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Abstract: The shock initiation randomness problem of energetic materials (SIREM) is an important
problem in the research field of energetic material safety. With the purposes of solving SIREM on a
macroscopic scale and obtaining the statistics, such as the initiation probabilities of energetic materials
and the statistical characteristics of the detonation pressure, this paper considers the effect of the
randomness of the parameters of the Lee–Tarver equation of reaction rate and the JWL equation
of state of energetic materials and the randomness of load intensity parameters—such as fragment
shock velocity—on the randomness of the shock initiations of energetic materials. It then decomposes
SIREM into an initiation probability problem (IP) and a detonation pressure randomness problem
(DPR). Further, with the Back Propagation Neural Networks optimized by the Genetic Algorithm
(GABPNN) as the surrogate models of the numerical models of two-phase reactive flow, this paper
proposes the approach of solving IP and DPR in turn, adopting Monte Carlo Simulations, which use
the calculations of GABPNNs as repeated sampling tests (GABP-MCSs). Finally, by taking the shock
initiation randomness problem of Composition B as an applied example, this paper adopts GABP-
MCS under the randomness conditions that the means of fragment shock velocities are 1050 m/s and
1000 m/s and that the coefficients of variation (CVs) of BRVs are 0.005, 0.01, 0.015, and 0.02 in order
to obtain the initiation probabilities of Composition B and the statistical characteristics, such as the
means and CVs of the detonation pressure. It further observes the variation tendencies that these
statistics show under various randomness conditions, so as to prove the effectiveness of GABP-MCS
in solving SIREM. Therefore, this paper investigates SIREM on a macroscopic scale and proposes a
universal technique for solving SIREM by GABP-MCS, in the hope of shedding some light on the
SIREM study.

Keywords: energetic material; shock initiation randomness; initiation probability; detonation pressure
randomness; Back Propagation Neural Network (BPNN); Genetic Algorithm (GA); surrogate model;
Monte Carlo Simulation (MCS)

1. Introduction

Energetic materials, with randomly distributed micro-sized grains and many voids
and cracks among them, are heterogeneous on a mesoscopic scale and show stochastic
detonation characteristics on a macroscopic scale. Thus, the macro responses of energetic
materials are generally stochastic under the action of shock loads. This explains why the
shock load indexes of the initiation probability 50% (such as the fragment shock velocity,
drop hammer height, shock pressure, or shock energy) are always the important character-
istic indexes of the impact sensitivity tests of energetic materials [1–4]. Gresshoff [5] earlier
recognized the importance of solving the shock initiation randomness problem of energetic
materials (SIREM) and established the Probabilistic Shock Threshold Criterion based on
the James Initiation Criterion and the assumption of initiation probability distribution, but
they also contended that these empirical criterions, such as the James Initiation Criterion,
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were more crude than the numerical simulations using reactive flow models in determining
the impact responses of energetic materials. Similarly, Rashkovskii [6] constructed a prob-
abilistic model of the shock initiation of heterogeneous explosive materials based on the
critical initiation stress of explosive grains and the assumption of initiation probability dis-
tribution. In recent years, with the continuously improved mesoscale numerical simulation
techniques, many research teams have begun to apply the numerical models of multiphase
reactive flow in the SIREM study at mesoscale. Baer [7] took the initiative and adopted
the mesoscale numerical model of multiphase reactive flow to solve SIREM, and they
developed a universal method to describe the ignition randomness of energetic materials
at mesoscale. After that, the research team of Zhou also carried out in-depth and compre-
hensive studies on SIREM by adopting the mesoscale numerical models of multiphase
reactive flow. Zhou [8,9] developed an approach to computationally predict and quantify
the stochasticity of the ignition process in condensed explosives under shock loads and
studied the effect of the microstructure randomness on the shock response randomness of
condensed explosives. Zhou [10–12] also developed an approach to calculate the probabilis-
tic ignition threshold of condensed explosives based on mesoscale numerical simulation
techniques and empirical ignition criterions. Zhou [13] also used this approach and the
newly developed probabilistic formulation to calculate the probabilistic ignition thresholds
of the HMXs with four microstructural forms. Zhou [14] also used three-dimensional,
mesoscale, numerical simulation techniques to calculate the run-to-detonation distances of
condensed explosives and led to the probabilistic formulations for the run-to-detonation
distances as the shock pressure functions. In addition to Zhou’s team, other research teams
also used the mesoscale numerical models of multiphase reactive flow to solve SIREM.
Kittell [15] believed that the microstructure randomness of heterogeneous energetic materi-
als could lead to the randomness of heat release rates from a chemical reaction, and that
the heat release fluctuations of heterogeneous energetic materials could be coupled to the
reactive Euler equations, which could then be solved via the Riemann problem. Based on
the study results in the literature [15], Kittell [16] drew the conclusion that the randomness
of the heat release, yield strength, and material impedance could also lead to the reaction
rate randomness of heterogeneous solid explosives, and constructed the stochastic burn
model of heterogeneous solid explosives by using Langevin-type equations. Lee [17] con-
sidered the randomness of the specific heat, Grüneisen parameter, bulk modulus, yield
strength, thermal expansion coefficient, and thermal conductivity of HMXs at mesoscale
and established the probability density function of the run-to-detonation distances of HMXs
by applying the Meso-informed Ignition and Growth model. Bakarjia [18] treated the initial
porosity in the microstructure of energetic materials as a random field and adopted the
Monte Carlo Simulations of a two-phase, five-equation, dynamic compaction model to
calculate the probability of hotspot initiation. Mi [19] investigated the influence of the
randomness of four microbubble distributions on the impact sensitivity randomness of
liquid nitromethane by the mesoscale numerical simulation technique. Liu [20] researched
the mechanical–thermal–chemical response of PBXs under low-velocity impact, obtained
the influence of the density number and the statistical distribution of microcracks on the im-
pact ignition of PBXs, and described the ignition probability of PBXs based on the Weibull
distribution. Miller [21] proposed a simplified shock initiation criterion, classified the
initiation responses of HMXs under different test conditions by using mesoscale numerical
simulations, and obtained the probabilistic responses of the HMX samples to the variations
in the mean porosity and chemical kinetics rate.

It can be seen from the researches above that SIREM is a common problem in the
research field of energetic material safety, which has been solved, under the assumption
of initiation probability distribution, by applying various techniques, such as empirical
initiation criterions and mesoscale numerical simulations of multiphase reactive flow, with
substantial achievements. However, none of the research has used the numerical models
of multiphase reactive flow in solving SIREM on a macroscopic scale. Therefore, the
initiation probabilities of energetic materials with standard specifications under standard
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test conditions and, thus, their probabilistic initiation thresholds can be obtained through
the previous research results. So is the effect of the microstructure randomness on the shock
sensitivity randomness of the energetic material specimens. Yet, unknown remain the
initiation probabilities of the energetic materials under complex working conditions (such
as complex structural shielding, shock loads, and geometrical shapes) and the randomness
of the detonation pressure in different positions inside these energetic materials after they
are initiated. This means that the existing research has conducted only a preliminary
theoretical study on SIREM and that it is difficult to be widely applied to engineering
practices, such as assessments of the shock safety randomness of ammo and rocket motors.
In this sense, it is necessary to analyze SIREM on a macroscopic scale and to apply the
macroscale numerical models of multiphase reactive flow and their surrogate models in
the SIREM study in the hope of better meeting the needs of engineering practices.

