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Abstract: Despite the growing capabilities of the short-term prediction of photovoltaic power, we still
face two challenges to longer time-range predictions: error accumulation and long-term time series
feature extraction. In order to improve the longer time range prediction accuracy of photovoltaic
power, this paper proposes a seq2seq prediction model TCNformer, which outperforms other state-
of-the-art (SOTA) algorithms by introducing variable selection (VS), long- and short-term time series
feature extraction (LSTFE), and one-step temporal convolutional network (TCN) decoding. A VS
module employs correlation analysis and periodic analysis to separate the time series correlation
information, LSTFE extracts multiple time series features from time series data, and one-step TCN
decoding realizes generative predictions. We demonstrate here that TCNformer has the lowest mean
squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) in
contrast to the other algorithms in the field of the short-term prediction of photovoltaic power, and
furthermore, the effectiveness of each module has been verified through ablation experiments.

Keywords: transformer; SkipGRU; TCN; photovoltaic power prediction; time series data prediction

1. Introduction

At present, with the rapid development of perovskite solar cell technology [1,2], the
maximum efficiency [3] and stability [4] of photovoltaic power have been greatly improved.
Photovoltaic power is increasingly important in the field of new energy. According to
the data of the International Energy Agency (IEA), the growth rate of global photovoltaic
installed capacity has reached as much as 49%. It is estimated that global photovoltaic
power will reach 16% of the total power in 2050 [5]. At the same time, China is promoting
the construction of a new power system with new energy as the principal part. Photovoltaic
power using solar energy is an important branch of new energy and one of the important
means for China to achieve the goal of carbon neutrality. After the large-scale integration
of photovoltaic power stations into the energy network, the manner by which to accurately
predict photovoltaic power and then accordingly dispatch the power grid has become
an urgent problem to be addressed. Therefore, improving the prediction accuracy of
photovoltaic power is significant for improving the operation efficiency of power stations
themselves and for maintaining the stability of power grids.

Many scholars in China and abroad have carried out a lot of research on the prediction
of photovoltaic power. At present, the mainstream prediction methods focus on traditional
random learning and deep learning methods. In the field of traditional random learning,
literature [6] uses historical weather data and historical power data as inputs of a support
vector machine (SVM) to build a short-term photovoltaic power prediction model, which
has a higher level of accuracy than the traditional autoregressive model (AR) or the radial
basis function (RBF) models. One study [7] proposed a model based on Support Vector
Regression (SVR) and achieved better prediction performance. In the field of deep learning,
recurrent neural network (RNN) structures, such as long short-term memory (LSTM), gated
recurrent unit (GRU), and seq2seq structural models, are widely used to analyze and predict
time series data for such applications as stock price prediction [8], gold price prediction [9],
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traffic flow [10], voice classification [11], etc. The prediction of photovoltaic power can
also be regarded as a kind of time series data prediction, so the above algorithms have
been used to predict short-term global horizontal irradiance (GHI) or comprehensive solar
loads [12,13]. Furthermore, in order to ensure the accuracy as much as possible and reduce
the training time, the GRU network has been applied to short-term photovoltaic power
prediction [14], and the multivariable GRU model [15–17] has been used to predict solar
irradiance or power. Some hybrid models have been applied in the field of photovoltaic
power generation prediction, such as the combination of a deep learning model and a
heuristic algorithm [18,19], the combination of a deep learning model and a traditional
random learning method [20,21], the combination of multiple deep learning models [22,23],
etc. The seq2seq structural model represented by the Transformer series model takes the
photovoltaic power prediction problem as a experimental sample of its model, such as
Autoformer and Informer [24,25]. However, in these models, usually the photovoltaic
power prediction data are only used for prediction; that is, the corresponding weather data
is not fully used, and the time series features of the data are not fully extracted.

Compared with traditional LSTM, GRU, and other models, the Transformer series
seq2seq model can avoid the problem of error accumulation and read longer input data [26],
but it is still limited by the length of the input data. It is difficult for the seq2seq series
model to capture longer time series features. For this problem, [27] proposes long- and
short-time series network (LSTnet) models. The Skip recurrent neural network (Skip RNN)
structure is used to capture more long-term time series features.

