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Abstract: The automatic identification of construction projects, which can be considered as complex
scenes, is a technical challenge for the supervision of soil and water conservation in urban areas.
Construction projects in high-resolution remote sensing images have no unified semantic definition,
thereby exhibiting significant differences in image features. This paper proposes an identification
method for construction projects based on the detection of detailed ground objects, which construction
projects comprise, including movable slab houses, buildings under construction, dust screens, and
bare soil (rock). To create the training data set, we select highly informative detailed ground objects
from high-resolution remote sensing images. Then, the Faster RCNN (region-based convolutional
neural network) algorithm is used to detect construction projects and the highly informative detailed
ground objects separately. The merging of detection boxes and the correction of detailed ground object
combinations are used to jointly improve the confidence of construction project detection results. The
empirical experiments show that the accuracy evaluation indicators of this method on a data set of
Wuhan construction projects outperform other comparative methods, and its AP value and F1 score
reached 0.773 and 0.417, respectively. The proposed method can achieve satisfactory identification
results for construction projects with complex scenes, and can be applied to the comprehensive
supervision of soil and water conservation in construction projects.

Keywords: construction projects; remote sensing image; detailed ground objects; soil and water conservation

1. Introduction

Recently, along with the rapid pace of urbanization, built-up areas are developing
rapidly [1]. During urbanization development, human disturbances, mainly construction
activities, intensifying environmental degradation [2], as well as water and soil loss, call for
immediate action to strengthen its supervision [3]. Construction projects often come in vari-
ous types, featuring scattered points, long lines, wide areas, and rapid changes. Traditional
manual detection methods based on high-resolution remote sensing images can hardly meet
the precise supervision requirements of full coverage and multi-temporal phases [3–5]. Since
high-resolution remote sensing images have rich ground object information and fewer spectral
bands, remote sensing image classification methods that are based on pixel spectral feature
statistics and are “object-oriented” are prone to the “salt and pepper effect”, “different objects
with same spectrum” and “same object with different spectrum”, posing greater difficulties for
high-resolution image analysis and processing [6,7]. How to process high-resolution images
rapidly, efficiently and automatically has become a hot research topic and challenge in the field
of remote sensing.

With the development of computer vision technologies and remote sensing image
interpretation methods, significant progress has been made in target detection and semantic
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segmentation based on high-resolution optical remote sensing images [8,9]. The target
detection of buildings, planes, vehicles, ships and other objects has achieved high accuracy,
mainly because the semantic definition of these objects is relatively clear, their boundaries
are well-defined, and their diversity is relatively limited. The construction projects in
high-resolution remote sensing images have no unified semantic definition and their scenes
include many man-made and natural ground objects with highly non-structured features
and significant differences in image features [10–12]. At present, the identification of
construction projects in high-resolution remote sensing images mainly adopts manual
interpretation and drawing, but this presents the problem of a large workload of manual
interpretation [13]. The proposed object-oriented identification method that selects the
optimal segmentation scale also faces the problem of different identification results under
different remote sensing image sources and different surface coverage characteristics [14].
However, the existing construction project target detection methods cannot be directly
applied to the detection of complex semantic scenes, and the generalization ability of
the methods that directly train the detector cannot meet the requirements of accurate
extraction [15]. The disadvantage of the previous work is that the semantics of construction
projects are very complex, and the research on detection methods for complex scenes is still
in its early stage, making it difficult to cope with the exceptionally complex urban scenes of
construction projects.

To solve these problems, the goal of this study is to propose a target detection method
for construction projects in complex semantic scenes, which can automatically and accu-
rately identify construction projects in high-resolution remote sensing images. Compared
with the traditional target detection methods, this method can improve the identification
results by merging the candidate boxes, training the highly informative detailed ground
objects and adjusting the confidence of the construction project candidate box, thus im-
proving the detection results. This method can improve the detection performance for
construction projects to a certain extent without significantly raising the complexity of
training. Furthermore, it can identify the construction period of the construction project
(such as topping out or completion) and the implementation of soil and water conservation
measures (such as whether the spoil and slag are covered with dust screens) by the features
of detailed ground objects.

