
Citation: Park, J.; Lim, Y.

Bio-Inspired Sleep Control for

Improving the Energy Efficiency of a

MEC System. Appl. Sci. 2023, 13,

2620. https://doi.org/10.3390/

app13042620

Academic Editors: Teen-Hang Meen,

Charles Tijus, Po-Lei Lee and

Chun-Yen Chang

Received: 21 December 2022

Revised: 14 February 2023

Accepted: 16 February 2023

Published: 17 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Bio-Inspired Sleep Control for Improving the Energy Efficiency
of a MEC System
Jaesung Park 1 and Yujin Lim 2,*

1 School of Information Convergence, Kwangwoon University, Seoul 01897, Republic of Korea
2 Department of IT Engineering, Sookmyung Women’s University, Seoul 04310, Republic of Korea
* Correspondence: yujin91@sookmyung.ac.kr; Tel.: +82-2-2077-7305

Abstract: The energy consumption of a multi-access edge computing (MEC) system must be reduced
to save operational costs. Determining a set of active MEC servers (MECSs) that can minimize
the energy consumption of the MEC system while satisfying the service delay requirements of the
tasks is an NP-complete problem. To solve this problem, we take a bio-inspired approach. We note
that the sleep control problem of the MECS differentiates the operational mode among neighboring
MECSs. Therefore, by mimicking the cell differentiation process in a biological system, we designed
a distributed sleep control method. Each MECS periodically gathers the utilization and delta levels
of the neighboring MECSs. Subsequently, by using the gathered information and the Delta–Notch
inter-cell signaling model, a MECS autonomously decides whether to sleep. We evaluated the
performance of our method through extensive simulations. Compared with a conventional method,
the proposed method reduces energy consumption in a MEC system by more than 13% while
providing a comparable service delay. In addition, our method reduces the variations in the service
delay by more than 35%.

Keywords: MEC energy saving; MECS sleep control; Task QoS; inter-cell signaling model; bio-inspired
approach

1. Introduction

Mobile applications running on resource-constrained mobile devices require high com-
puting power and low latency. To satisfy these requirements, multi-access edge computing
(MEC) systems have drawn much attention from industry and academia [1–3]. In a MEC
system, multiple MEC servers (MECSs) are deployed at the edges of the access networks.
Mobile devices offload their computationally intensive tasks to these MECSs that process
these tasks and return the results to the mobile devices. By providing high computing
capacities near mobile devices, a MEC system is expected to facilitate computing-intensive
and delay-stringent mobile applications. In general, the service area of a MECS is much
smaller than that of a conventional cloud server. Additionally, the capacity of a MECS is
lower than that of a cloud server. Therefore, an increasing number of MECSs is required
with the increase in the service region of a MEC system. As a result, the operational cost of
the MEC system increases. In addition, networks and data centers are expected to account
for 59.8% of the CO2 emissions in the information and communications technology sector
by 2030 [4]. Therefore, reducing the energy consumption of a MEC system is important for
reducing the operational cost of a MEC system and tackling global warming.

A MECS consumes considerable energy even when it is in an idle state [5]. The total
energy consumption of a MEC system can be decreased if an idle MECS enters the sleep
state. However, because the loads imposed on a MEC system are processed only by active
MECSs, the service delay owing to the MEC system increases with the increase in the
number of MECSs in the sleep state. Therefore, an appropriate sleep control method for
MECS that can reduce the total energy consumption of a MEC system while providing
reasonable service delay is required.

Appl. Sci. 2023, 13, 2620. https://doi.org/10.3390/app13042620 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13042620
https://doi.org/10.3390/app13042620
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8976-6480
https://orcid.org/0000-0002-3076-8040
https://doi.org/10.3390/app13042620
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13042620?type=check_update&version=2

Appl. Sci. 2023, 13, 2620 2 of 18

The sleep control problem in a MEC system is a combinatorial problem that determines
the set of MECSs that must be in the sleep state for a given task distribution in a MEC
system. Optimization-based methods have been proposed to address the energy-saving
issue in MEC systems [5–7]. These methods formulate an optimization problem and trans-
form the original problem into a set of solvable mathematical forms that can be used to
design an algorithm to solve the problem. However, the complexities of optimization-based
algorithms increase exponentially with the increase in the number of MECS. In addition,
rapidly adjusting to the dynamics of a MEC system is difficult because these algorithms
are based on a network snapshot. Therefore, to ensure the scalability and adaptability
of a MEC system, a lightweight distributed approach is required to reduce energy con-
sumption while satisfying the service delay requirement. To achieve this objective, we
adopted a bio-inspired model and devised a method for a MECS to make an automatic
sleep decision. Bio-inspired approaches have drawn considerable attention in the commu-
nications and networking domains for resolving the scalability issue in an adaptive and
distributed manner [8,9]. Bio-inspired modeling techniques exploit the inherent adaptabil-
ity of biological systems by mimicking the behavior of objects in such systems to solve
engineering problems.

We regarded the MECS sleep decision process as a state differentiation process among
the MECSs. More specifically, each MECS differentiates the operational state, i.e., sleep
or active, from the neighboring MECSs by considering the relative load to those of the
neighbors. We subsequently designed a sleep decision process using the Delta–Notch
lateral inhibition model that explains the process by which the fate of an endothelial cell is
determined during sprouting angiogenesis using the delta protein level of the cell relative
to those of its surrounding cells. Additionally, we devised a MECS activation scheme.
The load on a MECS varies with time and space [10]. As the number of tasks offloaded
to an active MECS increases, the MECS is likely to violate the service delay requirement.
To avoid this situation, we enabled an active MECS to wake up neighboring MECSs that
are sleeping before the service time exceeds a predetermined threshold value. Through
extensive simulations, we analyzed the performance of the proposed method in terms of
energy consumption and the queuing delay of a MEC system. We demonstrated that the
proposed strategy can reduce the energy consumption of a MEC system while maintaining
the length of the queue below a predetermined threshold even under different system
workloads, the number of MECSs, and the ranges of neighborhoods of these MECSs. We
summarize our main contributions as follows.

• We address the energy-saving problem in a MEC system. To resolve the problem,
we propose a MECS sleep control method by adopting a bio-inspired approach. By
mimicking the cell differentiation process in a biological system, our method enables
each MECS to make a sleep decision in a distributed manner.

• We analyze our sleep control method, which is composed of a sleep decision module,
a task transfer module, and a MECS activation module. We show that the worst-case
time complexity of our sleep control method is O(|Ni|). Therefore, our method scales
linearly with the number of neighboring MECSs.

• We compare the performance of our method with that of a conventional method
through simulation studies. We show that compared with a conventional method,
our method can reduce the energy consumption of a MEC system while providing
a comparable task service delay. We also show that our method can provide a more
stable service delay by reducing the variation in the length of the task queue in a MECS.