Some research has provided reference to analyzing SIREM on a macroscopic scale.
Gresshoff [5] argued that the Lee–Tarver equation of reaction rate was tuned to an ide-
alized 50% threshold and, thus, could not directly provide the analyst with a sense of
“margin to initiation”; Gresshoff [5] also pointed out that uncertainties from experimental
conditions and random heterogeneities in the specimens could lead to the randomness
of the shock initiation test results of energetic materials. Landerville [22] showed that
the parameters vary to a large degree among experiments due to the inherent noise of
experiments and the inconsistencies in fitting ranges and schemes. In addition, in study-
ing the randomness of underwater explosions, the research team of Chen contended that
the parameters of the Jones–Wilkins–Lee (JWL) equation of state of energetic materials,
obtained from parametric measurement tests, demonstrated a random nature, which led
to the randomness of the detonation pressure of energetic materials [23]. In their study
of the stochastic dynamics of structures under explosive loads, they also argued that the
parameters of the Mie–Gruneisen equation of state, the Johnson–Cook constitutive equa-
tion, and the Johnson–Cook failure model of metal structures showed randomness, which
led to the randomness of the normal stress and deviatoric stress of metal structures under
explosive loads, and further led to the randomness of the dynamic responses of metal
structures [24,25]. Enlightened by these researches, it is natural to hold that the parameters
of the Lee–Tarver equation of reaction rate and the JWL equation of state will probably
show random errors in parametric measurement tests. Since, in the numerical models of
two-phase reactive flow, the Lee–Tarver equation of reaction rate describes the reaction rates
of energetic materials, and the JWL equation of state describes the Pressure–Volume–Energy
(P-V-E) relationships of energetic materials, the parameters of these two equations can
fully describe the detonation characteristics of energetic materials. Therefore, when solving
SIREM on a macroscopic scale by adopting the numerical models of two-phase reactive
flow and their surrogate models, they should attribute the randomness of SIREM to the
randomness of the parameters of these two equations and the randomness of the physical
quantities, such as the fragment shock velocity that affects shock load intensity, which
should be taken as the starting point to further study the initiation probabilities of energetic
materials under random shock loads and the randomness of the detonation pressure after
energetic materials are initiated. In fact, the randomness of the parameters of these two
equations is the macroscopic manifestation of the randomness of the microstructure of en-
ergetic materials considered in the literature [7–21]; hence, these two kinds of randomness
are equivalent and can both represent the randomness of the detonation characteristics of
energetic materials, which will be also mentioned in Discussion 5.

In addition, since the numerical models of two-phase reactive flow involve the pro-
cesses in which the unreacted energetic materials of the condensed phase are transformed
into the reaction products of gas phase, a very complicated relationship appears between
the parameter randomness of the Lee–Tarver equation of reaction rate and the JWL equa-
tion of state and the shock response randomness of energetic materials, and also marked
differences appear in the random response values between the initiation and non-initiation
states of energetic materials. This means that the common stochastic analysis methods,
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such as semi-analytical methods and surrogate model methods of response surfaces, may
not be used to solve SIREM on a macroscopic scale. Therefore, what should be adopted
are the methods of combining the Artificial Neural Networks (ANNs), which are more
powerful in nonlinear mapping, with Monte Carlo Simulations (MCSs) to solve SIREM
on a macroscopic scale. Since the Back Propagation Neural Network optimized by the
Genetic Algorithm (GABPNN) is an ANN with strong nonlinear mapping ability [26–29],
this paper adopts GABPNNs as the surrogate models of the numerical models of two-phase
reactive flow, and it adopts the MCSs, which use the calculations of GABPNNs as repeated
sampling tests (GABP-MCS) to solve SIREM. The specific reasons for selecting GABP-MCS
will be given in Discussion 5.

In a nutshell, in order to develop a universal technique for calculating the initiation
probabilities of energetic materials under complex working conditions and the statistical
characteristics of detonation pressure, so as to make the study on SIREM better meet the
needs of engineering practices, this paper investigates SIREM on a macroscopic scale,
decomposes SIREM into an initiation probability problem (IP) and a detonation pressure
randomness problem (DPR), and identifies the basic random variables (BRVs) and random
responses (RRs) of IP and DPR. Then, this paper proposes the approaches of adopting
GABP-MCS to solve IP and DPR in turn. Finally, by taking the shock initiation randomness
problem of Composition B as an example, this paper demonstrates the specific process
of adopting GABP-MCS to solve SIREM and verifies the effectiveness of this integrated
method, in the hope of providing a technical reference for further study on SIREM.

2. Problem Analysis
2.1. Problem Decomposition

Under the effects of both the detonation characteristic randomness of energetic materi-
als and the shock load randomness, it is a random problem whether energetic materials can
be initiated. So is the detonation pressure after energetic materials are initiated. Therefore,
the SIREM study on a macroscopic scale should process the initiation probabilities of
energetic materials and the randomness of detonation pressure after energetic materials are
initiated in turn. It is necessary to decompose SIREM into an initiation probability problem
(IP) and a detonation pressure randomness problem (DPR).

2.2. BRVs of the Problem

Since the randomness of the shock initiation of energetic materials is caused by the
randomness of the detonation characteristics of energetic materials and the randomness
of shock load conditions, the BRVs of SIREM should also be divided into the BRVs on the
detonation characteristics of energetic materials and the BRVs on shock load conditions.
The following is the identification of these two kinds of BRVs.

(1) BRVs on detonation characteristics of energetic materials

In the numerical models of two-phase reactive flow of the shock initiation problem of
energetic materials, the equations of reaction rate, showing the shock initiation reaction
rate of energetic materials, generally adopt the Lee–Tarver equation of reaction rate, and
the equations of state of the unreacted energetic materials of the condensed phase and the
reaction products of the gas phase generally adopt the JWL equation of state. See the two
in Equations (1) and (2) [30–32].
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dλ

dt
= I(1 − λ)b(µ − a)x + G1(1 − λ)cλd py + G2(1 − λ)eλg pz (1)

where λ is the fraction of an energetic material that has reacted, t is the time, dλ
dt is the

reaction rate, µ is the current compression degree, a is the critical compression degree, and
I, b, x, G1, c, d, y, G2, e, g, and z are the parameters.

p = A
(

1 − w
R1V

)
exp(−R1V) + B

(
1 − w

R2V

)
exp(−R2V) +

wE
V

(2)

where p is the pressure, V is the relative volume, E is the energy in per unit volume, and A,
B, R1, R2, and w are the parameters. The five parameters of unreacted energetic materials
and reaction products are respectively marked as Ac, Bc, Rc1, Rc2, wc, and Ag, Bg, Rg1, Rg2,
wg in order to distinguish between the two types.