Based on the above analysis, the current research mainly focuses on the prediction of
data within a few hours. When applied to predict a longer time range [28] for photovoltaic
power, these methods typically suffer from two major challenges: error accumulation and
long-term time series feature extraction in order to simultaneously extract multiple time
series features in the historical data of photovoltaic power and weather factors, and to
avoid error accumulation. Inspired by the application of LSTM, LSTnet, and Transformer
series models in the field of photovoltaic power prediction, this paper proposes a long and
short temporary correction network (TCNformer), and we verified the model by using the
real data of a photovoltaic station in Australia. According to the experimental results, the
TCNformer model greatly optimizes various indicators compared with LSTM, SkipGRU,
Transformer, and Informer, improving the accuracy of photovoltaic power prediction.

The contributions of this paper include the following:

(1) According to the different impacts of various weather factors on photovoltaic power
generation, a VS module was designed to screen and process data through correlation
analysis and periodic analysis of data.

(2) Aiming at the challenge to extract long-term time series features due to the limitation
of the traditional Transformer, a LSTFE module was designed to extract multiple time
series features through LSTM and a SkipGRU network.

(3) In order to improve the temporal feature extraction and avoid error accumulation,
one-step temporal convolutional network (TCN) decoding was used to realize the
generative prediction.

2. Preliminary
2.1. Time Series Features of Photovoltaic Power Data

According to the literature [29,30], the current photovoltaic power prediction problem
is usually defined as a time series data prediction problem. However, as the time granularity
increases, the degree of the photovoltaic power data affected by external factors increases,
and the self-similarity decreases. The basic photovoltaic power data studied in this paper
are collected at a 15-min granularity, and they are greatly affected by external factors that
have a certain regularity and contingency, so the statistical features of photovoltaic power
data show certain periodicity, abruptness, and contingency.

As shown in Figure 1, the 4-day power history data of a photovoltaic station were
randomly selected, showing obvious periodicity and volatility.
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Figure 1. Graph of 15-min data from 4 continuous days.

As shown in Figure 2, in order to explore the long-term time series features of photo-
voltaic power data, this study employed the classic skills of a seasonal prediction model
to select the historical data of a photovoltaic power station at 8:30 for 4 consecutive years.
Although they show greater volatility, a certain periodicity can still be seen.
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2.2. LSTM and SkipGRU

LSTM is a classic model in the field of time series prediction. In the prediction process,
LSTM updates the internal state and the external state at the same time, mainly through
three gates: a forgetting gate, an input gate, and an output gate.

The GRU network [31] is a variant of the LSTM network, which combines the three
gates of the LSTM unit into two gates. The SkipGRU module skips the connection layer. By
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sampling at intervals, it can look back for a longer period of time when the length of the
sampling sequence remains unchanged so as to capture the long-term features.

2.3. Self-Attention Mechanism and ProbSparse Self-Attention Module

The calculation formula of a traditional self-attention mechanism is as follows:

Q, K, V = XWQ, XWK, XWV (1)

A(Q, K, V) = so f tmax
(

QKT
√

d

)
V (2)

In the formula, WQ, WK, and WV are the three weight matrices. After random initial-
ization, three vectors, Q, K, and V, are generated according to Equation (1), and then the
result A(Q, K, V) weighted ion mechanism is calculated according to Equation (2). The
result contains the information via the attention of all of the input data.

The ProbSparse Self-Attention proposes to calculate the sparsity measurement of each
query using KL divergence:

M(qi, K) = Ln ∑LK
j=1 exp

(
qikT

j√
d

)
− 1

LK
∑LK

j=1

qikT
j√
d

(3)

Based on the calculated sparsity metric, each key focuses on only u main queries to
achieve probsparse self-attention:

A(Q, K, V) = so f tmax

(
QKT
√

d

)
V (4)

In the formula, Q is a sparse matrix with the same size as q, and it only contains top-u
queries under sparse metric M(q, K).