The remainder of this paper is organized as follows. In Section 2, we discuss energy-
saving issues in a MEC system. We explain the system model in Section 3 and present our
bio-inspired MECS sleep-control strategy in Section 4. In Section 5, we verify our method
through simulations. We conclude the study by discussing future research directions in
Section 6. Before we proceed, in Table 1, we present the notations used in this paper.

Appl. Sci. 2023, 13, 2620 3 of 18

Table 1. Notations used.

Notations Meaning

Ni A set of neighboring MECSs of a MECS i
bi Task service rate of a MECS i

Qi(t) The length of a task queue in a MECS i at the beginning of a time slot t
ai(t) The number of tasks received by a MECS i during a time slot t
ei(t) The amount of energy consumed by a MECS i during a time slot t
µi(t) Utilization of a MECS i during a time slot t.
βi(t) Operation mode of a MECS i during a time slot t
di(t) Delta activation level of a MECS i during a time slot t
ni(t) Notch activation level of a MECS i during a time slot t
f (x) A function determining the production rate of the Notch activation level
g(x) A function determining the production rate of the Delta activation level

ηi,j(t) Proportion of tasks transferred from a sleeping MECS i to its neighbor j

2. Related Works
2.1. Resource Management in a MEC System

To satisfy the quality of service requirements of the tasks offloaded to a MEC system
in a resource-efficient manner, various methods have been proposed for diverse problems.
The authors in [11] investigate a DNN model splitting problem in a hybrid mobile edge en-
vironment. They formulate a utility maximization problem with SLA, priority, and fairness
constraints. After transforming the optimization problem into the multi-choice knapsack
problem, they propose a feasible algorithm called HiTDL to solve the transformed problem.
HiTDL achieves an optimal system throughput by making an informed decision on DNN
model splitting and resource allocation while achieving SLA, priority, and fairness goals.

In [12], the demand response problem in edge cloud is explored. After deriving the
operational costs of the cloudlet operator and the service providers, the authors formulate
a long-term social cost minimization problem. Then, they propose an online auction
algorithm called EdgeDR for performing the power emergency demand response and the
computing demand response at the edge cloud.

The network selection and service placement problem are inspected in [13]. By incor-
porating the queuing delay, switching cost, and communication delay, an offline network
selection and service placement optimization problem is formulated. The authors de-
compose the long-term optimization problem into a series of one-shot subproblems. A
two-phase algorithm based on the matching game and the coalitional game is proposed
to solve the subproblems. The proposed algorithm improves the QoS by balancing the
queuing delay, communication delay, and service switching cost.

The authors in [14] tackle the multi-task transfer learning problem on the edge. They
propose a task importance metric that measures the contribution of a task to the improve-
ment of the decision-making performance. Then, they formulate the task allocation problem
for the multi-task transfer learning on the edge by considering the task importance, the
execution time, and resource limitations. To solve the formulated problem, a data-driven
cooperative task allocation (DCTA) method is proposed by using reinforcement learning.
DCTA reduces the processing time and saves energy consumption.

In [15], the authors probe into the container caching problem in a MEC system. By
considering the startup delay of a container, service latency cost, and container retention
cost, they formulate a system cost minimization problem as a linear integer problem. To
resolve the problem, they propose an online algorithm named O-RDC. To reduce the system
cost, O-RDC opportunistically distributes requests by considering the resource capacities
and network delays between edge nodes.

An admission control policy for time-sensitive services is investigated in [16]. To max-
imize the revenue for the service provider while guaranteeing QoS for the accepted service
requests, a service throughput maximization problem is formulated. A threshold structure
is carefully defined and an optimal admission control mechanism called OA2 is devised

Appl. Sci. 2023, 13, 2620 4 of 18

by taking the advantage of the strategic queuing approach. Through simulation studies
using both synthetic traces and real-world service request traces, OA2 is verified to achieve
maximal revenue while providing QoS guarantee in expectation for the accepted requests.

In [17], a fine-grained warm water cooling system is proposed to relieve the multiple-
level hotspots and save the cooling energy of high-density and heterogeneous edge data
centers. The authors remove the hardware-level hotspots by well designing a water
circulation method. They also disperse the chip-level hotspots without manual intervention
by developing new cold plates with vapor chambers.

The authors in [18] scrutinize the VNF chain deployment problem with the latency
guarantee and the resource efficiency. They formulate the problem as a mixed integer
linear programming problem. To resolve the formulated problem, they devise a two-stage
latency-aware VNF deployment method. In the first stage, paths are selected and VNFs
are assigned in the second stage. By considering the VNF instance reuse and the latency
requirements, the proposed method jointly optimizes the computing resources of the edge
servers and the bandwidth resources of the physical links.

In [19], a cost-efficient edge resource management platform for the NFV network
called Finedge is proposed. To devise Finedge, the authors derived useful insights into the
influence of the network function’s flow-level characteristics and CPU allocation on the
performances through empirical experiments. Using these insights, they designed Finedge,
which can automatically assign the most suitable CPU core and the most cost-efficient
CPU quota for each network function by taking its flow-level characteristics and QoS
requirements into account.

2.2. Energy Saving in a MEC System

Various technical approaches have been adopted to reduce the energy consumption
of MEC systems. The authors of [5] proposed a method that minimizes the long-term
energy consumption of a backhaul network connecting MECSs. To achieve this, they
adopted the Lyapunov-based approach and periodically decided whether to migrate tasks
from one MECS to another. The Lyapunov optimization approach was also adopted
in [7] to incorporate a MEC system into dense cellular networks. However, the authors
considered only the task offloading between MECSs and a cloud server when they made
joint computation offloading and MECS sleep decisions.

Deep reinforcement learning (DRL)-based methods were developed in [20,21]. The au-
thors in [20] formulated an optimization problem that minimizes the energy consumption
required to process all tasks imposed on a MEC system while satisfying the delay con-
straints of each UE. They presented conventional decomposition and deep Q-learning-based
methods that solved the formulated problem by determining the offloading ratio of each UE
and the optimal frequency of a central processing unit that a MECS should allocate to each
UE. However, they considered only a simple environment, in which multiple UEs offload
their tasks to a single MECS. In [21], the authors considered a NOMA-based MEC system
that allows the use of computational resources of idle devices through machine-to-machine
(M2M) task-offloading. They formulated an optimization problem for minimizing the
energy consumption of the system under task-delay constraints and proposed a DRL-based
sleep scheduling method for M2M devices.

In [22], the authors investigated the effectiveness of a queuing model compatible with
the dynamics of traffic flow over a long-time scale. They employed the Mx/D/N queuing
system and derived the minimum number of active processing units that can guarantee the
desired upper bound on the average queuing delay. Through simulation studies using real-
world traffic traces, they demonstrated that the queuing model underestimates the delay
and imparts aggressiveness to the sleeping strategy with respect to energy consumption.