The literature [32] has pointed out that the three terms in the Lee–Tarver equation of
reaction rate are the ignition term, growth term, and completion term. For the parameters
of these three terms, a controls the critical compression degrees of energetic materials,
and when µ is less than a, energetic materials cannot be initiated; I, G1, and G2 are the
coefficients of these three terms; b, c, d, e, and g are the burnup indices of these three
terms; y and z are the pressure indices of the growth term and completion term; I and
x control the number of hot spots; b and c control the combustion of inward spherical
particles; G1 and d control the reaction growth duration at the early stage of hot spots;
and G2 and z control the reaction rate at high pressure. For the parameters of the JWL
equation of state, Ac, Bc, Ag, and Bg are the parameters of the linear relationship between
the detonation pressure and the isentropic expansion pressure, and Rc1, Rc2, wc, Rg1, Rg2,
and wg are the parameters related to energetic materials. Therefore, the parameters of these
two equations can fully describe the detonation characteristics of energetic materials, and
the effect of the changes of the factors, such as the density, temperature, and humidity, on
the detonation characteristics of energetic materials can also be expressed by the numerical
changes of these parameters. In addition, the parameters of the Lee–Tarver equation of
reaction rate are fitted by the shock initiation tests and numerical simulations [33–35], and
the parameters of the JWL equation of state are fitted by the cylinder tests and numerical
simulations [36–38]. The literature [5,22–25] suggests that such parametric measurement
tests and corresponding numerical simulations generally have random errors, and so do
the parameters obtained. Based on the previous achievements, this paper holds that the
parameters of these two equations also have randomness, and the randomness of the
detonation characteristics of energetic materials can also be described by the randomness of
these parameters. Therefore, the main BRVs on the detonation characteristics of energetic
materials can be selected from these parameters, and the randomness of the factors, such as
the density, temperature, and humidity of energetic materials, can also be expressed by the
randomness of these parameters. In addition, the relationship between the randomness
of these parameters and the randomness of the microstructure of energetic materials
considered in the literature [7–21] will be discussed in Discussion 5.

(2) BRVs on shock load conditions

Since the mass m, shock velocity v, and shock angle θ of a fragment are the important
physical quantities that directly affect the intensity of shock loads, the randomness of shock
load conditions can be represented by the randomness of these physical quantities. There-
fore, the main BRVs on shock load conditions can be selected from these physical quantities.
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2.3. RRs of the Problem

Since SIREM is decomposed into IP and DPR, the RRs of IP and DPR should be
identified respectively.

(1) RR of IP

In IP, the initiation-recognizing coefficient δ as a new physical quantity is introduced
to recognize whether energetic materials are initiated under the combined action of the
above two kinds of BRVs; that is, if energetic materials are initiated, δ will be recognized to
be 1, and if not, δ will be recognized to be 0. So, under the action of BRVs, the randomness
of the shock initiation of energetic materials can be represented by the randomness of the
0–1 recognition results of δ. In this sense, δ should be defined as the RR of IP, and IP can
be summarized as the problem of calculating the initiation probabilities R’s of energetic
materials under the action of BRVs, according to the statistical analysis results of δ.

(2) RR of DPR

In DPR, the detonation pressure P of energetic materials should be defined as the RR
of DPR, and DPR can be summarized as the problem of calculating the statistical analysis
results of P under the combined action of the above two kinds of BRVs.

Above is the analysis of SIREM on a macroscopic scale. Figure 1 below is the corre-
sponding flow chart.
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It should be noted that the above BRVs are just those that may be involved in SIREM
on a macroscopic scale. Yet, in studies, it is necessary to take real factors into account in
order to identify with caution the main BRVs involved and to obtain their actual statisti-
cal distributions.

3. Methodology

Since the principles of GABPNN have been discussed in a lot of literature [26–29], the
following will present directly the main processes of using GABP-MCS to solve SIREM on
a macroscopic scale, and the reasons for selecting this method will be given in Discussion 5.
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(1) Constructing training sample sets and test sample sets

Firstly, BRV sample points are randomly generated according to the statistical dis-
tributions of BRVs, and the repeated numerical simulations are conducted based on the
numerical models of two-phase reactive flow, so as to obtain the 0–1 recognition result of δ
and the P of each gauge in numerical models that correspond to each BRV sample point.
Then, these data are standardized, and the standardized BRV sample points are taken as
the input data, and the 0–1 recognition results of δ are taken as the expected output data, so
as to construct the training sample sets and test sample sets of the GABPNN of IP. Finally,
the standardized BRV sample points that can lead energetic materials to be initiated are
selected from all the standardized BRV sample points and are taken as the input data, and
the standardized values of the P of each gauge are taken as the expected output data, so as
to construct the training sample sets and test sample sets of the GABPNN of DPR.

In addition, it should be pointed out that, in the repeated numerical simulations,
whether detonation waves are generated inside energetic materials under shock loads
can be taken as the shock initiation criterion of energetic materials. That is, if detonation
waves are generated, it means energetic materials are initiated, and δ is assigned as 1. If
no detonation wave is generated, it means energetic material are not initiated, and δ is
assigned as 0.

(2) Constructing surrogate models of IP and DPR

Two GABPNNs are trained and tested by the training sample sets and test sample
sets of IP and DPR, respectively, so as to construct the surrogate models of IP and DPR.
Furthermore, IP is a problem of pattern classification, and there is a very complicated
mapping between BRVs and δ, so the double-hidden-layer GABPNN should be chosen
as the surrogate model of IP. DPR is a function approximation problem. Cotter [39] and
Castro [40] have proven that the forward artificial neural networks of a 3-layer structure
can address most function approximation problems, so the single-hidden-layer GABPNN
can be taken as the surrogate model of DPR.

(3) Addressing IP and DPR by GABP-MCSs

Firstly, new BRV sample points are generated, which conform to the corresponding
statistical distribution and whose sampling ranges and densities meet statistical needs, and
these BRV sample points are standardized, so as to construct the prediction sample sets
of IP. Then, all the standardized BRV sample points of the prediction sample sets of IP, as
input data, are inputted in turn into the surrogate model (GABPNN) of IP, so as to quickly
calculate the 0–1 recognition results of δ corresponding to these sample points. Then, these
0–1 recognition results of δ are statistically analyzed, so as to obtain the estimates of the R’s
of energetic materials, thus solving IP.

After that, according to the above 0–1 recognition results of δ, the standardized
BRV sample points that can lead energetic materials to be initiated are selected from the
prediction sample sets of IP, so as to constitute the prediction sample sets of DPR. Then,
all the standardized BRV sample points of the prediction sample sets of DPR, as input
data, are inputted in turn into the surrogate model (GABPNN) of DPR, so as to quickly
calculate the output results corresponding to these sample points. Then, these output
results are inversely standardized, so as to obtain the predicted values of the P of each
gauge in numerical models corresponding to these sample points. Finally, the predicted
values of the P of each gauge are statistically analyzed, so as to obtain the estimates of the
statistical characteristics, such as the mean and coefficient of variation (CV) of the P of each
gauge, thus solving DPR.