2.4. Temporal Convolutional Network (TCN) Module

TCN is a variant of a convolutional neural network for processing sequence modeling
tasks. It combines RNN and CNN architectures. TCN performs better than standard
recursive networks on different tasks and data sets, and it demonstrates more long-term
and efficient memory. The main component of the TCN network is Dilate Causal Conv.
Other components are similar to the Feedforward module, which plays a role in deepening
the linear features.

2.5. Problem Definition

The present study abstracts the photovoltaic power prediction problem as a multistep
time series prediction problem, which can be defined as a data series with an input of I × n
and an output of O × 1, where I is the length of the input data, and O is the length of the
output data. For example, under a 15-min sampling frequency, if the historical data of
photovoltaic power in the past 30 days are used to predict the photovoltaic power data in
the future 24 h, the I length is 2880, and the O length is 96.

3. Methodology
3.1. Transformer Based TCNformer Solution

For the time series features of photovoltaic power data, this paper proposed a TCN-
former prediction model. The structure of the model is shown in Figure 3. Based on the
traditional Transformer architecture, the TCNformer model mainly includes four modules:
a variable selection (VS) module, an long- and short-time series feature extraction (LSTFE)
module, an Encoder, and a Decoder.
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The overall TCNformer network design follows the traditional Transformer structure, in
which the Encoder module and the Decoder module are designed with a multilayer structure.

3.2. Variable Selection (VS) Module

Combined with the information shown in Figures 1 and 2, the historical data of
photovoltaic power not only have timing features in the short term, but they also have
certain timing features over the long term. Considering the length of the long-term cycle (as
shown in Figure 2, the cycle is close to 365 days) and the subsequent optimization problems,
it is difficult for the traditional model to capture these timing features at the same time.
So, we designed a VS module to divide the input sequence into three dimensions through
preliminary analysis and selection of the historical data. Then, the results from the VS
module are transferred to the LSTFE module for feature fusion.

dl , ds, dt = VariableSelection(data, input) (5)

In the formula, data ∈ RI×n, dl ∈ RIl×nl , ds ∈ RIs×ns , dt ∈ RI×nt respectively represent
preprocessed raw data, month-level time series data, week-level time series data, and day-
level time series data. n, nl , ns and nt respectively represent the number of influencing
factors. VariableSelection(·) represents the VS module, and the specific calculation method
is as follows.

Photovoltaic power data often show strong time series features. Although the volatility
is strong, they still have a certain periodicity over a longer time range. In this paper, the
Fourier transform decomposition curve of photovoltaic power data and its influencing
factor data are selected for periodicity analysis [32] in order to obtain the fluctuation periods
of different periodic curves and to provide a certain degree of reference for the analysis of
photovoltaic power prediction. The formula of the Fourier transform is as follows:

X(k) = ∑N−1
n=0 x(n)WnK

N , k = 0, 1, . . . , N − 1 (6)

x(n) = (1/N)∑N−1
n=0 X(k)W−nK

N , k = 0, . . . , N − 1 (7)

WnK
N = e−j(2π/N)kn (8)

X(k) represents the Fourier series, x(n) represents the Fourier coefficient, WnK
N repre-

sents the complex function, k represents the x coordinate in the frequency domain, and N
represents the period.

Photovoltaic power is correlated with a large number of weather factors, especially the
strong correlation between solar radiation intensity and photovoltaic power. In this study,
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the Pearson correlation coefficient was selected for correlation analysis, and the calculation
formula is as follows:

Px,y =
cov(x, y)

σxσy
=

E[(xi − x)(yi − y)]
σxσy

(9)

The VS module processes the month-level time series data, week-level time series
data, and day-level time series data according to the analytical results of correlation
and periodicity.

3.3. Long- and Short-Time Series Feature Extraction (LSTFE) Module

In this study, we designed an LSTFE module, and we used it to extract time series
features from each time scale. The structure of the LSTFE module is shown in Figure 4. The
LSTFE mainly includes the LSTM unit, the SkipGRU unit, and the CycleEmbed unit.
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We transferred the week-level time-series-related data and the month-level time-series-
related data to the LSTM network and the SkipGRU network in the LSTFE module for
prediction. The prediction results of the LSTM network made full use of the short-term
time series features, while the SkipGRU network made full use of the long-term time
series features:

fl = LSTM(dl) (10)

fs = SkipGRU(ds) (11)

X = Integration(dt, fl , fs) (12)

X0
en = CycleEmbed(X) (13)

In Formulas (10) and (11), fl ∈ RI and fS ∈ RI represent the month-level time series
feature extraction results and the week-level time series feature extraction results in the
LSTFE module, respectively. Using the excellent feature extraction capabilities of the LSTM
and the SkipGRU, the extracted feature results were transformed into the input length I of
the Encoder module.