The authors in [23] defined network cost by determining operational cost and a
response delay. They subsequently proposed path selection and sleep scheduling methods
by adopting a game-theoretic approach to minimize the network cost. However, acquiring
the information needed to determine the path from an AP to a MECS is difficult. These

Appl. Sci. 2023, 13, 2620 5 of 18

include the aggregate load on each router and each MECS in the system and the edges in the
selected path. In addition, multiple iterations are required between the central coordinator
and all APs. In [24], minority game theory was used to devise a server activation scheme
that can support the requirements associated with the quality of experience of users in
an energy-efficient manner. However, the authors assumed that the task arrival pattern
follows a Poisson distribution, which may not reflect real-world scenarios.

In [25], the Bayesian learning automatan was used for a MEC server to make au-
tonomous sleep decisions. The reputation of a MECS is developed according to the service
quality evaluation presented by the users. However, a MECS is required to obtain feedback
from the MEC environment regarding its decisions. More specifically, global information
should be shared among the MEC servers to make sleep decisions. Additionally, their
method requires a human-based evaluation function that is subjective for the computing
system. Furthermore, MEC servers are assumed to be synchronized in terms of decision
time and information shared among them.

In [6], the authors formulated a joint optimization problem to minimize the energy
consumption of mobile-edge computing and caching (MECC)-enabled software-defined
mobile networks. To resolve the problem, they decomposed the original problem into
content source selection and bandwidth provisioning problems using dual decomposition.
Subsequently, they solved the subproblems using the alternating direction method of
multipliers in a distributed manner. In [26], a multi-state stochastic problem was formulated
to model the energy-aware application placement problem in a MEC system. A parallel
sample average approximation (SAA) algorithm was proposed to solve the formulated
problem. Because SAA approximates the recourse function based on the sample average,
SAA experiences a tradeoff between the complexity and accuracy of the algorithm.

In this study, we devised a MECS sleep control method that can reduce the total energy
consumption of a MEC system. We followed a bio-inspired approach and devised the
lightweight microscopic behavior of each MECS that can result in a globally desirable
system property. This property is the energy saving of a MEC system that can be achieved
if each MECS repeats the microscopic behavior using the local information obtained by
interactions with only the local neighboring MECSs.

2.3. Bio-Inspired Networking

Bio-inspired methods exhibit inherent adaptability in nature and exploit inherent
features to design a scalable, robust, and adaptive system that is capable of simple local
interactions between the entities comprising the system. Biological design approaches have
been applied to various fields in the communication and networking domains, including
MAC design, resource allocation, routing, and security [27–29]. These bio-inspired methods
demonstrated that the system reaches a globally optimal state, in which a system-wide op-
timization objective is accomplished even though each node comprising the large complex
system repeatedly performs a simple operation with limited local information.

Among the bio-inspired models, we adopted the Delta–Notch inter-cell signaling
model to design a MECS sleep control scheme. The Delta–Notch lateral inhibition process
determines the fate of endothelial cells during sprouting angiogenesis using the levels of
Delta and Notch proteins in a cell. The Delta and Notch levels of a cell are regulated in
response to the average Delta level of neighboring cells. This lateral inhibition process is
modeled using the following coupled ordinary differential equations [30,31]:

∂ni
∂t

= f (d̄i)− ni (1)

∂di
∂t

= ν(g(ni)− di), (2)

where ni is the Notch level in cell i and di is the Delta level. Additionally, d̄i is the average
Delta level surrounding cell i and ν is a positive constant. Functions f and g represent the
production rates of the Notch and Delta levels, respectively. These are expressed as

Appl. Sci. 2023, 13, 2620 6 of 18

f (x) =
xk

a + xk

g(x) =
1

1 + bxh ,

where a, b > 0 and k, h ≥ 1.

3. System Model

We consider a MEC system composed of a set N of MECSs. A MECS j is said to be a
neighbor of a MECS i if they exchange their local information. Each MECS i is configured
to have a set Ni of neighboring MECSs. The neighboring MECSs are connected by a
backhaul network. we denote the communication bandwidth between a MECS i and the
neighboring MECS j ∈ Ni as bi,j. The control time is divided into discrete time slots of
length τ. Each MECS possesses a task queue to accommodate the tasks it receives. There
can be different types of tasks and they can have different QoS requirements. A MECS
can accommodate them by maintaining a separate task queue for each task type. Because
multiple queues share the computational resources of a MECS, optimally scheduling them
affects the resource efficiency and energy consumption of a MECS. The task service time
scheduling problem in a MECS is investigated in [10]. Thus, in the work, we assume that
tasks are homogeneous.

We denote the length of the task queue in a MECS i at the beginning of a time slot t as
Qi(t). We also denote the task service rate of a MECS i as bi. The number of tasks arriving
at a MECS i during a time slot t is denoted by ai(t). Since the stochastic characteristic of
ai(t) is not known and varies in time and space, we do not make any assumption about
the task arrival process. Instead, we measure ai(t) at each time slot and devise a sleep
control mechanism by using the measured ai(t)s. ai(t) can be subdivided into two groups.
The first group is composed of the tasks offloaded directly from the devices to a MECS.
We denote the number of tasks in the first group as a1,i(t). The second group of tasks is
composed of the tasks migrated from the neighboring MECSs that decide to sleep. We
denote the number of tasks in the second group by a2,i(t). Then, ai(t) = a1,i(t) + a2,i(t).
We assume a MECS serves the tasks in its tasks queue in a FIFO manner. Since the control
time is divided into a time slot, tasks are migrated at the end of a time slot. Thus, the tasks
in the second group are stored after the tasks in the first group.

3.1. Service Delay

If tasks are offloaded to a MECS i during a time slot t and they are served by i, the
service delays of these tasks are less than slo(t) = Qi(t− 1) + a1,i(t)/bi. When a MECS
i decides to sleep at the end of a time slot, it must transfer the tasks in its task queue to
the neighboring MECSs that are active. If we denote the proportion of tasks transferred
from a MECS i to a MECS j ∈ Ni as ηi,j, the communication delay between i and j becomes
di,j(t) = ηi,jQi(t)/bi,j. Then, the maximum service delay of the tasks transferred from a
MECS i to a MECS j during a time slot t becomes str(t) = ηi,jQi(t)/bi,j + (Qj(t) + aj(t))/bj.

3.2. MECS Energy Consumption

In [23], measurements have revealed that the power consumption of a server is com-
posed of idle power and active power that varies according to the workload of the server.
Based on these results, an energy consumption model was proposed in [5]. By following
this load-dependent energy consumption model, we express the energy consumed by an
active MECS as

ep
i (t) = αPm + (1− α)Pmµi(t), (3)

where Pm is the maximum power that a MECS i consumes when it is fully utilized, α is the
proportion of the power that determines the energy consumption of a MECS i in an idle
state, and µi(t) = min{Qi(t) + ai(t), τbi}/τbi is the utilization of a MECS i during a time
slot t.