The above processes are shown in the global technical route in Figure 2.
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4. Applied Example

Composition B, composed of TNT and RDX in fixed proportions, which are typical
energetic materials, and they are widely used as military explosives. Similar to most
energetic materials, the shock initiation of Composition B can also be simulated by the
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numerical models of two-phase reactive flow, and the shock initiation reaction rate and
P-V-E relationship of Composition B can also be described by the Lee–Tarver equation
of reaction rate and the JWL equation of state, respectively. Therefore, Composition B
is representative among various kinds of energetic materials. It can also be used as an
example of solving SIREM on a macroscopic scale with the specific processes of adopting
GABP-MCS to solve the shock initiation randomness problem of Composition B. Therefore,
the shock initiation test of Composition B with shield plate recorded in the literature [41] is
taken as the applied example in this paper, and the exploration of the randomness in this
example will be expressed in detail to demonstrate the specific processes of solving SIREM
by GABP-MCS and to verify the effectiveness of this integrated method. In addition, as the
Back Propagation Neural Networks (BPNN) and Radial Basis Function Neural Network
(RBFNN) are two very classical ANNs, they are usually used as the comparisons of other
ANNs. Therefore, in this example, these two ANNs are also used as the comparisons of
GABPNN, so as to investigate the advantages of GABPNN as the surrogate model of the
numerical model of two-phase reactive flow.

4.1. Numerical Model

The example [41] took Composition B as the test explosives, the 5 mm-thick steel
plates as the shield plates, and the 20 mm-long cylindrical steel with a diameter of 10 mm
as the fragments. The test results showed that, with a shock velocity of fragments lower
than 1003.5 m/s, Composition B was not initiated, while with a shock velocity of fragments
higher than 1049.8 m/s, Composition B was initiated. It can, thus, be seen that the critical
shock initiation velocity of Composition B should be between 1000 m/s and 1050 m/s
under the above working conditions.

In the repeated numerical simulations of the randomness study on this example,
the numerical model of two-phase reactive flow worked as the theoretical model, the
generalized interpolation material point method (GIMPM) [42] worked as the numerical
simulation method, and the calculation program was the self-compiled GIMPM program in
the Fortran language. The numerical model constructed by this GIMPM program is shown
in Figure 3, and the coordinates of the three gauges in this model are shown in Table 1. In
addition, the deterministic parameter values of Composition B in the Lee–Tarver equation
of reaction rate and the JWL equation of state were taken from the literature [43], and these
deterministic parameter values are shown in Tables 2 and 3.
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Table 1. The coordinates of the gauges.

Gauge Number 1 2 3

x coordinate (cm) 15.0 19.0 19.0
y coordinate (cm) 3.0 0.0 3.0

Table 2. The deterministic parameter values of Composition B in the Lee–Tarver equation of reaction rate.

Parameter a I
(µs−1) b x G1

(Mbar−yµs−1) c d y G2
(Mbar−zµs−1) e g z

Value 0.01 44.0 2/9 4.0 414.0 2/9 2/3 2.0 0.0 0.0 0.0 0.0

Table 3. The deterministic parameter values of Composition B in the JWL equation of state.

Parameter Ac
(Mbar)

Bc
(Mbar) Rc1 Rc2 wc

Ag
(Mbar)

Bg
(Mbar) Rg1 Rg2 wg

Value 778.1 −0.05031 11.3 1.13 0.8938 5.242 0.07678 4.2 1.1 0.34

For the accuracy of the training sample sets and the test sample sets constructed by
the GIMPM program, it is necessary to verify in advance the accuracy of the test result
simulations of this example under this program. To this end, this program simulates the
shock response results of Composition B under the shock load conditions that the fragment
impact velocities are 1003.5 m/s and 1049.8 m/s, respectively. The pressure curves of the
three gauges are shown in Figure 4 and the color contour plots of the pressure in Figure 5.
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respectively. (a) The contour plot when t = 22 µs, v = 1049.8 m/s. (b) The contour plot when t = 22 µs,
v = 1003.5 m/s. (c) The contour plot when t = 25 µs, v = 1049.8 m/s. (d) The contour plot when
t = 25 µs, v = 1003.5 m/s. (e) The contour plot when t = 28 µs, v = 1049.8 m/s. (f) The contour plot
when t = 28 µs, v = 1003.5 m/s.
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Figures 4 and 5 show that when the fragment shock velocity is 1049.8 m/s, all the
pressure peaks of the three gauges are over 20 GPa, and detonation waves are also generated
inside Composition B, suggesting that Composition B has been initiated by the shock load.
What can also be concluded is that when the fragment shock velocity is 1003.5 m/s,
the pressure curves of the three gauges are all gentle, with a pressure peak lower than
2.5 GPa, and stress waves with low pressure, not detonation waves, are generated inside
Composition B, suggesting that Composition B has not been initiated by the shock load.
These numerical simulation results are consistent with the test results. Thus, this program
can accurately simulate the shock initiation of Composition B, and the training sample sets
and test sample sets constructed by the repeated numerical simulations via this program
can also be identified as accurate and qualified to meet the needs of training and testing
the GABPNNs.

4.2. Identification of BRVs and RRs

In this example, each test used cylindrical steel fragments of the same size, and the
ballistic trajectories of all the fragments were horizontal straight lines; so, the randomness
of the masses m and the shock angles θ of these fragments could be ignored. However,
due to the significant influence of the charge errors of the fragment shooting gun and the
fragment shock velocity recording errors of the recording equipment, the fragment shock
velocity v recorded in each test had obvious randomness. In addition, according to Table 2,
the values of all 4 parameters, G2, e, g, and z, are 0.0, which indicates that the Lee–Tarver
equation of reaction rate of Composition B does not have the completion term. So, in
this example, there are 19 main BRVs, namely, the 8 parameters a, I, b, x, G1, c, d, and y
in the ignition and the growth terms of the Lee–Tarver equation of reaction rate, and the
10 parameters Ac, Bc, Rc1, Rc2, wc, Ag, Bg, Rg1, Rg2, and wg in the JWL equation of state, and
the v in the shock load conditions. The RRs in the IP and DPR are, respectively, the δ and
the P’s of the three gauges in the numerical model shown in Figure 3 and Table 1.

4.3. Randomness Study

For conciseness and brevity of expression, the shock initiation randomness problem of
Composition B is also abbreviated to SIREM in this example. According to what has been
discussed in Section 4.1, when the mean v of the v is 1050 m/s or 1000 m/s, Composition
B approaches the critical shock initiation state, with obvious randomness in the shock
initiation, so the SIREM was solved under the two shock load conditions where the values
of the v were, respectively, 1050 m/s and 1000 m/s. Moreover, in order to reveal the
common and universal aspects of the SIREM study, it is assumed that the 19 main BRVs
in this example are all independent of each other and subject to the normal distribution,
and the 4 randomness conditions, in which the CVs of these BRVs were, respectively, 0.005,
0.01, 0.015, and 0.02, were considered under these 2 shock load conditions.

4.3.1. Shock Load Condition Where v Is 1050 m/s

(1) Study on IP

(i) Constructing training sample set and test sample sets
In addressing the IP when the v is 1050 m/s, in order to guarantee the excellent

generalization ability of the ANNs, 2000 sample points were generated for the BRVs with
the CV of 0.02, and 500 sample points were generated for the BRVs with the CV of 0.005, so
as to construct the training sample set with 2500 sample points. Then, a test sample set of
1000 sample points was constructed for the BRVs with each of the CVs of 0.005, 0.01, 0.015,
and 0.02. The four test sample sets tested whether the ANNs could accurately calculate
the RRs under these randomness conditions. The statistical results of the initiation and
non-initiation frequencies of Composition B in these training sample set and test sample
sets are shown in Table 4.
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Table 4. The statistical results of the initiation and non-initiation frequencies of Composition B in the
training sample set and test sample sets under the shock load condition where v is 1050 m/s.