Using the LSTM and the SkipGRU, the time series features at weekly and monthly
levels were extracted, but we were left wondering how to extract the time series features at
an annual level? To solve this problem, we designed the CycleEmbed module.
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The structure of the CycleEmbed unit is shown in Figure 5, including data projection,
position coding, cycle coding, and timing coding.
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Data projection is based on the results of correlation and periodic analysis, mapping
the output data to the vector of dimension, and aligning the dimensions. The alignment
tool is a one-dimensional convolution filter.

The position coding is calculated in the same way as in Transformer:

P(pos, 2j) = sin

 pos

(2Lx)
2j

dmodel

 (14)

P(pos, 2j + 1) = cos

 pos

(2Lx)
2j

dmodel

 . (15)

In Formulas (14) and (15), j ∈
{

1, . . . , | dmodel
2 |

}
, Lx is the input sequence length, and

dmodel is the Encoder input dimension.
Cycle coding is divided according to the results of periodic analysis and calculation. τ

is the number of cycle data steps, which is determined by the results of periodic analysis
T and the granularity of the data sampling time g; that is, τ = T/g. Then, the cycle
information of the input data is coded according to the results of τ; that is, there are τ
results in cycle coding, Ci = Ci%τ .

Timing coding is used to add the month and year to the coding to extract the longer
time series features. In this way, the annual time series features of the data are introduced
into the codec along with the embedding operation.

Combining the results of the four parts, the output result of the final period embedding
module is the input of the Encoder:

CycleEmbedt[i] = Ui + P(Lx(t− 1) + i) + Ci + Mi + Yi (16)



Appl. Sci. 2023, 13, 2593 8 of 16

3.4. Encoder

The input of the Encoder is the output of the LSTFE module. The structure of the
Encoder is a multilayer network structure. Each layer of the Encoder is mainly composed
of a sparse attention unit and a composition unit.

Sl,1
en = ProbSel f Attention

(
Xl−1

en

)
(17)

Sl,2
en = FeedForward

(
Sl,1

en

)
(18)

Xl
en = Sl,2

en (19)

In Formula (17), Sl,1
en ∈ RI×dmodel is the calculation result of the sparse attention mech-

anism in the Layer l Encoder module, Sl,2
en ∈ RI×dmodel is the calculation result of the

Feedforward layer in the Layer l Encoder module, and FeedForward(·) is an important
part of the traditional Transformer network structure which is used to deepen the linear
representation and better extract the features. The Feedforward structure used in this
paper is shown in Figure 6. ProbSelfAttention(·) is the sparse attention mechanism in the
Informer model [24].
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3.5. Decoder

In the Transformer model, the Encoder can be calculated in parallel, but the Decoder
needs to decode step by step. As with the LSTM model, error accumulation will occur. This
study introduced a one-step TCN decoding operation:

X0 = Zeros[O, d] (20)

Xdes = concat(X, X0) (21)

X0
de = CycleEmbed(Xdes) (22)

In Formula (20), X0 is the result of the zero-filling operation. One-step decoding di-
vides the Decoder’s input into two parts through a zero-filling operation. The first I datum
is a known sequence, the last O datum is a sequence to be predicted, and X0

de ∈ R(I+O)×dmodel

is the Decoder’s input data. At this time, part of the time information of the data to be
predicted is also transmitted to the Decoder through the period embedding module for
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prediction. The prediction process of the Decoder is similar to that of the Encoder, but it
has a more of a self-attention layer than does the Encoder.