Appl. Sci. 2023, 13, 2620 7 of 18

When a MECS i decides to sleep, it has to distribute the tasks in Qi(t) to its neighbors.
If we denote by εtr the energy consumed to transfer a task from a MECS to its neighbor, the
energy consumed by a MECS i to transfer the tasks in its task queue becomes

etr
i (t) = εtrQi(t). (4)

Then, the energy consumed by a MECS i during a time slot t is given as

ei(t) = βi(t)e
p
i (t) + (1− βi(t))etr

i (t), (5)

where βi(t) is an indicator function that represents the operational mode of a MECS i
during a time slot t. More specifically, βi(t) = 1 indicates that a MECS i is in an active state
during a time slot t. By contrast, βi(t) = 0 indicates that a MECS i is in a sleep state during
a time slot t.

3.3. Problem Formulation

A MEC system must provide a reasonable service level in terms of the task service
delay. Specifically, we aim to restrain the maximum task service delay of the tasks accom-
modated by a MEC system in each time slot below a given threshold. Therefore, our sleep
control problem related to a MECS involves determining an optimal sleep control vector
~β∗(t) = {β∗1(t), . . . , β∗|N|(t)} while maintaining max{slo(t), str(t)} below a predetermined
threshold value sth. Thus, the MECS sleep control problem can be expressed as follows:

~β∗(t) = arg min
~β(t)

∑
i∈N

βi(t)e
p
i (t) + (1− βi(t))etr

i (t)

s.t. max{slo(t), str(t)} ≤ sth, ∀i ∈ N, ∀t. (6)

The optimization problem in Equation (6) is a binary integer programming prob-
lem, which is one of Karf’s NP-complete problems. Therefore, in this study, we adopt a
bio-inspired approach and devise a lightweight heuristic algorithm that can resolve this
problem in a distributed manner.

3.4. Overview of Sleep Control Mechanism

A MECS sleep control method has to decide both when to sleep and when to wake up
sleeping MECSs. When a MECS i decides to sleep, a sleep control method has to determine
the way to process the tasks in Qi. When a MECS i decides to wake up sleeping neighbors,
it has to determine the set of neighbors to be woken up and the way to distribute the tasks
in Qi to the woken-up neighbors.

In Figure 1, we illustrate an overview of our sleep control mechanism. Figure 1a
shows a sleep decision procedure. Each MECS i periodically exchanges its utilization
(µi(t)) and the Delta activation level (di(t)) with its active neighboring MECSs j and k. By
incorporating the relative utilization and the relative Delta activation level in the Delta–
Notch inter-cell signaling model, a MECS i determines its sleep probability. The sleep
probability increases as the relative utilization of a MECS becomes smaller. Therefore, it is
likely that a relatively underutilized MECS decides to sleep. When a MECS i decides to
sleep (i.e., βi = 0), the tasks in Qi are transferred to all its active MECSs j and k in inverse
proportion to their utilizations to avoid the situation where an active MECS becomes
overloaded by accommodating the tasks transferred from the MECSs that decide to sleep.

In Figure 1b, we depict a wake-up procedure. The task service delay increases with the
length of the task queue in a MECS. Thus, when an active MECS i detects that Qi is larger
than a predefined threshold, it wakes up all its sleeping neighbors j and k and distributes a
fraction of the tasks in its task queue to them to decrease its service delay.

Appl. Sci. 2023, 13, 2620 8 of 18

(a) (b)

Figure 1. An overview of the sleep control mechanism. (a) Sleep example; (b) Wake-up example.

4. Bio-Inspired MECS Sleep Control Method
4.1. Sleep Decision by a MECS

We use the lateral inhibition model to enable each MECS to autonomously determine
its operational mode during a time slot. Lateral inhibition is a differentiation process
among neighboring cells using Delta–Notch activation levels. We regard the sleep decision
problem as a differentiation process because a MECS attempts to differentiate the operating
mode (sleep or active) from the neighboring MECSs according to the utilization level.
The Delta activation level of a cell represents the amount of inhibitory power exerted on
neighboring cells. Therefore, we use the Delta activation level as the sleep probability of a
MECS by ensuring that it is inversely proportional to the relative utilization to the local
average utilization of the neighboring MECSs. We present the sleep decision algorithm of a
MECS in Algorithm 1.

The Notch activation level of a MECS i at the beginning of a time slot t is denoted
as ni(t). Additionally, we denote the Delta activation level of MECS i at the beginning
of time slot t as di(t). At the beginning of each time slot, each MECS i calculates its
utilization µi(t) =

min{Qi(t)+τai(t),τbi}
τbi

and exchanges µi(t) and di(t) with the neighboring
MECSs (∀j ∈ Ni) and calculates the average local utilization (µ̄i(t)) and average local Delta
level (d̄i(t)).

µ̄i(t) =
1
|Ni| ∑

j∈Ni

µj(t). (7)

d̄i(t) =
1
|Ni| ∑

j∈Ni

dj(t). (8)

Subsequently, a MECS i updates ni(t) and di(t) K times or until convergence, whichever
comes first (Lines 7–11). That is, for each iteration k, the Delta and Notch activation levels
(d′i(k) and n′i(k), respectively) are updated as follows:

n′i(k + 1) = (1− ln)n′i(k) + ln f (d̄i(t)),

d′i(k + 1) = (1− ld)d′i(k) + ldg
(

n′i(k + 1)
µi(t)
µ̄i(t)

)
where ln and ld are the learning rates of the Notch and Delta activation levels, respectively.
According to [30], the functions f (·) and g(·) are given by

Appl. Sci. 2023, 13, 2620 9 of 18

f (x) =
xk

a + xk

g(x) =
1

1 + bxh ,

where a = 0.01, b = 100, and k = h = 2.

Algorithm 1 Bio-Inspired Sleep Decision Algorithm

1: At the beginning of time slot t:
2: MECS i collects µj(t)s and dj(t)s from all j ∈ Ni.
3: µ̄i(t) = 1

|Ni | ∑j∈Ni
µj(t).

4: d̄i(t) = 1
|Ni | ∑j∈Ni

dj(t).

5: k = 0, εd = 10−4.
6: n′i(k) = ni(t), d′i(k) = di(t), δd = εd + 1.
7: while k < K || δd > εd do
8: n′i(k + 1) = (1− ln)n′i(k) + ln f (d̄i(t)).

9: d′i(k + 1) = (1− ld)d′i(k) + ldg
(

n′i(k + 1) µi(t)
µ̄i(t)

)
.

10: δd = d′i(k + 1)− d′i(k)
11: k ++.
12: ni(t) = n′i(k− 1).
13: di(t) = d′i(k− 1).
14: Draw a random number from a uniform distribution: ps = U[0, 1].
15: if ps ≤ di(t) then
16: Set βi(t) = 0.
17: Transfer tasks in Qi(t) to other MECSs by calling task_transfer() in Algorithm 2.
18: else
19: Set βi(t) = 1.
20: Send βi(t) to neighboring MECS j, ∀j ∈ Ni.