Sample Set Sample Size q Initiation Frequency Non-Initiation Frequency

Training sample set 2500 1554 946

Test sample set

CV of BRVs being 0.005 1000 768 232
CV of BRVs being 0.01 1000 685 315
CV of BRVs being 0.015 1000 612 388
CV of BRVs being 0.02 1000 585 415

(ii) Determining the structure and important parameters of ANNs
In this example, according to the numbers of the BRVs and RR in the IP, the neuron

numbers of the input layer, first hidden layer, second hidden layer, and output layer of
the GABPNN for the IP were, respectively, set as 19, 25, 15, and 1. So, the structure of
this GABPNN was 19 × 25 × 15 × 1. In addition, the network maximum training time
Tmax was set as 20,000, the network training rate Rt was set as 0.05, the network training
allowable error Ea was set as 0.001, the population size Mp was set as 20, the maximum
generation Gmax was set as 30, the chromosome crossover probability Pc was set as 0.75,
the chromosome mutation probability Pm was set as 0.1, and the fitness coefficient C was
set as 20.0.

In addition, the structure and corresponding parameters of the BPNN were the same
as the corresponding ones of the GABPNN. The neuron numbers of the input layer and
output layer of the RBFNN were the same as the corresponding ones of the GABPNN, and
the neuron number of the hidden layer of the RBFNN was equal to the sample size q of the
training sample set.

(iii) Performance comparison of ANNs
Firstly, the GABPNN, BPNN, and RBFNN were trained by the above training sample

set. Then, these three trained ANNs were tested by each of the above four test sample
sets, with the test results shown in Table 5 and Figure 6. In Table 5, the δT stands for the
calculation results of these three ANNs (the actual output results of the δ), and the δE the
expected output results of the δ.

Table 5. The comparison of the test results of the ANNs in the IP study under the shock load condition
where v is 1050 m/s.

Test Sample Set

ANN Being
Tested

δT Being the Same as δE δT Being Different from δE

Accuracy of
Testing (%)CV of BRVs Test Number Both δT and

δE Being 1
Both δT and
δE Being 0

δT Being 1
and δE
Being 0

δT Being 0
and δE
Being 1

0.005 1000
GABPNN 723 180 52 45 90.3

BPNN 697 145 87 71 84.2
RBFNN 746 102 130 22 84.8

0.01 1000
GABPNN 627 275 40 58 90.2

BPNN 611 269 46 74 88.0
RBFNN 663 238 77 22 90.1

0.015 1000
GABPNN 564 358 30 48 92.2

BPNN 548 349 39 64 89.7
RBFNN 589 331 57 23 92.0

0.02 1000
GABPNN 553 379 36 32 93.2

BPNN 536 375 40 49 91.1
RBFNN 561 359 56 24 92.0
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According to the test results shown in Table 5 and Figure 6, all the test accuracy results
with which the GABPNN calculated the 0–1 recognition results of the δ corresponding to
these 4 test sample sets were above 90%, and these test results were also better than the
test results of BPNN and RBFNN. It is proved that the GABPNN has stronger nonlinear
mapping ability than the BPNN and RBFNN, and the GABPNN can accurately calculate
the 0–1 recognition results of the δ corresponding to the BRV sample points. Therefore, the
GABPNN can be used as the surrogate model of the IP, and the GABP-MCS can also be
used to estimate the R’s of Composition B.

(iv) Estimation of R based on GABP-MCS
A prediction sample set with 100,000 sample points was constructed under each of the

above 4 randomness conditions, and the 0–1 recognition results of the δ corresponding to
these 4 prediction sample sets were obtained by the GABP-MCS, so as to obtain accurate
estimates of the actual R’s of Composition B under these 4 randomness conditions. The
results are shown in Table 6 and Figure 7.
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Table 6. The calculation results of the GABP-MCS in the IP study under the shock load condition
where v is 1050 m/s.

CV of BRVs Simulation Number Initiation Frequency Non-Initiation Frequency R (%)

0.005 100,000 78,654 21,346 78.65
0.01 100,000 66,291 33,709 66.29
0.015 100,000 61,281 38,719 61.28
0.02 100,000 58,711 41,289 58.71

According to the statistical data in Table 6 and the correlation curve in Figure 7, it can
be concluded that when the v is 1050 m/s, the R of Composition B is negatively correlated
with the CV of the BRVs; that is, the smaller the CV of the BRVs, the higher the R of
Composition B. This is because the smaller the CV of the BRVs, the more concentrated the
distribution of the BRV sample points in the corresponding prediction sample sets, the
more BRV sample points there are that can lead Composition B to be initiated, the lower
the randomness of the SIREM, and the more likely this SIREM is a deterministic problem;
thus, the randomness calculation results of this SIREM will be closer to the deterministic
results described in Section 4.1. So, it can be further deduced that, if the CV of the BRVs
dropped to 0, this SIREM would become a deterministic problem, so Composition B would
definitely be initiated (the R would increase to 1) under the shock load condition where v
was 1050 m/s, which would be exactly the same as the deterministic results presented in
Section 4.1.

(2) Study on DPR

(i) Constructing the training sample set and test sample sets
The sample points that could lead Composition B to be initiated were selected again

from the training sample set and test sample sets of the IP, so as to construct the training
sample set and test sample sets of the DPR. Therefore, according to the statistical data in
Table 4, in addressing the DPR, the training sample set had 1554 sample points, and the
4 test sample sets, with the CVs of the BRVs being respectively 0.005, 0.01, 0.015, and 0.02,
had 768, 685, 612, and 585 sample points respectively.

(ii) Determining the structure and important parameters of ANNs
According to the numbers of the BRVs and RRs in the DPR, the neuron numbers of the

input layer, hidden layer, and output layer of the GABPNN for the DPR were, respectively,
set as 19, 25, and 3. So, the structure of this GABPNN was 19 × 25 × 3. In addition, the
Tmax was set as 20,000, the Rt was set as 0.05, the Ea was set as 0.001, the Mp was set as 20,
the Gmax was set as 30, the Pc was set as 0.75, the Pm was set as 0.1, and the C was set as 0.5.

In addition, the structure and corresponding parameters of the BPNN were the same
as the corresponding ones of the GABPNN. The neuron numbers of the input layer and
output layer of the RBFNN were the same as the corresponding ones of the GABPNN, and
the neuron number of the hidden layer of the RBFNN was equal to the sample size q of the
training sample set.

(iii) Performance comparison of ANNs
Firstly, the GABPNN, BPNN, and RBFNN were trained by the above training sample

set. Then, these three trained ANNs were tested by each of the above four test sample sets,
and the test results are shown in Table 7 and Figure 8.

Table 7. The comparison of the test results of the ANNs in the DPR study under the shock load
condition where v is 1050 m/s.