Sl,1
de = ProbSel f Attention

(
Xl−1

de

)
(23)

Sl,2
de = Sel f Attention

(
Sl,1

de , XN
en

)
(24)

Sl,3
de = FeedForward

(
Sl,2

de

)
(25)

Xl
de = Sl,3

de (26)

In Formulas (23)–(25), Sl,1
de ∈ R(I+O)×dmodel is the calculation result of the sparse at-

tention mechanism in the Layer l Decoder module, Sl,2
de ∈ R(I+O)×dmodel is the result of

matching the sparse attention mechanism in the Layer l Decoder module with the feature
map obtained in the Encoder, and Sl,3

de ∈ R(I+O)×dmodel is the calculation result of the Feedfor-
ward layer in the Layer l Decoder module. The calculation method of FeedForward(·) and
ProbSelfAttention(·) is the same as above. SelfAttention(·) is the self-attention mechanism.
(See Section 2.3 for the calculation method.)

Xpred = TCN
(

XM
de

)
(27)

Xpred ∈ RO×dmodel is the final prediction result of TCNfomer, which uses TCN to make
generative predictions. The TCN structure used in this paper is shown in Figure 7.
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4. Experiment
4.1. Experimental Design
4.1.1. Data Preparation

The data set included an open-source data set of photovoltaic power conducted on a
solar farm in Australia [33] from 2015 to 2016. The time interval is 15 min, there are 96 data
points every day, and there are 70,176 samples in total. Each sample contains 13 data,
including a time stamp, received active energy, average value at the current stage, active
power, performance ratio, wind speed, weather temperature in Celsius, weather relative
humidity, global horizontal radiation, diffuse horizontal radiation, wind direction, daily
rainfall, global tilt of radiation, and diffuse tilt of radiation. The test set used data from the
last 2 months of 2016.

All data for two years are shown in Figure 8. The x-axis is the number of days, the
y-axis is 96 time points per day (sampling granularity is 15 min, and 24-h data processing
includes 96 event points), and the z-axis is the photovoltaic power data.
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4.1.2. Data Preprocessing

Since the dimensions between variables are not identical, linear normalization is
required for prediction, and the conversion function is:

xnorm =
xi −min(xi)

max(xi)−min(xi)
(28)

In the formula, xnorm is the preprocessing result of the data after linear normalization;
xi is the variable input value to be normalized; max(xi) is the maximum value of the
variable in the original dataset xi; and min(xi) is the minimum value of the variable in the
original data set xi.

4.1.3. Evaluation Index

In order to verify the prediction accuracy of the model, the root mean square error
(MSE), the average absolute error (MAE) and mean absolute percentage error (MAPE)
were used as the evaluation indicators of the model performance. The specific calculation
formula is:

MSE =
1
N

n

∑
i=1

(Xi − X̂i)
2 (29)

MAE =
1
N

N

∑
i=i

∣∣Xi − X̂i
∣∣ (30)

MAPE =
100%

N

N

∑
i=i

∣∣∣∣Xi − X̂i
Xi

∣∣∣∣ (31)

Xi is the actual output value of the i th data point of the test set; X̂i is the output
prediction value of the i th data point; and N is the total number of samples in the test set.

4.1.4. Experimental Environment and Parameter Setting

The experimental environment used an Intel i7-9700 K processor and an NVIDIA
GeForce RTX 3080Ti graphics card, and the algorithm model used Python 3.8 as the pro-
gramming language. The model-related network was built based on the open-source
machine learning framework PyTorch. The Python libraries directly used in the experiment
included: pandas, numpy, matplotlib, torch, math, and time. In this study, the random
search method was used to determine the final super parameter settings. The final super
parameter settings are shown in Table 1.
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Table 1. Model parameter setting.

Parameter Value

LSTM hidden layers 2
SkipGRU hidden layers 2

Encoder layers 2
LSTM hidden unit 64

SkipGRU hidden unit 64
Decoder layers 1

dmodel 512
batch-size 8
learn_rate 0.0001

epochs 2000

4.2. Variable Selection Results and Discussion

The VS module in the long- and short-sequence correction network includes correlation
analysis and periodicity analysis. The results of the correlation analysis on photovoltaic
power are shown in Table 2.

Table 2. Results of correlation analysis.

