
Citation: Wen, S.; Jia, P.; Yang, P.; Hu,

C. Squill: Testing DBMS with

Correctness Feedback and Accurate

Instantiation. Appl. Sci. 2023, 13, 2519.

https://doi.org/10.3390/

app13042519

Academic Editor: Luis Javier García

Villalba

Received: 22 November 2022

Revised: 10 February 2023

Accepted: 13 February 2023

Published: 15 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Squill: Testing DBMS with Correctness Feedback and
Accurate Instantiation
Shihao Wen 1, Peng Jia 1,* , Pin Yang 1 and Chi Hu 2

1 School of Cyber Science and Engineering, Sichuan University, Chengdu 610207, China;
wenshihao@stu.scu.edu.cn (S.W.); yangpin@scu.edu.cn (P.Y.)

2 China Academy of Engineering Physics, Mianyang 621900, China; huchi16@nudt.edu.cn
* Correspondence: pengjia@scu.edu.cn

Abstract: Database Management Systems (DBMSs) are the core of management information systems.
Thus, detecting security bugs or vulnerabilities of DBMSs is an essential task. In recent years, grey-
box fuzzing has been adopted to detect DBMS bugs for its high effectiveness. However, the seed
scheduling strategy of existing fuzzing techniques does not consider the seeds’ correctness, which is
inefficient in finding vulnerabilities in DBMSs. Moreover, current tools cannot correctly generate SQL
statements with nested structures, which limits their effectiveness. This paper proposes a fuzzing
solution named Squill to address these challenges. First, we propose correctness-guided mutation to
utilize the correctness of seeds as feedback to guide fuzzing. Second, Squill embeds semantics-aware
instantiation to correctly fill semantics to SQL statements with nested structures by collecting the
context information of AST nodes. We implemented Squill based on Squirrel and evaluated it on
three popular DBMSs: MySQL, MariaDB, and OceanBase. In our experiment, Squill explored 29%
more paths and found 3.4× more bugs than the existing tool. In total, Squill detected 30 bugs in
MySQL, 27 in MariaDB, and 6 in OceanBase. Overall, 19 of the bugs are fixed with 9 CVEs assigned.
The results show that Squill outperforms the previous fuzzer in terms of both code coverage and
bug discovery.

Keywords: coverage-based grey-box fuzzing; database testing; vulnerability

1. Introduction

Database management systems (DBMSs) are widely used worldwide as the core of
modern information systems. Like other complicated computer applications, the security
and reliability of DBMSs face severe challenges. Malicious attacks on DBMSs, such as
remote code execution or denial of service, will seriously harm the information system.
Therefore, it is of great significance to efficiently detect DBMS vulnerabilities to improve
their robustness and the security of the information system built on them.

Black-box fuzzing, or generation-based fuzzing, has been extensively used in finding
DBMS bugs, such as SQLsmith [1] and SQLancer [2–4]. Security researchers have found a
considerable number of bugs using this technique. A black-box fuzzer treats the program
as a black box and is unaware of internal program structure [5]. It randomly generates
a large number of SQL statements and executes them in the DBMS. The current input is
saved for subsequent analysis when unexpected behavior occurs, such as a crash. The
disadvantage of black-box fuzzing has been thoroughly discussed by the academic circle,
which is inefficiency. Since the generation of SQL statements is entirely random, considering
the complexity of the DBMS, most of the inputs generated by the black-box fuzzer will be
difficult to trigger the deep program logic, in which bugs often hide. Despite inefficiency,
this technique still has a wide range of uses. Since black-box fuzzing does not require the
source code of the DBMS, it can test some commercial DBMSs that are not open source.

Researchers have studied grey-box fuzzing actively in recent years. The main dif-
ference between grey-box fuzzing and black-box fuzzing is that the former leverages

Appl. Sci. 2023, 13, 2519. https://doi.org/10.3390/app13042519 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13042519
https://doi.org/10.3390/app13042519
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0455-8779
https://doi.org/10.3390/app13042519
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13042519?type=check_update&version=2