Gauge Number 1 2 3

CV of BRVs 0.005 0.01 0.015 0.02 0.005 0.01 0.015 0.02 0.005 0.01 0.015 0.02

MAPE of P
(%)

GABPNN 2.16 1.75 1.49 1.25 1.46 1.25 1.10 1.19 0.91 0.75 0.82 0.83
BPNN 2.45 2.00 1.63 1.53 1.75 1.43 1.20 1.37 1.25 0.92 0.95 0.94

RBFNN 3.17 2.81 2.41 3.12 1.54 1.36 1.23 1.45 1.06 0.70 0.68 0.84
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The test results in Table 7 and Figure 8 show that the GABPNN consistently had a
Mean Absolute Percentage Errors (MAPE) lower than 2.2% in calculating the P of each
gauge in the numerical model corresponding to these 4 test sample sets, and the MAPEs of
the GABPNN were slightly higher than the corresponding ones of the RBFNN only when
calculating the P of the gauge 3 corresponding to the test sample sets where the CVs of
BRVs were respectively 0.01 and 0.015, and the MAPEs of the GABPNN were lower than
the corresponding ones of the RBFNN and BPNN when calculating the P of each gauge
under other conditions. It is proved that the GABPNN has stronger nonlinear mapping
ability than the BPNN and RBFNN, and the GABPNN can accurately calculate the P of
each gauge corresponding to the BRV sample points. Therefore, the GABPNN can be used
as the surrogate model of the DPR, and the GABP-MCS can also be used to estimate the
statistical characteristics of the P of each gauge of Composition B.

(iv) Estimation of the statistical characteristics of P based on GABP-MCS
The sample points that could lead Composition B to be initiated were selected from

the prediction sample sets of the IP, so as to construct the prediction sample sets of the DPR.
According to Table 6, in addressing the DPR, the 4 prediction sample sets, with the CVs
of the BRVs being, respectively, 0.005, 0.01, 0.015, and 0.02, had 78,654, 66,291, 61,281, and
58,711 sample points, respectively. The calculation results of the P’s of the three gauges in
the numerical model corresponding to these four prediction sample sets were obtained by
the GABP-MCS, so as to obtain the accurate estimates of the actual statistical characteristics
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of the P’s of these three gauges under the above four randomness conditions, as shown in
Table 8 and Figure 9.

Table 8. The calculation results of the GABP-MCS in the DPR study under the shock load condition
where v is 1050 m/s.

Gauge Number 1 2 3

CV of BRVs 0.005 0.01 0.015 0.02 0.005 0.01 0.015 0.02 0.005 0.01 0.015 0.02

Statistical
characteristic

of P

Mean of P
(GPa) 26.55 27.30 27.91 28.30 29.18 29.58 29.96 30.30 31.61 31.88 32.22 32.54

CV of P 0.0618 0.0736 0.0824 0.0965 0.0271 0.0423 0.0567 0.0736 0.0228 0.0364 0.0509 0.0664
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The following are the three observations from Table 8 and Figure 9 and their interpre-
tation. First, for each gauge, the mean of its P is positively correlated with the CV of the
BRVs; that is, the mean of its P can increase gradually with the CV of the BRVs. This is
because the more likely the BRV sample points result in the initiation of Composition B, the
greater P Composition B tends to generate in subsequent detonations. Furthermore, the
larger the CV of the BRVs, the more scattered the distribution of the BRV sample points in
the corresponding prediction sample sets, and the more BRV sample points that can result
in lower values of the P will be eliminated in addressing the DPR for the initiation failure
of Composition B. In this case, a higher proportion of the BRV sample points, which result
in the higher values of the P in the prediction sample sets, suggests the higher estimated
means of the P. What is also observed is that, under these four randomness conditions, the
CVs of the P’s of the three gauges in the numerical model are all significantly larger than
the CVs of the BRVs, which indicates that the randomness of the BRVs can magnify the
randomness of the P. The third observation is that, for each gauge, the CV of its P is also
positively correlated with the CV of the BRVs; that is, the CV of its P can decrease with the
CV of the BRVs. This is because the smaller the CV of the BRVs, the lower the randomness
of the SIREM and the lower the randomness of the P, which suggests the smaller the CV of
the P. So, it can be further deduced that, if the CV of the BRVs dropped to 0, the SIREM
would become a deterministic problem, the CVs of the P would also drop to 0, and the P
would also become a deterministic variable accordingly.
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4.3.2. Shock Load Condition Where v Is 1000 m/s

(1) Study on IP

(i) Constructing training sample set and test sample sets
In addressing the IP when the v is 1000 m/s, in order to guarantee the excellent

generalization ability of the ANNs and sufficient training sample points for the DPR,
3000 sample points were generated for the BRVs with the CV of 0.02, and 1000 sample
points were generated for the BRVs with the CV of 0.005, so as to construct the training
sample set with 4000 sample points. Then, a test sample set with 1000 sample points was
constructed for the BRVs with each of the CVs of 0.005, 0.01, 0.015, and 0.02. Table 9 shows
the statistical results of the initiation and non-initiation frequencies of Composition B in
these training sample set and test sample sets.

Table 9. The statistical results of the initiation and non-initiation frequencies of Composition B in the
training sample set and test sample sets under the shock load condition where v is 1000 m/s.

Sample Set Sample Size q Initiation Frequency Non-Initiation Frequency

Training sample set 4000 1580 2420

Test sample set

CV of BRVs being 0.005 1000 258 742
CV of BRVs being 0.01 1000 367 633
CV of BRVs being 0.015 1000 398 602
CV of BRVs being 0.02 1000 454 546

(ii) Determining the structure and important parameters of ANNs
In this stage, under the shock load condition that the v is 1000 m/s, the setting of the

structure and important parameters of the GABPNN, BPNN, and RBFNN is the same as
the corresponding operation under the shock load condition where the v is 1050 m/s; see
Section 4.3.1.

(iii) Performance comparison of ANNs
Firstly, the GABPNN, BPNN, and RBFNN were trained by the above training sample

set. Then, these three trained ANNs were tested by each of the above four test sample sets,
and the test results shown in Table 10 and Figure 10 were obtained.

Table 10. The comparison of the test results of the ANNs in the IP study under the shock load
condition where v is 1000 m/s.

Test Sample Set

ANN Being
Tested

δT Being the Same as δE δT Being Different from δE

Accuracy of
Testing (%)CV of BRVs Test Number Both δT and

δE Being 1
Both δT and
δE Being 0

δT Being 1
and δE
Being 0

δT Being 0
and δE
Being 1

0.005 1000
GABPNN 196 684 58 62 88.0

BPNN 198 667 75 60 86.5
RBFNN 115 688 54 143 80.3

0.01 1000
GABPNN 311 572 61 56 88.3

BPNN 309 567 66 58 87.6
RBFNN 275 596 37 92 87.1

0.015 1000
GABPNN 341 553 49 57 89.4

BPNN 334 542 60 64 87.6
RBFNN 321 561 41 77 88.2

0.02 1000
GABPNN 405 504 42 49 90.9

BPNN 390 503 43 64 89.3
RBFNN 398 520 26 56 91.8
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Figure 10. The comparison of the testing accuracy of the ANNs in the IP study under the shock load
condition where v is 1000 m/s.