2. Materials and Methods
2.1. Technical Process

This method was inspired by semantic event detection in video data in the field of
computer vision. It has always been challenging to detect semantic events with complex
definitions (such as weddings, gatherings, etc.) from videos, which are characterized
by unclear definitions, large intra-class differences, and the inclusion of complex visual
features [16–20]. Studies found that the events in videos can be composed of more specific
underlying concepts; for example, wedding events can be composed of wedding dresses,
cakes, MCs, and other concepts that are easy to detect by target detection [21–24]. Thus, this
method corresponded the complex events of construction projects to the complex events
in videos, and the various types of detailed ground objects in the scene to the underlying
concepts in the video. It further used the target detection method and the combination of
detailed ground objects in the complex scene to improve detection results.

This process is divided into the following steps: (1) Construction of sample data set;
(2) Selection and expression of detailed ground objects; (3) Target detection of construction
projects and detailed ground objects; (4) Post-processing. The flow chart is shown in
Figure 1, with the red boxes highlighting the innovation points of this paper.
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2.1.1. Selection and Expression of Detailed Ground Objects

For the complex semantic scenes of a construction project, it is necessary to find out
which detailed ground object can enhance its detection, that is, to find the type of detailed
ground object that can best represent the construction project. The selection is made based
on expert experience and the area and quantity of various detailed ground objects in the
construction project sample.

It is assumed that there are some types of common detailed ground objects in the area
where the sample is located. However, with the large number of types of detailed ground
objects, and limited information provided by some objects, the use of low-informative
detailed ground objects will make it even more complex. Therefore, it is necessary to select
certain types of detailed ground objects which can provide the corresponding amount of in-
formation for identifying complex semantic scenes of construction projects. The information
amount of the ith detailed ground object can be calculated by the following equation:

Ci= Ni ∗ wi, (1)

where Ni is the amount of detailed ground objects in all sample boxes of the construction
project. Then, wi can be calculated according to the following equation of term frequency-
inverse document frequency (TF-IDF) [25,26]:

wi = TFi ∗ IDFi=
Ni
N
∗ lg

Y + 1
Yi

, (2)

where TFi is the frequency of occurrence for the ith detailed ground object, and its value is
the ratio of the number of its occurrence in the construction project label box to the number
of its occurrence in all labeled boxes. The inverse document frequency, IDFi, is the ratio of
the average area of construction projects in the sample area, Y, to the average area of the ith
detailed ground object in the sample area, Yi (taking logarithm for calculation). (Note: In
Equation (2), the denominator of lg Y+1

Yi
is taken as Y + 1 to ensure that the calculated IDFi

will be greater than 0, and the effect on the actual result can be neglected.)
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2.1.2. Selection and Expression of Detailed Ground Objects

Both detectors of this method used the classic two-stage target detection algorithm
Faster RCNN [27–30], with its network schematic diagram shown in Figure 2. The algo-
rithm is mainly composed of four parts: (1) The feature extraction part uses the classical
convolutional neural network, that is, to obtain the feature map of the input image through
several convolutional layer-activation function-pooling layer units as the basis of the target
detection network. (2) Region proposal network, a network structure for generating can-
didate boxes, has the same function as the traditional algorithm in generating candidate
boxes. The only difference is that it adopts the method of deep learning. (3) ROI pooling
maps the candidate box generated in the region proposal network to the feature map of the
image, and combines the relevant information to obtain the feature map of the correspond-
ing candidate box. (4) Classification and regression network use the feature map of the
candidate box to classify the candidate frame and conduct bounding regression to obtain
the detection result.
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2.1.3. Post-Processing

The post-processing is conducted based on the construction project detection results
obtained by the detector. The visual differences within the construction project are huge,
with inconsistent coverage and no clear and well-defined boundaries, making it difficult
to obtain satisfactory detection results by directly using conventional deep learning target
detection methods such as Faster RCNN. However, when the visual differences in the
detailed ground object samples are small, with basically the same coverage, faster RCNN
can be used to obtain satisfactory detection results. Therefore, it is necessary to improve
the detection results based on the preliminary detection results, as well as the character-
istics of the construction project and the detection results of detailed ground objects. The
post-processing in this paper adopted two steps: (1) merging the candidate boxes of the
construction project; and (2) modifying the detailed ground object combination.