After acquiring an updated Delta activation level di(t) (line 13), a MECS i stochastically
determines whether to sleep during time slot t (Lines 14–20). After making a sleep decision,
MECS i sends βi(t) to the neighboring MECSs.

When MECS i decides to sleep, it transfers the tasks in Qi(t) to the neighboring MECSs.
The task transfer process is presented in Algorithm 2. As reported in [32], unnecessary
task transfers ensue after a load of a server is transferred to the least-loaded neighbor
because this neighbor may become overloaded by accommodating too much load from its
neighbors. To avoid such an adverse situation, the tasks in MECS i must be distributed to
each neighboring MECS that decides to be active, and the number of tasks transferred from
MECS i to MECS j should be determined to be inversely proportional to the utilization of
MECS j. Among the neighboring MECSs of MECS i, we denote the set of MECSs that are
active during time slot t as NON

i (t). MECS i determines the proportion of tasks that will be
transferred to MECS j ∈ NON

i (t) as follows:

ηi,j(t) =
1/µj(t)

∑k∈NON
i (t) 1/µk(t)

. (9)

Subsequently, MECS i transfers ηi,j(t)Qi(t) number of tasks to MECS j. When MECS
j receives tasks from MECS i, the length of the queue increases from Qj(t) to Qj(t) +
ηi,j(t)Qi(t). If Qj(t) + ηi,j(t)Qi(t) ≥ qth, the optimization constraints are violated. There-
fore, in this case, MECS j informs MECS i of the situation by sending a negative notification
to i to force MECS i to remain active during time slot t.

Appl. Sci. 2023, 13, 2620 10 of 18

Algorithm 2 Task transfer algorithm

1: At the beginning of a time slot t:
2: MECS i collects β j(t)s from all j ∈ Ni.
3: Determine NON

i (t) = {j : j ∈ Ni ∧ β j(t) = 1}.
4: while j ∈ NON

i (t) do

5: ηi,j(t) =
1/µj(t)

∑k∈NON
i (t)

1/µk(t)
.

6: Send ηi,j(t)Qi(t) amount of tasks to a MECS j.
7: if Receive a negative notification from j then
8: Remain active (βi(t) = 1).

Our sleep decision algorithm converges the sleep-control vector to a stable point. This
is attributed to the fact that this algorithm can regulate the number of sleeping MECSs
even though it operates in a distributed manner. More specifically, MECS j (deciding to be
active) prevents MECS i, which decides to sleep from going to sleep when the length of the
queue of MECS j becomes larger than qth (if it accommodates the tasks from MECS i).

4.2. MECS Activation Process

The workload imposed on active MECSs increases with the increase in the number
of sleeping MECSs, which increases the task queue of the active MECS. Therefore, if an
active MECS is likely to violate the constraint associated with the task service delay, the
MECS must wake up the neighboring MECSs that are in the sleep state. The task arrival
process is stochastic, the dynamics of which are unknown in advance. Therefore, to reduce
unnecessary wake-up, we assign a threshold value qon

th to an active MECS to determine
whether to wake up sleeping MECSs. Let us denote the maximum task queue size of a
MECS i as Qmax

i . Then, if Qi(t)/Qmax
i > qon

th at the start of time slot t, an active MECS i
considers that it is highly likely to violate the task service latency during a time slot. Thus,
an active MECS starts the wake-up process when the following condition is satisfied at the
beginning of a time slot.

Qi(t)
Qmax

i
> qon

th . (10)

The threshold value qon
th is an operational parameter that can be configured by a MEC

system operator. This value results in a trade-off between the amount of energy saved and
the possibility of quality of service (QoS) violation. As qon

th increases, the sleeping time of a
MECS increases because the time at which an active MECS wakes up a sleeping MECS is
suspended. Therefore, the amount of energy saved increases with the increase in qon

th while
the possibility of QoS violation increases as qon

th increases.
In this study, we adopt a conservative approach to the MECS activation process. We

assume that a MEC system operator satisfying the QoS constraint (i.e., the length of the
task queue) is more important than the amount of saved energy. Therefore, when an active
MECS decides to begin the activation process, it wakes up all the sleeping neighbors and
distributes the tasks in its task queue fairly to all the MECSs that were woken up to reduce
the risk of QoS violation. Specifically, if a MECS i wakes up nw

i = |Ni − NON
i (t)| sleeping

neighbors, the MEC transfers Qi(t)/(nw
i + 1) number of tasks to the MECSs that were

woken-up.

4.3. Algorithm Complexity

The time complexity of our bio-inspired sleep decision algorithm presented in Al-
gorithm 1 is analyzed as follows. At the beginning of each time slot, a MECS i collects
µj and dj for all j ∈ Ni and calculates their averages (line 3 and line 4). Thus, the time
complexity of the averaging operation becomes O(|Ni|). The lines from 7 to 11 determine
the Delta activation level. Since it takes at most K iterations before the Delta activation level
is decided, its time complexity is less than or equal to O(K). In [33], it is shown that the

Appl. Sci. 2023, 13, 2620 11 of 18

Delta–Notch signaling model converges to a stable state after a few rounds. To investigate
the temporal behavior, we measure δd = d′i(k + 1)− d′i(k) (line 10) for different MECSs
at different time slots under the default simulation environment presented in Section 5.
We depict the result in Figure 2. We can observe that the Delta activation level converges
(i.e., δd ≈ 0) exponentially fast (i.e., after 3 iterations). This behavior is consistent with that
in [21] in that the Delta–Notch model stabilizes exponentially.

Figure 2. Convergence property of the Delta activation level (the time slots t1 and t2 are randomly
selected and t1 6= t2).

We also note that K is a constant and not related to a system size such as the number
of MECSs and the number of tasks. Since K can be configured as a small positive integer,
we can say that the worst-case time complexity of the operation determining the Delta
activation level (lines 7–11) is O(K) = O(1). The other lines in Algorithm 1 are assignment
operations or comparison operations whose time complexity is O(1). Therefore, the worst-
case time complexity of our bio-inspired sleep decision algorithm presented in Algorithm 1
is O(|Ni|).

In our task transfer algorithm presented in Algorithm 2, NON
i is determined by ex-

amining β js sent from all the neighboring MECSs (j ∈ Ni). Therefore, its time complexity
becomes O(|Ni|). In lines 4 to 8 in Algorithm 2, tasks are transferred from a MECS de-
ciding to sleep to its active neighbors. Therefore, its time complexity is O(|NON

i |). Since
NON

i ⊆ Ni, the worst-case time complexity of our task transfer algorithm becomes O(|Ni|).
In our MECS activation process, an active MECS compares its queue length with

a given threshold to determine whether to wake up its sleeping neighbors or not. This
comparison operation takes O(1). Once a MECS i decides to wake up its sleeping neighbors,
it wakes up all of the sleeping neighbors and fairly distributes the tasks in its task queue
to each sleeping neighbor. If we denote the set of sleeping neighbors of an active MECS i
as Ns

i , the task distribution operation takes O(|Ns
i |). Since Ns

i ⊆ Ni, the worst-case time
complexity of our MECS activation algorithm becomes O(|Ni|). Therefore, the worst-case
time complexity of our sleep control mechanisms is O(|Ni|).