According to the test results shown in Table 10 and Figure 10, the test accuracy when
the GABPNN calculated the 0–1 recognition results of the δ corresponding to these 4 test
sample sets was consistently higher than 87%, and the testing accuracy of the GABPNN
was slightly lower than the corresponding one of the RBFNN only when calculating the
0–1 recognition results of the δ corresponding to the test sample set with the CV of BRVs as
0.02, and the testing accuracies of the GABPNN were higher than the corresponding ones
of the RBFNN and BPNN when calculating the 0–1 recognition results of the δ under other
conditions. It is proved that the GABPNN has stronger nonlinear mapping ability than the
BPNN and RBFNN, and the GABPNN can accurately calculate the 0–1 recognition results
of the δ corresponding to the BRV sample points. Therefore, the GABPNN can be used as
the surrogate model of the IP, and the GABP-MCS can also be used to estimate the R’s of
Composition B.

(iv) Estimation of R based on GABP-MCS
A prediction sample set with 100,000 sample points was constructed under each of

the above 4 randomness conditions, and the 0–1 recognition results of the δ corresponding
to these 4 prediction sample sets were obtained by the GABP-MCS, so as to obtain the
accurate estimates of the actual R’s of Composition B under these 4 randomness conditions.
Table 11 and Figure 11 show the results.
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Table 11. The calculation results of the GABP-MCS in the IP study under the shock load condition
where v is 1000 m/s.

CV of BRVs Simulation Number Initiation Frequency Non-Initiation Frequency R (%)

0.005 100,000 26,151 73,849 26.15
0.01 100,000 36,677 63,323 36.68
0.015 100,000 40,812 59,188 40.81
0.02 100,000 43,155 56,845 43.16

According to the statistical data in Table 11 and the correlation curve in Figure 11,
it can be concluded that, when the v is 1000 m/s, the R of Composition B is positively
correlated with the CV of the BRVs; that is, the smaller the CV of the BRVs, the lower the R
of Composition B. This is because the smaller the CV of the BRVs, the more concentrated
the distribution of the BRV sample points in the corresponding prediction sample sets,
the less BRV sample points there are that can lead Composition B to be initiated, and the
lower the randomness of the SIREM. If the CV of the BRVs dropped to 0, this SIREM would
become a deterministic problem, so Composition B would not be initiated (the R would
drop to 0) under the shock load condition where v was 1000 m/s, which would be exactly
the same as the deterministic results described in Section 4.1.

(2) Study on DPR

(i) Constructing training sample set and test sample sets
The same method discussed in Section 4.3.1 was adopted to construct the training

sample set and test sample sets of the DPR. Table 9 shows that in addressing the DPR, the
training sample set had 1580 sample points and the 4 test sample sets with 258, 367, 398,
and 454 sample points, which correspond, respectively, to the CVs of the BRVs at 0.005,
0.01, 0.015, and 0.02.

(ii) Determining the structure and important parameters of ANNs
When the v is 1000 m/s, the setting of the structure and important parameters of the

GABPNN, BPNN, and RBFNN is the same as the corresponding operation when the v is
1050 m/s; see Section 4.3.1 for the setting process.

(iii) Performance comparison of ANNs
Firstly, the GABPNN, BPNN, and RBFNN were trained by the above training sample

set. Then, these three trained ANNs were tested by each of the above four test sample sets,
and the test results shown in Table 12 and Figure 12 were obtained.

Table 12. The comparison of the test results of the ANNs in the DPR study under the shock load
condition where v is 1000 m/s.

Gauge Number 1 2 3

CV of BRVs 0.005 0.01 0.015 0.02 0.005 0.01 0.015 0.02 0.005 0.01 0.015 0.02

MAPE of P
(%)

GABPNN 2.48 1.86 1.66 1.72 2.51 1.86 1.92 2.38 2.46 1.11 1.23 1.28
BPNN 3.25 2.22 1.86 1.76 3.89 2.47 2.26 2.48 2.62 1.23 1.29 1.42

RBFNN 3.06 3.16 2.87 3.34 4.03 2.90 2.83 3.68 2.74 1.54 1.61 2.04

According to the test results shown in Table 12 and Figure 12, the GABPNN consis-
tently had MAPEs lower than 2.6% in calculating the P of each gauge in the numerical
model corresponding to these 4 test sample sets, and these test results were also better than
the test results of BPNN and RBFNN. It is proved that the GABPNN has stronger nonlinear
mapping ability than the BPNN and RBFNN, and the GABPNN can accurately calculate
the P of each gauge corresponding to the BRV sample points. Therefore, the GABPNN
can be used as the surrogate model of the DPR, and the GABP-MCS can also be used to
estimate the statistical characteristics of the P of each gauge of Composition B.
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(iv) Estimation of the statistical characteristics of P based on GABP-MCS
The sample points that could lead Composition B to be initiated were selected from

the prediction sample sets of the IP, so as to construct the prediction sample sets of the DPR.
According to Table 11, in addressing the DPR, the 4 prediction sample sets, with the CVs
of the BRVs being, respectively, 0.005, 0.01, 0.015, and 0.02, had 26,151, 36,677, 40,812, and
43,155 sample points, respectively. The calculation results of the P’s of the three gauges in
the numerical model corresponding to these four prediction sample sets were obtained by
the GABP-MCS, so as to obtain the accurate estimates of the actual statistical characteristics
of the P’s of these three gauges under the above four randomness conditions, as shown in
Table 13 and Figure 13.

Table 13. The calculation results of the GABP-MCS in the DPR study under the shock load condition
where v is 1000 m/s.

Gauge Number 1 2 3

CV of BRVs 0.005 0.01 0.015 0.02 0.005 0.01 0.015 0.02 0.005 0.01 0.015 0.02

Statistical
characteristic

of P

Mean of P
(GPa) 24.96 26.61 27.44 28.06 28.33 29.34 29.90 30.38 31.25 32.05 32.45 32.80

CV of P 0.0613 0.0804 0.0900 0.0991 0.0441 0.0552 0.0676 0.0829 0.0317 0.0406 0.0533 0.0674
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The following are the three observations from Table 13 and Figure 13 and their inter-
pretation. First, for each gauge, the mean of its P is positively correlated with the CV of
the BRVs; that is, the mean of its P can increase with the CV of the BRVs. This is because
the more likely the BRV sample points result in the initiation of Composition B, the greater
P Composition B tends to generate in subsequent detonations. Furthermore, the larger
the CV of the BRVs, the more scattered the distribution of the BRV sample points in the
corresponding prediction sample sets, and the more BRV sample points that can result
in higher values of the P will be reserved in addressing the DPR, for they can lead to the
initiation of Composition B. This suggests the higher estimates of the means of the P. What
is also observed is that, under these four randomness conditions, the CVs of the P’s of the
three gauges in the numerical model are all significantly larger than the CVs of the BRVs,
which indicates that the randomness of the BRVs can magnify the randomness of the P.
The third observation is that, for any gauge, the CV of its P is also positively correlated
with the CV of the BRVs; that is, the CV of its P can increase with the CV of the BRVs. This
is because the larger the CV of the BRVs, the higher the randomness of the SIREM, and the
higher the randomness of the P, which suggests the larger the CV of the P.

