value,
0.1 was the critical value of Kc change. Furthermore, we also found that Gsand/Gclay was
positively correlated with Kc, Kh, Km, and Kv; with the gradual increase in the feature
value of ZD/2R, Kc, Kh, Km, and Kv changed little, indicating that ZD/2R was relatively less
important for the stiffness coefficient.
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Figure 12. PDPs of T/2R, Gsand/Gclay, and ZD/2R for all output variables. Note that the features were
normalized so that their influences on the output could be better compared.

Figure 13 further illustrates the interaction influence of input variables on the output,
taking the Kc dataset as an example. There is a strong correlation among T/2R, Gsand/Gclay,
and ZD/2R, and they affect the stiffness coefficient in a coupled way. For example, when
T/2R was less than 0.25 and Gsand/Gclay was more than 20, the model tended to predict a
large Kc. A large Kc was also observed when Gsand/Gclay was greater than 30 and the ZD/2R
was in the range of 0–0.5. The above analysis provided a certain reference for improving
the stiffness of the circular foundation.
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3.4. Independent Model Verification

In the preceding section, it was demonstrated that the DT-based ML model can
provide an accurate prediction of the foundation stiffness in layered soil and revealed
the relationship between the input variables and the stiffness coefficients. To further
demonstrate the general accuracy of the trained model, we utilized the DT-PSO model to
predict the basic stiffness for an additional 96 independent validation cases.

As shown in Figure 14a, for Kv, Kh, Km, and Kc, the R values between the true and
predicted values reached 0.97, 0.99, 0.99, and 0.95, respectively, indicating that the model
performance is pretty good. The differences between the four true and predicted foundation
stiffness coefficients are all within the acceptable error range (Figure 14b). More importantly,
it should be noted that the DT model was run on a personal computer with the CPU and
RAM of an Intel (R) Xeon (R) W-2223 CPU @ 3.60 GHz and 16 GB. For all the validation
cases, the prediction using the DT model took less than 1 s. We are therefore confident in
saying that the DT model is reliable and efficient in predicting the foundation stiffness in
layered soil and can be used in foundation design.
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4. Conclusions

The stiffness coefficient is an important parameter to be considered in designing
circular foundations. The current determination methods for the stiffness coefficient were
either time-consuming or inaccurate. In this study, three-dimensional elastic simulation
data were collected via a literature search to construct a hybrid model PSO-DT to predict
the stiffness coefficient quickly and accurately. Extra finite-element simulation data were
used for independent validation of the model. Furthermore, variable importance and PDP
were used to analyze the sensitivity of different features. The specific conclusions were
as follow:

1. For Kv, Kh, Km, and Kc, the R and Evar value of the DT model, as tuned by PSO on the
training and testing sets, were both higher than 0.95, and the MSE and MAE were less
than 0.15, indicating that the model had a high level of robustness.

2. Feature importance showed that T/2R had the most significant effect on the four
stiffness coefficients, with an average importance value of about 0.58. Furthermore,
there were differences in the way features affected output variables. When a T/2R less
than 0.5 interacted with Gsand/Gclay and ZD/2R in a coupled way, the effect on the
stiffness coefficient was greater.

3. Independent verification results showed that the R values between the true and pre-
dicted stiffness coefficients (Kv, Kh, Km, and Kc) were 0.97, 0.99, 0.99, and 0.95, respec-
tively, indicating that the model has a high level of generalization.

In the future, many other variables should be considered in ML modeling, such as
the water table, the difference in the soil profile, etc. Moreover, other important parame-
ters for foundation design, such as the lower and upper bounds of plasticity, should be
included. Finally, other advanced ML algorithms should be used, and more advanced
feature engineering and data pre-processing techniques should be attempted.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app13042653/s1, Figure S1: Performance of model using DT default
parameters on (a) original and (b) normalized datasets.
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