Variable p

Wind speed 0.2096
Temperature 0.4246

Humidity −0.4072
Direct radiation 0.9690

Scattered radiation 0.5183
Wind direction −0.0444

Rainfall −0.0244

It can be seen from Table 2 that photovoltaic power is positively correlated with direct
radiation intensity, scattered radiation intensity, temperature, and wind speed, while it
is negatively correlated with humidity, wind direction, and rainfall. According to their
numerical values, the data were filtered by 0.1. It can be seen that the correlation between
direct radiation intensity and photovoltaic power is the largest, while variables such
as scattered radiation intensity, temperature, humidity, and wind speed have a certain
correlation with photovoltaic power, which show that these influencing factors have a
certain degree of impact on the photovoltaic power, and the impact decreases in turn.
Although wind direction and rainfall are negatively related to the photovoltaic power, the
value is too small to impact the output.

It can be seen from Table 3 that the cycle of photovoltaic power, humidity, direct
radiation intensity, and scattered radiation intensity is 24.03 h, approximately 1 day, and
the cycle of the wind speed, wind direction, and rainfall is 0.17 h, which can be regarded as
a periodicity. The temperature cycle is 8760 h; that is, the temperature cycle conforms to the
changes in the four seasons, and the above results basically conform to the natural logic.

Table 3. Results of periodicity analysis.

Variable Cycle

Active power 24.03
Wind speed 0.17
Temperature 8760

Humidity 24.03
Direct radiation 24.03

Scattered radiation 24.03
Wind direction 0.17

Rainfall 0.17
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By correlation analysis, five influencing factors should be selected, including direct
radiation, scattered radiation, temperature, humidity, and wind speed. Three influenc-
ing factors, namely, direct radiation, scattered radiation, and humidity, were screened
through periodic analysis. Finally, the time series related variables of photovoltaic power
were screened through the VS module, those being direct radiation, scattered radiation,
and humidity.

4.3. Prediction Results of Different Prediction Steps

In order to explore the prediction performance of each model under different predic-
tion steps, this study selected LSTM, SkipGRU, Transformer, and Informer to compare
with TCNformer.

The results are shown in Table 4. It can be seen from the results that, when the number
of prediction steps is 1, the MSE errors of the five models have little difference. With the
increase in the number of the prediction steps, the LSTM model demonstrated the largest
error growth rate, and the error accumulation is obvious. Informer and TCNformer use the
generative prediction method, so the error was relatively stable, and the error accumulation
was low. The TCNformer model proposed in this paper not only had a low level of error
accumulation, but it also had the lowest MSE error. In order to more intuitively observe
the error accumulation in the models, the prediction results were visualized, as shown in
Figure 9.

Table 4. Prediction Accuracy (MSE) Results of periodicity analysis.

LSTM SkipGRU Transformer Informer TCNformer

1 0.1409 0.1272 0.2188 0.2273 0.0395
8 0.6859 0.3554 0.3135 0.3623 0.1080
16 0.9509 0.3852 0.3411 0.3644 0.1149
24 1.1062 0.4077 0.4562 0.5756 0.1322
32 1.3072 0.3501 0.6278 0.6356 0.1232
40 1.2668 0.4535 0.7122 0.5967 0.1300
48 1.4285 0.4546 0.6979 0.5571 0.1399
56 1.3687 0.5232 0.9031 0.6691 0.1234
64 1.4027 0.7204 0.8710 0.6438 0.1258
72 1.2783 0.7330 0.9645 0.7385 0.1377
80 1.3385 0.9499 0.8236 0.6510 0.1360
88 1.3601 1.1452 1.1139 0.7544 0.1382
96 1.4285 1.1624 1.1186 0.7455 0.1349

4.4. Prediction Performance of Different Models

In this experiment, each model was trained five times in a 24-h (96 prediction steps)
scenario, and the average value was taken. The final test set prediction results are shown in
Table 5.

Table 5. The 24-h scenario prediction results.