(1) Merging construction project candidate boxes. The preliminary detection results
obtained by the construction project detector are multiple candidate boxes (hereinafter
referred to as candidate boxes) and their corresponding confidence. Taking a construction
project in Wuhan in Figure 3 as an example, based on the cognitive differences of different
experts, the image can be identified as one construction project (a green box) or two
construction projects (two red boxes). This difference in cognition will cause a large error
in the target detection of construction projects, so this paper proposes a strategy of merging
candidate boxes to mitigate the error.
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Figure 3. Examples of construction projects.

In the construction project sample labeling, the green box in the above figure indicates
the real situation on the ground, and the red candidate boxes are the detection result of
the detector. The red candidate boxes overlap, so the detection results obtained by the
construction project scene detector can be merged to match the ground truth (the green
box). The specific implementation method is as follows: if the construction project scene
detector detects that the candidate boxes A and B overlap, and the ratio of the overlapped
area of A and B to the minimum area of the two is greater than the merging threshold α,
and the confidence of both A and B is greater than the combined confidence threshold β,
then A and B will be merged into the candidate box C, the area of the candidate box C
will be the smallest bounding rectangle of A and B, and the confidence of the combined
candidate box will be:

Con f ′ = (Con f 1 ∗ S1 + Con f 2 ∗ S2)/S3, (3)

where S1, S2, and S3 are the areas of A, B and the merged candidate box C obtained from
the construction project scene detection, and Con f 1, Con f 2, and Con f ′ are the confidence
of A, B, and C, respectively.

(2) Detailed ground object combination modification. The difficulty of the detection of
construction project scenes is reflected in the difficulty of identifying the range of candidate
boxes, as well as the fact that the confidence of the detected candidate boxes is not accurate
enough. The detailed ground objects have similar characteristics to general target detection
categories, such as single features and clear boundaries. Therefore, the detailed ground
object candidate box obtained by the detailed ground object detector (hereinafter referred
to as the detailed ground object box) was used to assist the construction project scene
detector, and the overall visual features of the construction project and the detailed ground
objects inside were combined to obtain the comprehensive expression confidence of the
construction project. The confidence calculation equation of the candidate box after the
combination is as follows:

Con f = min(1, γ ∗ Con f ′+ (1− γ) ∗∑N
i=1(Con fi ∗ IoPi)), (4)

where γ is a hyperparameter used to adjust the weight of the construction project scene
detector and the detailed ground object detector. N is the number of detailed ground
objects in the candidate box obtained by the construction project scene detector. Con fi is
the confidence of the ith detailed ground object box. IoPi (intersection over proposal) is the
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ratio of the intersected area of the ith detailed ground object box and candidate box to the
area of the candidate box, and is defined as follows:

IoPi =
area(B ∩ Bi)

area(B)
, (5)

B and Bi represent the candidate box and the ith detailed ground object box, respectively.