5. Performance Evaluation

In this section, we analyze the performance of the proposed method through sim-
ulation studies. The default parameter values are as follows, if not specified otherwise.
We deploy |N| = 10 MECSs randomly. We set |Ni| = 6 and select randomly the member
of each Ni from N. We set Qmax = 100, qON

th = 0.7, Pm = 20 Watt, and α = 0.5. We also
configure bi,j = bi = 300 Mbps. We vary the workload (ρ) imposed on a MEC system.
The workload is defined as a proportion of the total system capacity ∑i∈N bi during each
time slot. Given ρ, a1,i(t) is configured randomly as 1

|N| ∑i∈N biρU[0, 1], where U[0, 1] is the
Uniform distribution.

Appl. Sci. 2023, 13, 2620 12 of 18

5.1. Performance Comparison

We compared the performance of the proposed method with those of [7] which use
Lyapunov optimization framework. Henceforth, we name the method in [7] as REJO.

In Figure 3, we compare the total energy consumption of a MEC system for different
workloads. As the workload imposed on a system increases, the total energy consumed by
MECSs increases. However, we observe in the figure that our method can reduce the total
energy consumption for all the workloads. For example, when ρ = 1.0 and |N| = 10, our
method reduces the total energy consumption by more than 13%.

(a) (b)

Figure 3. Comparison of energy consumption in a MEC system. (a) 10 MECSs; (b) 20 MECSs.

In Figure 4, we compare the average service delay of our method with that of REJO.
The task service delay obtained by our method is longer than that when REJO is used.
However, when we examine the y-axis, the difference is marginal. We also show the
standard deviation of the service delay in Figure 4. We observe that our method reduces
the standard deviation compared with REJO. For example, when ρ = 1.0 and |N| = 10, our
method reduces the variations in the service delay by more than 35%.

(a) (b)

Figure 4. Comparison of service delays. (a) 10 MECSs; (b) 20 MECSs.

To inspect the reason, we investigate the distribution of each Qi (i ∈ N) when ρ = 1.0
and |N| = 10. We show the result in Figure 5. To make the comparison easier, we purposely
configure the range of the y-axis in Figure 5a to be the same as that in Figure 5b.

Since our method makes a sleep decision by using the relative load level, our method
reduces the first to the third quartile values of each MECS’s Qi. Our method also reduces
the number of outliers in each Qi. By reducing the variation in Qi, a MEC system can
provide a more stable service delay when our method is used than when REJO is used.

Appl. Sci. 2023, 13, 2620 13 of 18

(a) (b)

Figure 5. Distribution of the tasks queue length (|N| = 10, ρ = 1.0). (a) REJO; (b) Proposed.

5.2. Impact of Backhaul Network

In this section, we inspect the influence of the backhaul network bandwidth (i.e., bi,j)
on the performance of the sleep control mechanism. We set bi = 300 Mbps and vary bi,j.
In Figure 6, we show the total energy consumed in a MEC system for various bi,js (300,
600, and 1000 Mbps). We can observe in the figure that the effect of bi,j on the total energy
consumed in a MEC system is not so significant. The energy consumed by a MECS is
subdivided into the energy consumed for processing tasks (ep

i) and the energy to transfer
tasks to other MECSs (etr

i). etr
i is influenced by the number of tasks transferred from a

MECS to its neighbors, which does not depend on bi,j. In the case of ep
i , it increases with

the utilization of a MECS and µi is affected by ai = a1,i + a2,i. The tasks transferred among
MECSs affect a2,i. However, even though tasks are distributed among the MECSs in an
uneven manner, the total number of tasks imposed on a system does not change. Therefore,
the total energy consumed in a MEC system is not affected by bi,j.

(a) (b)

Figure 6. Impact of the backhaul network bandwidth on the total energy consumption. (a) 10 MECSs;
(b) 20 MECSs.

Figure 7 shows the impact of bi,j on the average task service delay. As can be seen
in the figure, the average task service delay decreases as the bandwidth of a backhaul
network increases. The tasks service delay incurred by a MECS i during a time slot t is
dp

i (t) = (Qi(t) + ai(t))/bi. When a MECS i decides to sleep, it transfers the tasks in its
task queue to its active neighbors, which causes a task transfer delay dtr

i = ηi,jQi/bi,j. As
bi,j increases, dtr

i decreases. Therefore, the average task service delay in a MEC system
decreases as the communication bandwidth of a backhaul network increases.

Appl. Sci. 2023, 13, 2620 14 of 18

(a) (b)

Figure 7. Impact of network bandwidth on the task service delay. (a) 10 MECSs; (b) 20 MECSs.

5.3. Parameter Effect

In this subsection, we present the performance of our sleep control mechanisms in
various N,|Ni|, ρ, and qON

th when the bandwidth of a backhaul network is much higher than
the computing capability of a MECS (i.e., bi,j >> bi). In Figure 8, we display the total energy
consumption in a scenario, in which all MECSs can directly communicate with each other.
The workload rate of the system varied from 0.6 to 1.5. We used ten and twenty MECSs
in the system. The results revealed that the proposed method reduced the total energy
consumption by approximately 31%, on average, compared with the case where no sleep
control is used. However, the variance in the energy consumed was larger than that when
sleep control was not used. This is because the difference in energy consumption between
the active and the sleeping MECSs increased when sleep control was activated. In the
figure, sleep ctrl with a 50% threshold and sleep ctrl with a 70% threshold indicate that qON

th is set
to 50% and 70% of Qmax, respectively. In our experiments, we set Qmax to 100. We observed
that the energy consumed in the network with different values of qON

th were similar.

(a) (b)

Figure 8. Total energy consumed when all MECSs were able to directly communicate with each other.
(a) when the number of MECSs is 10; (b) when the number of MECSs is 20.

In Figures 9 and 10, we display the total energy consumed in the system when
|Ni| ≤ |N|. In these figures, we configure qON

th as 0.5 or 0.7. When the range of the
neighborhoods (i.e., |Ni|) changes, the average and the standard deviation of the energy
consumption do not differ significantly. A similar pattern is observed when the number
of MECSs increases. The standard deviation of the energy consumption becomes larger
as qON

th increases. This is attributed to that qON
th determines the time when an active MECS

wakes up sleeping neighbors.
In Figures 11 and 12, we compare the Qis under different workloads for a neighbor-

hood range of four and six. In the figures, qON
th is set to 0.5 or 0.7 for the MECS under

Appl. Sci. 2023, 13, 2620 15 of 18

sleep control. With each qON
th , we measure the length of the queue of each MECS when the

workload is 1.0 or 1.5. The first to the third quartile values of each Qi are located below
50% or 70% of Qmax. As the workload increases, the sleeping MECS numbers decrease, and
the non-sleeping MECS loads become relatively even. When qON

th is 0.7, the sleeping MECS
numbers decrease with respect to the case in which qON

th = 0.5, and the standard deviation
of the queue length decreases.