Appl. Sci. 2023, 13, 2519 2 of 23

instrumentation to glean information about the program [5], such as code coverage. With
an initial seed queue, the grey-box fuzzer performs a series of mutations on seeds to gen-
erate new inputs and saves the inputs that trigger a new state (or crash) of the program
for future mutation. Therefore, compared with black-box fuzzer, grey-box fuzzer can
explore the deep states of the program gradually. The well-known AFL [6] collects the
code coverage of the program during fuzzing by instrumentation, and DBMS vendors have
applied it to DBMS testing. For example, SQLite used AFL as a standard part of the testing
strategy until it was superseded by better fuzzers [7]. However, since fuzzer [8–10], like
AFL, was not initially designed for DBMS fuzzing, the SQL statements generated by AFL
often have syntactic or semantic errors, making it hard to trigger the deep logic of DBMSs
(such as the optimizer). Squirrel [11], a recent work focusing on DBMS fuzzing, has solved
this problem to some extent, making it the state-of-art grey-box DBMS fuzzer. It introduces
the structure-aware mutator for SQL statements into AFL. After mutation, it fills inputs
with new semantics to improve the syntactic and semantic correctness.

In recent years, many new solutions have been proposed for grey-box fuzzer to
improve fuzzing efficiency. An important one is improving the seed scheduling strategy.
However, less attention has been paid to the seed scheduling strategy in the DBMS fuzzing
area. In DBMS fuzzing, different seeds have different correctness, and seeds with different
correctness contribute differently to fuzzing. Hence, scheduling seeds by speed and size,
the seed scheduling strategy in the existing grey-box DBMS fuzzer, is inefficient. Another
challenge in grey-box DBMS fuzzing is the semantics filling of SQL statements. In order
to make the SQL statement generated by mutation pass the semantic check of DBMSs,
Squirrel proposes a method called Semantics-Guided Instantiation to fill the SQL skeleton
with concrete semantics. However, the instantiation method of Squirrel does not perform
well on SQL statements with nested structures due to design issues. A significant reason is
that Squirrel cannot distinguish between nodes with the same type but at different levels.
The problem of instantiation makes Squirrel hard to generate complex SQL statements,
limiting its effectiveness in finding DBMS bugs.

In this paper, we implement a grey-box fuzzer, Squill, to address the challenges faced
in current DBMS fuzzing. As the particularity of DBMS fuzzing scenarios, we propose
correctness-guided mutation, which utilizes the correctness of SQL statements as feedback
to guide fuzzing. We design two heuristic methods to improve the fuzzing efficiency by
collecting the correctness (valid, syntax-error, semantics-error) of each seed. First, we
prioritize mutating valid seeds because of their effectiveness in generating new paths and
crashes. Second, we give some seeds with syntactic or semantic errors more opportunities
to participate in mutation as material to activate interesting SQL structures in them more
rapidly. In addition, we propose semantics-aware instantiation, which has the ability
to guarantee the semantic correctness of the inputs with nested structures. We design
a new instantiation stage in which we fill the nodes with semantics according to the
predetermined constraints. During instantiation, we traverse each node of the AST in turn
and parse according to the node type. While traversing, we collect the context information
of each node so that we can distinguish nodes of the same type but at different levels and
assign different dependencies to them. For example, with the context information of a node,
we can distinguish whether it is at the beginning of a SELECT statement or a subquery in
FROM clause and treat it differently.

We implemented Squill based on Squirrel. To understand the effectiveness of Squill,
we evaluated it on three popular databases: MySQL [12], MariaDB [13], and OceanBase [14].
Squill successfully found 63 memory error issues, including 30 bugs in MySQL, 27 bugs in
MariaDB, and 6 bugs in OceanBase. We have reported all of our findings to the developers
of the appropriate DBMS. At the time of paper writing, 19 bugs have been fixed, and 9 CVE
numbers have been assigned due to the danger of these vulnerabilities. Our evaluation
shows that correctness-guided mutation helps to improve the efficiency of fuzzers in path
exploration and bug finding. We also compare our work with the current state-of-the-
art tool, Squirrel. After 24 h of testing, Squill found 15, 17, and 2 bugs in each of the

Appl. Sci. 2023, 13, 2519 3 of 23

three DBMSs, while Squirrel found only 3, 7, and 0 bugs. Furthermore, results show
that semantics-aware instantiation outperforms the instantiation of Squirrel in the correct
semantic filling of complex SQL statements.

In this paper, we first introduce Squirrel’s mutation and instantiation method. Then we
illustrate the necessity of scheduling seeds according to correctness through experiments
and illustrate the drawbacks of Squirrel’s instantiation method with examples. In addition,
we introduce our solutions Squill to these two problems, including correctness-guided
mutation and semantics-aware instantiation. Eventually, we prove the effectiveness of
Squill through experiments.