2.2. Experiment Data
2.2.1. Sample Data Set

The role of the sample data set is to provide training samples for the construction
project detector and detail ground object detector. Therefore, it is necessary to label the
construction project with the smallest bounding box, and use the smallest bounding box to
label various detailed ground objects in the construction project. This data set is manually
labeled. Based on the collected scope of responsibility in the soil and water conservation
plan for construction projects in Wuhan and the overall layout of the project, the construc-
tion project and its six detailed ground objects (bare soil (rock), dust screen, construction
roads, moveable slab houses, buildings under construction and constructed buildings)
were selected for labeling as shown in Figure 4. The labeling of this data set is based
on the Gaofen-1 satellite remote sensing image with a resolution of 2 m, RGB format, a
size of 600 × 600 Pixels, and labelImg as the tool (https://github.com/tzutalin/labelImg)
(accessed on 2 June 2020).
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The number of labeled construction projects, bare soil (rock), dust screens, construction
roads, movable slab houses, buildings under construction, and constructed buildings is,
respectively, 752, 763, 154, 82, 372, 292, and 278.

2.2.2. Experimental Conditions

In the experiment of this paper, the hardware parameters and the software develop-
ment environment configuration used in training and testing are shown below: the CPU is
Intel(R) Xeon(R) CPU E5-2665, the GPU is GeForce RTX 2080 Ti, the memory is DDR4 10 G,
the operation system is Ubuntu 18.04, the programming language is Python 3.6, the deep
learning framework is Pytorch 1.0, the operation platforms are CUDA10 and cuDNN7.5.0.

2.2.3. Experimental Setting and Evaluation Indicators

In this experiment, based on expert experience, the six types of detailed ground objects
of bare soil (rock), dust screen, construction roads, movable slab houses, buildings under

https://github.com/tzutalin/labelImg
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construction and constructed buildings were preliminarily selected. According to the
selection and expression methods of detailed ground objects, the amount of information
about the six types of detailed ground objects was 18.81, 20.90, 9.93, 44.82, 28.77 and
8.22, respectively.

It is theoretically possible to take all detailed ground objects into account and train all
detailed ground object detectors. However, some detailed ground objects have a limited
amount of information, producing minor improvement effects for the detection of the
construction project and causing increased complexity. Thus, when determining the best
detailed ground objects, it is necessary to select the highly informative ones. In this study,
four types of detailed ground objects of movable slab houses, buildings under construction,
dust screen, and bare soil (rock) were selected to characterize the construction project, and
the detectors for these four detailed ground objects were trained.

In this experiment, both detectors randomly selected 60% of the images in the data
set as the training set, 20% of the images as the verification set, and another 20% of the
images as the test set. The relevant parameters of the Faster RCNN network are as follows:
the initial learning rate is set at 0.001 and drops to 1/10 of the original every 10 rounds
of iteration, and the number of training traversals is set at 50. The pre-trained ResNet101
is used as the network structure, the gradient optimization algorithm adopts SGD, the
momentum is set to 0.9, and the attenuation coefficient is 0.0005.

The performance evaluation indicator of this experiment adopts the F1 score, precision-
recall curve (PR curve), and single category average precision (AP). The F1 score, also
known as the balance F score, is the reconciled average of precision and recall rate. The AP
is the area formed by the PR curve, the x and y axis. The PR curve can evaluate the overall
situation of the detection results of the construction project, and the AP can objectively
evaluate the average quality of the detection of the construction project to a certain extent.
The larger the value, the better the target detection model will be.

In remote sensing object target detection, in general, IoU (intersection over union)
is used as an indicator to evaluate the correctness of the detection of a candidate box.
However, due to the particularity of the construction project, there may exist cases where a
single candidate box corresponds to multiple ground truths, and IoU > 0.5 is not suitable
as the indicator to evaluate the correctness of the candidate boxes. Therefore, based on
expert knowledge, a one-to-many approach was adopted, where a single candidate box
corresponds to multiple ground truths intersecting with it, that is, satisfying ∑N

i IoU > 0.5.
The equation is:

∑N
i IoU = ∑N

i
area(D ∩ Di)

area(DUDi)
, (6)

where D denotes the candidate box obtained for the detector, and Di is the ith ground truth
that intersects with the detector.