(a) (b)

Figure 9. Total energy consumption when the neighborhood range varies and qth = 0.5. (a) The
number of MECSs is 10; (b) The number of MECSs is 20.

(a) (b)

Figure 10. Total energy consumption when the neighborhood range varies and qth = 0.7. (a) The
number of MECSs is 10; (b) The number of MECSs is 20.

(a)

Figure 11. Cont.

Appl. Sci. 2023, 13, 2620 16 of 18

(b)

Figure 11. Length of the queue per server for 10 MECSs with workload rate = 1.0. (a) The neighbor-
hood range is 4 (qth = 0.5 or 0.7); (b) The neighborhood range is 6 (qth = 0.5 or 0.7).

(a)

(b)

Figure 12. Length of the queue per server for 10 MECSs with workload rate = 1.5. (a) The neighbor-
hood range is 4 (qth = 0.5 or 0.7); (b) The neighborhood range is 6 (qth = 0.5 or 0.7).

6. Conclusions and Future Work

In this study, we addressed the sleep control problem pertaining to MECS in a multi-
access edge computing system to reduce energy consumption while maintaining task
service delay at a reasonable level. To reduce the complexity of the optimization-based algo-
rithms, we adopted the Delta–Notch inter-cell signaling model as a lightweight distributed
approach. We evaluated the performance of the proposed approach and analyzed the im-
pact of parameters, such as the range of the neighborhood, workload rate, and threshold to
determine the activation of sleep control. The experimental results revealed that compared
with a conventional method, the proposed method reduces energy consumption in a MEC
system by more than 13% while providing a comparable service delay. In addition, our
method reduces the variations in the service delay by more than 35%.

As our future works, we will investigate the optimal wake-up policy that determines
the set of MECSs to be woken up and the number of tasks to be transferred to the woken-up
MECSs. In addition, we will scrutinize the impact of heterogeneous types of tasks with
different QoS requirements on our sleep control mechanism.

Appl. Sci. 2023, 13, 2620 17 of 18

Author Contributions: Conceptualization, J.P.; Software, Y.L.; Writing—original draft, J.P.; Writing—
review & editing, Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korean government (MSIT) (no. 2022R1F1A1065371). The present research was
conducted using a research grant from Kwangwoon University in 2022.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Spinelli, F.; Mancuso, V. Toward Enabled Industrial Verticals in 5G: A Survey on MEC-Based Approaches to Provisioning and

Flexibility. IEEE Commun. Surv. Tutor. 2021, 23, 596–630. [CrossRef]
2. Rodrigues, T.K.; Suto, K.; Nishiyama, H.; Liu, J.; Kato, N. Machine Learning Meets Computation and Communication Control in

Evolving Edge and Cloud: Challenges and Future Perspective. IEEE Commun. Surv. Tutor. 2020, 22, 38–65. [CrossRef]
3. Filali, A.; Abouaomar, A.; Cherkaoui, S.; Kobbane, A.; Guizani, M. Multi-Access Edge Computing: A Survey. IEEE Access 2020, 8,

197017–197046. [CrossRef]
4. Freitag, C.; Lee, M.B.; Widdicks, K.; Knowles, B.; Blair, G.; Friday, A. The Climate Impact of ICT: A Review of Estimates, Trends

and Regulations, Lancaster University. arXiv 2020, arXiv:2102.02622.
5. Wang, S.; Zhang, X.; Yan, Z.; Wenbo, W. Cooperative Edge Computing with Sleep Control under Nonuniform Traffic in Mobile

Edge Networks. IEEE Internet Things J. 2019, 6, 4295–4306. [CrossRef]
6. Liang, C.; Hey, Y.; Yu, F.R.; Zhao, N. Energy-Efficient Resource Allocation in Software-Defined Mobile Networks with Mobile Edge

Computing and Caching. In Proceedings of the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), Atlanta, GA, USA, 1–4 May 2017.

7. Chen, L.; Zhou, S.; Xu, J. Energy Efficient Mobile Edge Computing in Dense Cellular Networks. In Proceedings of the 2017 IEEE
International Conference on Communications (ICC), Paris, France, 21–25 May 2017.

8. Zheng, C.; Sicker, D.C. A Survey on Biologically Inspired Algorithms for Computer Networking. IEEE Commun. Surv. Tutor. 2013,
15, 1160–1191. [CrossRef]

9. Hamrioui, S.; Lorenz, P. Bio Inspired Routing Algorithm and Efficient Communications within IoT. IEEE Netw. 2017, 31, 74–79.
[CrossRef]

10. Park, J.; Lim, Y. Online Service-Time Allocation Strategy for Balancing Energy Consumption and Queuing Delay of a MEC Server.
Appl. Sci. 2022, 12, 4539. [CrossRef]

11. Wu, J.; Wang, L.; Pei, Q.; Cui, X.; Liu, F.; Yang, T. HiTDL: High-Throughput Deep Learning Inference at the Hybrid Mobile Edge.
IEEE Trans. Parallel Distrib. Syst. 2022, 33, 4499–4514. [CrossRef]

12. Chen, S.; Jiao, L.; Liu, F.; Wang, L. EdgeDR: An Online Mechanism Design for Demand Response in Edge Clouds. IEEE Trans.
Parallel Distrib. Syst. 2022, 33, 343–358. [CrossRef]

13. Gao, B.; Zhou, Z.; Liu, F.; Xu, F.; Li, B. An Online Framework for Joint Network Selection and Service Placement in Mobile Edge
Computing. IEEE Trans. Mob. Comput. 2022, 21, 3836–3851. [CrossRef]

14. Chen, Q.; Zheng, Z.; Hu, C.; Wang, D.; Liu, F. On-Edge Multi-Task Transfer Learning: Model and Practice with Data-Driven Task
Allocation. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 1357–1371. [CrossRef]

15. Pan, L.; Wang, L.; Chen, S.; Liu, F. Retention-Aware Container Caching for Serverless Edge Computing. In Proceedings of the
IEEE Conference on Computer Communications (INFOCOM’22), London, UK, 2–5 May 2022.

16. Chen, S.; Wang, L.; Liu, F. Optimal Admission Control Mechanism Design for Time-Sensitive Services in Edge Computing. In
Proceedings of the IEEE Conference on Computer Communications (INFOCOM’22), London, UK, 2–5 May 2022.