MSE MAE MAPE Train Time (s) Run Time (ms)

LSTM 1.4285 0.7536 131.6989 139.7855 0.5945
SkipGRU 1.1624 0.4303 64.8742 88.7615 0.4832

Transformer 1.1186 0.5385 3.7577 76.1636 2.2314
Informer 0.7455 0.3779 2.9381 16.9919 1.8821

TCNformer 0.1349 0.1888 2.4987 153.4314 1.2910

As shown in Table 5, the TCNformer performs best according to the three indicators
of the MSE, MAE, and MAPE. Compared with the time series prediction model Informer,
the MSE, MAE, and MAPE decreased by 81.90%, 50.03%, and 14.98%, respectively. The
training time (153.43 s) and running time (1.29 ms) of TCNformer are relatively long, but
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considering the 15-min sampling granularity and 24-h prediction scenario, the training
time and running time do not affect the practical application of TCNformer.
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As shown in Figure 10, this we visualized the prediction results of TCNformer using
the test data set. The prediction results shown in the figure are 30 sets of 24-h prediction re-
sults, with little deviation when compared with the real data. It can be seen that TCNformer
has a high level of accuracy and low number of errors.
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4.5. Error Analysis

Because the prediction of TCNformer model is a time series, we did not calculate the
standard error for multiple series. Instead, error analysis was carried out through the MSE
of prediction and ground truth. Figure 11 shows the standard error diagram. The error
bar in the diagram represents the standard error. Table 6 shows the mean value, standard
deviation (SD), and standard error (SE) of the error under different sample numbers.
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Table 6. Results of error analysis.

Sample Numbers Mean SD SE

100 0.3482 0.1253 0.0125
600 0.1893 0.1977 0.0081

1100 0.1574 0.1798 0.0054
1600 0.1543 0.1584 0.0040
2100 0.1264 0.1507 0.0033
2600 0.1349 0.1394 0.0027

As shown in Table 6 and Figure 11, with the increase in the number of samples, the
standard deviation and standard error gradually decreased, and the average value was
closer to the average value of the overall sample. Therefore, the prediction result of the
TCNformer model has a relatively stable level of error and a high level of reliability.

4.6. Ablation Experiment

In order to verify the effectiveness of each optimization module of the TCNformer
model, we conducted ablation experiments, and we removed three innovative modules
from the TCNformer model for comparative experiments, that is, we set them separately:

Experiment 1: Removal of the VS module.
Experiment 2: Removal of the long- and short-time series feature extraction module.
Experiment 3: Removal of the seq2seq structure, and use of the VS module + long-

and short-time series feature extraction module + full connection network.
Experiment 4: Removal of one-step TCN decoding.
Experiment 5: Use of the complete TCNformer model.
As shown in Table 7, the three innovations proposed in this paper are a VS module,

an LSTFE module, and the seq2seq generative model structure combined with Informer
and Transformer. No matter which module was removed, the error of the model was
increased. When the seq2seq model structure was not used, the error was the largest, and
the VS module had the smallest impact on the overall model, but it still caused a decline in
accuracy. From these data, it can be concluded that the TCNformer model proposed in this
paper is effective, and its innovative modules are useful.
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Table 7. Results of ablation experiment.

MSE MAE MAPE

Experiment 1 0.4480 0.8385 3.5746
Experiment 2 0.6997 0.5339 3.4223
Experiment 3 0.8610 0.5288 4.2124
Experiment 4 0.3695 0.1949 2.7078
Experiment 5 0.1349 0.1888 2.4987

5. Conclusions

In this paper, a TCNformer model was proposed for photovoltaic power prediction,
and we can draw the following three conclusions based on the experiment results:

1. The TCNformer model adopts the Transformer structure and introduces the sparse
attention mechanism into the Informer model. The experimental results show that the
photovoltaic output prediction accuracy is improved effectively.

2. The VS module, LSTFE module, and one-step TCN decoding extract more efficiently
the impact of multiple time series features and other weather factors on photovoltaic
power by classifying the data based on the time series, periodicity, and correlation.

3. Compared with the LSTM model and the Transformer series model, the TCNformer
model has a higher level of accuracy in multistep prediction, but there is still room
for optimization when the prediction range is further enlarged. In the follow-up
study, we will focus on ways to solve the multistep prediction problem with a further
increase in the time dimension.
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