3. Results

This experiment was conducted on the same training set and test set, using Faster
RCNN to train the construction project detector, and perform post-processing. As men-
tioned in Section 2.1.3, three hyperparameters α, β, and γ are involved in post-processing.
In the experiment where Faster RCNN served as the control group, β was set at 0.005 by the
original author. If the confidence level was lower than this value, the detection results of
the candidate box would be considered untrustworthy. Therefore, in our experiment, β was
also fixed at 0.005, so as to make a better comparison with the control group experiment.
According to the step size of 0.25, the superparameters α and β were searched in the range
of 0 to 1, and the experimental results were obtained as follows:

As can be seen from the table, the experimental performance is the best when α = 0.25,
and the highest AP value is obtained when γ = 0.75. This group of experiments is the
method mentioned below.

Three sets of experimental comparisons were also made, using Faster RCNN and Yolo
v5x (ref.) [31], to directly train the construction project detector (hereinafter referred to as
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Faster RCNN and Yolo), and construction project candidate box merge based on Faster
RCNN. (This set of experiments is the results of α = 0.25, γ = 1 in Table 1, hereinafter
referred to as the variant.)

Table 1. AP values of the experiment under different hyperparameters α and γ.

α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

γ = 0 0.527 0.694 0.677 0.649 0.599
γ = 0.25 0.512 0.730 0.701 0.651 0.624
γ = 0.5 0.497 0.728 0.707 0.699 0.618
γ = 0.75 0.551 0.773 0.759 0.707 0.697
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As can be seen from Table 2, the AP value and F1 score of our method are higher than
those of the other three experiments, indicating that this method has the best detection
performance. The PR curve shows that the overall performance of Yolo is lower than
the other groups, and in the low recall stage (or high precision stage, i.e., the left side of
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the curve), the curve of our method is significantly higher than the other three groups.
This is also the most important improvement effect of this method compared with other
experimental groups. By introducing the confidence of the detailed ground object detector,
the confidence of the candidate box of the construction project is improved, and the false
detection rate in the low recall rate stage is reduced, thus improving the detection results to
a large extent.

4. Discussion
4.1. The Improvement Effect of Detailed Ground Objects on Detection and Its Limitations

We used the typical target detectors Yolo and Faster RCNN as control experiments.
Our method, based on the Faster RCNN algorithm, introduced the combined detection
optimization method of construction project candidate box merge and detailed ground
object combination modification. This paper classified construction projects according to
their size and construction cycle, compared the detection results of this method and the
Faster RCNN algorithm, and discussed the differences in detection results and the effect of
detailed ground.

The detection performance of this method in the low recall rate stage (left side of the
PR curve) is significantly better than that of the Faster RCNN algorithm, that is, the false
detection rate of this method at this stage is lower than that of Faster RCNN, but in the
high recall rate stage (right side of the PR curve), the difference in detection performance is
not significant.

Figure 7 shows some of the detection results of the two experiments. The first two
sets of detection results show that, due to the unclear boundaries of the construction
project, although there is only one ground truth in the image, the Faster RCNN algorithm
detected two high-scoring candidate boxes, resulting in poor results for both candidate
boxes. The construction project candidate box merge can better address the feature of
unclear construction project boundaries, making the detection results better match the
ground truth, and lowering the false detection rate. Detailed ground objects usually have
clear features and well-defined boundaries, so directly using Faster RCNN for detection
will yield satisfactory detection results. When there is a certain detailed ground object box
in the candidate box, the confidence of the candidate box will be improved, otherwise,
it will be lowered, which is also the core idea of detailed ground feature combination
modification in this method. In the third set of detection results, there exists false detection,
and the confidence of the false detection box is high. Since there is no detailed ground
object detected by the detailed ground object detector near the false detection box, it can be
easily known from Equation (4) that the confidence of this candidate box in this method
is lower than that in the Faster RCNN algorithm. The results of this set further show that
for false detection boxes, the confidence of this method for such candidate boxes is lower
than that of the Faster RCNN algorithm. Although this step cannot completely eliminate
false detection results, it can limit the confidence of the false detection box and improve the
confidence of the correct detection box to a certain extent, thus improving the detection
performance as a whole.