17. Pei, Q.; Chen, S.; Zhang, Q.; Zhu, X.; Liu, F.; Jia, Z.; Wang, Y.; Yuan, Y. CoolEdge: Hotspot-relievable Warm Water Cooling
for Energy-efficient Edge Datacenters. In Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’22), Lausanne, Switzerland, 28 February–4 March 2022.

18. Jin, P.; Fei, X.; Zhang, Q.; Liu, F.; Li, B. Latency-aware VNF Chain Deployment with Efficient Resource Reuse at Network Edge. In
Proceedings of the IEEE Conference on Computer Communications (INFOCOM’20), Toronto, ON, Canada, 6–9 July 2020.

19. Li, M.; Zhang, Q.; Liu, F. Finedge: A Dynamic Cost-efficient Edge Resource Management Platform for NFV Network, In Proceed-
ings of the IEEE/ACM 28th International Symposium on Quality of Service (IWQoS’20), Hang Zhou, China, 15–17 June 2020.

20. Yang, Y.; Hu, Y.; Gursoy, M.C. Deep Reinforcement Learning and Optimization Based Green Mobile Edge Computing. In
Proceedings of the 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA,
9–12 January 2021.

http://doi.org/10.1109/COMST.2020.3037674
http://dx.doi.org/10.1109/COMST.2019.2943405
http://dx.doi.org/10.1109/ACCESS.2020.3034136
http://dx.doi.org/10.1109/JIOT.2018.2875939
http://dx.doi.org/10.1109/SURV.2013.010413.00175
http://dx.doi.org/10.1109/MNET.2017.1600282
http://dx.doi.org/10.3390/app12094539
http://dx.doi.org/10.1109/TPDS.2022.3195664
http://dx.doi.org/10.1109/TPDS.2021.3087360
http://dx.doi.org/10.1109/TMC.2021.3064847
http://dx.doi.org/10.1109/TPDS.2019.2962435

Appl. Sci. 2023, 13, 2620 18 of 18

21. Zhu, N.; Xu, X.; Han, S.; Lv, S. Sleep-Scheduling and Joint Computation-Communication Resource Allocation in MEC Networks
for 5G IIoT. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China,
29 March–1 April 2021.

22. Bolla, R.; Bruschi, R.; Carrega, A.; Davoli, F.; Lombardo, C. Trading off Power Consumption and Delay in the Execution of
Network Functions by Dynamic Activation of Processing Units. In Proceedings of the 2022 IEEE 8th International Conference on
Network Softwarization (NetSoft), Milan, Italy, 27 June–1 July 2022.

23. Wu, B.; Zeng, J.; Shao, S.; Ni, W.; Tang, Y. New Game-Theoretic Approach to Decentralized Path Selection and Sleep Scheduling
for Mobile Edge Computing. IEEE Trans. Wirel. Commun. 2022, 21, 6125–6140. [CrossRef]

24. Ranadheera, S.; Maghsudi, S. Ekram Hossain, Computation Offloading and Activation of Mobile Edge Computing Servers: A
Minority Game. IEEE Wirel. Commun. Lett. 2018, 7, 688–691. [CrossRef]

25. Fragkos, G.; Lebien, S.; Tsiropoulou, E.E. Artificial Intelligent Multi-Access Edge Computing Servers Management. IEEE Access
2020, 8, 171292–171304. [CrossRef]

26. Badri, H.; Bahreini, T.; Grosu, D.; Yang, K.s. Energy-Aware Application Placement in Mobile Edge Computing: A Stochastic
Optimization Approach. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 909–922. [CrossRef]

27. Zhang, Z.; Long, K.; Wang, J.; Dressler, F. On Swarm Intelligence Inspired Self-Organized Networking: Its Bionic Mechanisms,
Designing Principles and Optimization Approaches. IEEE Commun. Surv. Tutor. 2014, 16, 513–537. [CrossRef]

28. Bitam, S.; Mellouk, A.; Zeadally, S. Bio-Inspired Routing Algorithms Survey for Vehicular Ad Hoc Networks. IEEE Commun. Surv.
Tutor. 2015, 17, 843–867. [CrossRef]

29. Saleem, K.; Alabduljabbar, G.M.; Alrowais, N.; Al-Muhtadi, J.; Imran, M.; Rodrigues, J.J.P.C. Bio-Inspired Network Security for
5G-Enabled IoT Applications. IEEE Access 2020, 8, 229152–229160. [CrossRef]

30. Collier, J.R.; Monk, N.A.; Maini, P.K.; Lewis, J.H. Pattern Formation by Lateral Inhibition with Feedback: A Mathematical Model
of Delta–Notch Inter-Cellular Signalling. J. Theor. Biol. 1996, 183, 429–446. [CrossRef]

31. Koon, Y.L.; Zhang, S.; Rahmat, M.B.; Koh, C.G.; Chiam, K. Enhanced Delta–Notch Lateral Inhibition Model Incorporating
Intracellular Notch Heterogeneity and Tension-Dependent Rate of Delta–Notch Binding that Reproduces Sprouting Angiogenesis
Patterns. Sci. Rep. 2018, 8, 9519. [CrossRef] [PubMed]

32. Park, J.; Kim, Y.; Lee, J. Mobility Load Balancing Method for Self-Organizing Wireless Networks Inspired by Synchronization and
Matching With Preferences. IEEE Trans. Veh. Technol. 2018, 67, 2594–2606. [CrossRef]

33. Liu, F.; Sun, D.; Murakami, R.; Matsuno, H. Modeling and Analysis of the Delta–Notch Dependent Boundary Formation in the
Drosophila Large Intestine. BMC Syst. Biol. 2017, 11, 43–60. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TWC.2022.3146514
http://dx.doi.org/10.1109/LWC.2018.2810292
http://dx.doi.org/10.1109/ACCESS.2020.3025047
http://dx.doi.org/10.1109/TPDS.2019.2950937
http://dx.doi.org/10.1109/SURV.2013.062613.00014
http://dx.doi.org/10.1109/COMST.2014.2371828
http://dx.doi.org/10.1109/ACCESS.2020.3046325
http://dx.doi.org/10.1006/jtbi.1996.0233
http://dx.doi.org/10.1038/s41598-018-27645-1
http://www.ncbi.nlm.nih.gov/pubmed/29934586
http://dx.doi.org/10.1109/TVT.2017.2769704
http://dx.doi.org/10.1186/s12918-017-0455-8
http://www.ncbi.nlm.nih.gov/pubmed/28950873

	Introduction
	Related Works
	Resource Management in a MEC System
	Energy Saving in a MEC System
	Bio-Inspired Networking

	System Model
	Service Delay
	MECS Energy Consumption
	Problem Formulation
	Overview of Sleep Control Mechanism

	Bio-Inspired MECS Sleep Control Method
	Sleep Decision by a MECS
	MECS Activation Process
	Algorithm Complexity

	Performance Evaluation
	Performance Comparison
	Impact of Backhaul Network
	Parameter Effect

	Conclusions and Future Work
	References