The above are the details of this applied example. The study results show that the
shock response of Composition B has obvious randomness under the action of the main
BRVs, and that the GABP-MCS can be adopted to solve the SIREM to obtain satisfactory
randomness study results. Moreover, since Composition B is representative among various
kinds of energetic materials, this example can also prove the universality of GABP-MCS in
the study on SIREM.

5. Discussion

(1) Selection of study methods of SIREM on a macroscopic scale

With many well-established stochastic analysis methods and the uniqueness of SIREM
on a macroscopic scale, it is necessary to discuss the selection of the study methods
of SIREM.

The common stochastic analysis methods available may fall into three broad types.
The first type is semi-analytical methods, including such typical methods as the center
point method [44,45], checking point method [46,47], and perturbation method [48,49]. In
applying this type of method between BRVs and RRs, they must form a definite perfor-
mance function, which must be continuously differentiable to BRVs so as to obtain the
statistical analysis results of RRs through the derivative of the performance function to
BRVs. The next type is MCS and its improved versions. This type, on the basis of the law
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of large numbers, conducts repeated sampling tests by selecting a large number of BRV
sample points to obtain the corresponding statistical analysis results of RRs. The last type
refers to surrogate model methods, represented by the response surface method [50,51],
Kriging method [52–54], and artificial neural network (ANN) method. The philosophy of
this type is that a substitute surrogate model for original calculation ones is constructed,
together with the first two types of method, to obtain the statistical analysis results of RRs.

In the studies on SIREM on a macroscopic scale, semi-analytical methods may not
apply, for it is nearly impossible to construct a definite performance function due to the
quite complex nonlinear mapping between BRVs and RRs. It is impractical to adopt
MCS or its improved versions, which directly use the numerical simulations of the shock
initiation of energetic materials as repeated sampling tests, because the great amount of
time required by these numerical simulations renders this type of method quite time- and
effort-consuming. In addition, common surrogate model methods, such as the response
surface method and Kriging method, may not fit the SIREM study either. This is because
the marked differences in the RR values between the initiation and non-initiation states of
energetic materials suggest the impossibility of forming an approximate continuous limit
state surface between BRVs and RRs. Therefore, what can be adopted are the methods of
combining the ANNs, which are more powerful in nonlinear mapping and quick enough
in calculating, with MCSs in the SIREM study.

As GABPNN is an ANN with strong nonlinear mapping ability and high computa-
tional efficiency, the GABP-MCS with GABPNN as the surrogate model is adopted to solve
SIREM in this paper. Yet, what should be noticed is that with the rapid development of
machine learning and artificial intelligence, new ANNs with greater nonlinear mapping
ability have been developed one after another, so it is necessary to try to apply other new
ANNs to solve SIREM in future work.

(2) Correlation between mesoscopic and macroscopic studies on SIREM

Although the mesoscopic studies on SIREM recorded in the literature [7–21] are limited
to preliminary theoretical exploration under standard test conditions to obtain the initiation
probabilities and probabilistic initiation thresholds of energetic materials, the effect of
the indeterminacy of the microstructure of energetic materials on the impact sensitivity
of energetic materials has been investigated. This can better explore the source of the
impact sensitivity randomness of energetic materials; that is, the random distribution of the
micro-sized energetic grains, binder grains, voids, and cracks inside the energetic materials
is among the root causes of the impact sensitivity randomness of energetic materials, which
may further the perceptions of the nature of this issue. On the other hand, although the
macroscopic study on SIREM in this paper can obtain the initiation probabilities of energetic
materials under more complex working conditions and the statistical characteristics of the
detonation pressure in different positions inside these energetic materials after they are
initiated, so as to better meet the needs of engineering practices, the source of the impact
sensitivity randomness of energetic materials cannot be directly addressed by taking the
parameters of the Lee–Tarver equation of reaction rate and the JWL equation of state as
the BRVs of the detonation characteristics. This forms the limitations of solving SIREM
on a macroscopic scale. In fact, our research team believes that the randomness of these
parameters is the macroscopic manifestation of the randomness of the microstructure of
energetic materials. Hence, these two kinds of randomness are equivalent and can both
represent the randomness of the detonation characteristics of energetic materials, with the
former being the macroscopic phenomenological representation of the randomness of the
detonation characteristics of energetic materials, and the latter being the mesoscale source.

Therefore, due to the complementary relationship between the mesoscopic and macro-
scopic SIREM studies, it is suggested that researchers should conduct studies from both
perspectives to make the fullest use of them. In addition, no well-established theoretical
methods are now available to conduct a quantitative study of the effects of the microstruc-
ture randomness of energetic materials on the parameter randomness of the Lee–Tarver
equation of reaction rate and the JWL equation of state. This indicates the absence of a
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unified research system that involves the detonation characteristic randomness of energetic
materials, as well as its phenomenological representation and natural representation, which
requires further study in the future.

6. Conclusions

The macroscopic SIREM study should explore in turn the R’s of energetic materials
and the randomness of P after energetic materials are initiated, so it is natural to decompose
SIREM into IP and DPR. The main BRVs on the detonation characteristics of energetic
materials can be selected from the parameters a, I, b, x, G1, c, d, y, G2, e, g, and z in the
Lee–Tarver equation of reaction rate and the parameters Ac, Bc, Rc1, Rc2, wc, Ag, Bg, Rg1,
Rg2, and wg in the JWL equation of state. The main BRVs on shock load conditions can be
selected from the physical quantities, such as the mass m, shock velocity v, and shock angle
θ of a fragment. In IP, δ should be introduced as RR. In DPR, the P of energetic materials
should be defined as RR.

The macroscopic SIREM study should adopt the method of combining ANN surrogate
models with MCSs due to the quite complex nonlinear mapping between RRs and BRVs.
Therefore, this paper uses GABPNNs as the surrogate models of the numerical models of
two-phase reactive flow, adopts GABP-MCS to solve SIREM, and develops the approaches.

To verify the effectiveness of GABP-MCS in solving SIREM and to provide the specific
solving processes, the shock initiation randomness problem of Composition B is taken
as an applied example in this paper. Under the randomness conditions that the v’s are
1050 m/s and 1000 m/s and that the CVs of the BRVs are 0.005, 0.01, 0.015, and 0.02, the R’s
of Composition B and the statistical characteristics, such as the means and CVs of the P of
Composition B, are obtained, and the variation tendencies that these statistics show under
various randomness conditions are further observed.

In a nutshell, this paper analyzes SIREM on a macroscopic scale and proposes the
approach of adopting GABP-MCS to solve SIREM, so as to develop a universal technique
for calculating the initiation probabilities of energetic materials under complex working
conditions and the statistical characteristics of detonation pressure. This technique can be
widely applied to engineering practices, such as assessments of the shock safety randomness
of energetic materials.

In addition, as mentioned in Discussion 5, GABPNN is just a mature ANN, and it
is necessary to try to apply other new ANNs to solve SIREM in future work. Moreover,
no well-established theoretical methods are now available to conduct a quantitative study
of the effects of the microstructure randomness of energetic materials on the parameter
randomness of the Lee–Tarver equation of reaction rate and the JWL equation of state,
which requires further study in the future.
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