The introduction of detailed ground object detection is not only conducive to im-
proving the confidence of conventional deep learning target detection methods, but also
identifying the construction cycle and the implementation of soil and water conservation
measures. In the first detection group in Figure 7 there is a large piece of bare soil (rock)
in the construction project that can be detected through detailed ground object detection.
Based on this, it can be judged that the construction project is in the stage of project leveling
at the initial stage of construction. When detailed ground objects are detected in build-
ings under construction, the characteristics and completion of the building can be used
to determine the type of construction project and whether the main body of the project
is completed. At the same time, it can also judge whether soil and water conservation
measures have been taken by the existence of the detailed ground object of a dust screen in
the construction project.
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In [22], the author proposed to learn a higher-level semantic descriptor named a
“concept bundle” to facilitate a video search for complex queries; mAP@1000 increased
0.015 and 0.013, respectively, over the “TV08” and “YouTube” data sets compared to not
using the “concept bundle”. In our paper, it is found that adding detailed ground objects
can improve the detection effect to a certain extent, but it is limited. Further research
is needed on how to improve the detection effect more effectively with several types of
detailed ground objects. As can be seen from Table 1, the selection of hyperparameters will
largely detect the effect, which may vary in different data sets, and finding the appropriate
hyperparameters requires a traversal search, which will take time. More detailed parameter
analysis will be discussed in Section 4.3.

4.2. Comparison of Detection Results of Different Construction Project Types

One of the main characteristics of construction projects is large intra-class differences
and no unified visual feature information. The main reasons for the large intra-class dif-
ference are the large difference in the area of construction projects, the long construction
cycle, and significant visual differences during different stages. For example, in the early
stage, the visual feature of the construction project tends to be bare soil (rock), while in
the later stage, it tends to be more architectural. Therefore, the construction projects are
classified according to their area size and construction cycle, and the detection performance
of the Faster RCNN algorithm and this method under different categories is analyzed. This
is essential for the understanding of detailed ground detectors, and even the adjustment
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effects of different detailed ground objects on the confidence of construction project can-
didate boxes. Therefore, according to the size of the construction project, and taking the
average area of the construction projects in the data set as the boundary, the construction
projects are classified as those larger than average area and those smaller than average area.
They are also divided into those in the early stage and those in the later stage according
to the construction cycle and based on the standard that no buildings under construction
exist in the early stage, and these buildings do exist in the later stage. Based on these two
classification methods, the IoU value of each type of ground truth and its corresponding
detection box is calculated, and the results are shown in Tables 2 and 3.

Table 3. IoU of the Two Experiments Classified by Area of Construction Projects.

Method Less than Average Area Larger than Average Area

Faster RCNN 0.803 0.825
Our method 0.819 0.857

It can be seen from Tables 3 and 4 that for both classification methods, the IoU value of
this method is higher than that of the Faster RCNN algorithm. In the classification according
to the area of construction projects, the improvement of the IoU value of this method was
even greater in the “larger than average area” category compared with that of the Faster
RCNN algorithm. That is, in the ground truth with a large area, this method can realize
the greatest improvement in the detection results by the candidate box merging strategy,
indicating that candidate box merging mostly exists in the candidate box corresponding
to the ground truth with a large area. In the classification according to the construction
cycle, it is found that this method has no huge difference in the improvement of the two
categories, indicating that the difference in the construction cycle has no major effect on the
improvement of the IoU value of this method.

Table 4. IoU of the Two Experiments Classified by Cycle of Construction Projects.

Method Early Stage Later Stage

Faster RCNN 0.820 0.814
Our method 0.835 0.826

4.3. Parameter Analysis

In this method, there are mainly three parameters involved, namely the merging
threshold α and confidence threshold β in Equation (3), and the weight parameter γ in
Equation (4). Using a grid search, the optimal solution for the three parameters is obtained
in the validation set. The merging threshold α is used to determine the merging conditions.
When α is too high, the conditions for candidate box merging will be harsh. While, when
α is too low, only a few intersected candidate boxes will be merged, which will lower the
detection performance. It can be found in Table 1 that when α = 0, compared with other
experiments, the AP value of the model is very low and the detection effect is poor. In
Figure 8, the two candidate boxes corresponding to the two ground truths will be merged
into one, creating a false candidate box.

Due to its unique characteristics, the Faster RCNN algorithm will produce a large
number of low-scoring candidate boxes, and the sharp drop on the far-right end of its
PR curve in the PR curve image is just the result of this. Therefore, candidate boxes with
higher confidence must be selected for merging, and the confidence threshold β serves as
the judgment condition, that is, when the two candidate boxes meet the condition that the
intersected area is greater than the merging threshold α, the confidence of both of them also
needs to be greater than the confidence threshold β, then, the merging mechanism can be
triggered. In order to ensure the consistency of parameters with the Faster RCNN control
group, β = 0.005 was fixed.
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The weight parameter γ of Equation (4) is used to determine the weight of the detailed
ground object, with its value range set as 0–1. When γ = 1, the method in this paper will be
the variant, that is, the candidate boxes will be merged without using the detailed ground
object information to adjust the candidate box of the construction project. When γ = 0, only
the detailed ground object information is used to obtain the confidence of the candidate
box. After a parameter search on the validation set, the optimal value of γ is 0.75.

4.4. Potential Application

Construction projects are one of the main sources of environmental pollution in urban
areas due to their pollution, such as harmful gases, noise, dust, solid and liquid wastes
during construction [32,33]. Some construction companies engage in illegal behaviors,
such as building without approval and disturbing beyond surveillance. It is necessary
to use remote sensing technologies to detect the illegal situations by supervising the full
coverage in a region or even a city. The application of this method can accurately and
effectively identify construction projects under construction and determine whether the
projects comply with regulations by checking with the soil and water conservation plans
and authorized scope that have been registered in the National Soil and Water Conservation
Supervision and Management System.

Multi-level image scene identification and understanding is a hot issue in current
high-resolution earth observation technology [34]. In addition to identifying construction
projects, this study can further investigate the contents of the automatic extraction of
disturbance ranges, predicting soil loss from construction projects, and evaluating the
distribution of regional soil and water loss. In addition, this method can also be used in
other fields such as building detection [35] and illegal mining identification [36].

5. Conclusions

In this paper, complex scenes of construction projects were identified based on the
high-resolution remote sensing images of Wuhan City. Construction projects and their
detailed ground object data sets were first prepared and highly informative detailed ground
objects were selected for object detection. Then, the Faster RCNN algorithm was used to
detect the construction project and the highly informative detailed objects separately, and a
post-processing procedure were used to jointly improve the confidence and accuracy of
construction project identification results. The results show that this method can effectively
reduce the false detection rate and improve the goodness matching between the detection
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results and the ground truth. The application of this method can accurately and effectively
identify the construction project under construction.

The introduction of detailed ground object combination detection for construction
project scene identification has the following three advantages: (1) the detailed ground
objects are consistent with the network structure of the construction project training; (2) it
can improve the detection performance for construction projects to a certain extent without
significantly raising the complexity of training; (3) it can identify the construction period of
the construction project (such as topping out or completion) and the implementation of soil
and water conservation measures (such as whether the spoil and slag are covered with dust
screens) by the features of detailed ground objects. However, as the internal information of
the construction project is extremely complex without any unified feature representation,
the post-processing procedure based on the conventional deep learning method has a
limited improvement effect on the detection results, and for some construction projects,
the improvement effect of this method is not satisfactory. How to better integrate the
detailed ground object information, and consider the co-occurrence and mutually exclusive
relationship between the detailed ground object information, so as to obtain a compact
construction project feature representation, is the direction and focus of future study.
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