In conclusion, this paper makes the following contributions:

• We investigated the drawbacks of the current seed scheduling strategy and the prob-
lem of Squirrel’s instantiation method. We conclude that seeds should be scheduled
based on correctness, and a new instantiation method that can correctly generate
semantics for SQL statements with nested structures is demanded.

• We propose correctness-guided mutation, which utilizes the correctness of seed exe-
cution as feedback to guide fuzzing and improve efficiency. Moreover, we propose
semantics-aware instantiation to address the challenge of correct semantics generation
for SQL statements with nested structures. We implement Squill, a coverage-guided
DBMS fuzzer that applies the two solutions above.

• We evaluated Squill on several real-world DBMSs and found 63 bugs.The results
show that Squill outperforms the previous fuzzer in terms of both code coverage and
bug discovery. We have released the source code of Squill at https://github.com/
imbawenzi/Squill (accessed on 22 November 2022).

2. Background

Our proposed solution, Squill, is built on the state-of-the-art DBMS fuzzer, Squirrel. In
this section, we first present an overview of Squirrel. We also introduce the challenges that
current grey-box DBMS fuzzing faces and illustrate the motivation of Squill.

2.1. Overview of Squirrel

Squirrel is a recent work that aims to detect memory errors in DBMSs. Based on
AFL, Squirrel modifies the mutation component so that the fuzzer can guarantee the
syntactic correctness of SQL statements when mutating. As the input may be a combination
of multiple parts from different SQL statements, there is a considerable probability for
its semantics to be wrong. After mutation, Squirrel fills the skeleton of the SQL query
with concrete operands (such as table name) through query instantiation to improve the
semantic correctness.

A fuzzing loop of Squirrel starts with an empty database and inputs a set of SQL
statements into DBMS, which generally include CREATE, INSERT, UPDATE, and SELECT
statements. After Squirrel completes one execution, it will empty the database. Squirrel
will add the input to the seed queue when it triggers new code coverage. So that Squirrel
can mutate based on previous seeds, triggering the deep logic of DBMSs, compared with
black-box DMBS fuzzer.

2.1.1. Mutation of Squirrel

Squirrel implements a SQL parser that converts SQL statements into AST. The mutation
of the seeds (SQL statements) is based on the AST. Each node has an associated type (or
grammar type), such as SelectStmt for the root node of a SELECT statement. Squirrel
proposes three new mutation operators, including insertion, deletion, and replacement
of an AST node. There is an AST subtree library in Squirrel, which we call the mutation
material library. Squirrel will convert the original input and new seeds into AST and add
all subtrees of these AST to the mutated material library. When performing a replace or
insert mutation, Squirrel randomly selects a subtree whose root node has the same type
as the target node from the mutation material library to mutate. In this way, Squirrel can

https://github.com/imbawenzi/Squill
https://github.com/imbawenzi/Squill

Appl. Sci. 2023, 13, 2519 4 of 23

maintain SQL statements in a structural manner and guarantee syntactic correctness during
mutation. In the AST parser, Squirrel additionally assigns a refined data type, used in the
instantiation, to nodes with semantics, such as table name.

2.1.2. Instantiation of Squirrel

The new SQL statement generated by mutation is a syntax-correct skeleton with se-
mantics stripped. Squirrel fills it with concrete values in the process called instantiation.
For data definition nodes, such as table name and column name in the CREATE statement,
Squirrel directly generates concrete data to fill the node and record it. For other nodes,
Squirrel will first construct the dependency graph of nodes according to the preset depen-
dency rules of different refined data types. For the node in the graph with more than one
parent, Squirrel randomly picks one to establish the edge. After that, the dependency graph
is filled from top to bottom to complete the semantics filling of each node.

Figure 1 is an instantiation example of a SELECT statement in Squirrel, where x* is
the placeholder for the semantics to be filled, and v* represents the semantics after filling.
For the CREATE statement, we assume that the semantics has been assigned. The SELECT
statement has two types of nodes that need to be instantiated, the node whose refined
data type is kDataColumnName and the node whose refined data type is KDataTableName.
Squirrel specifies the dependencies between these two refined data types. That is, the
column name depends on the table name. Since the column name x1 can come from
both table x3 and table x4, and x2 is the same, the dependency graph in the figure can be
constructed. Then Squirrel randomly selects a parent for each node, assuming that x1, x2
depend on x3. Finally, the dependency graph is filled from top to bottom. For the table
name, Squirrel randomly selects one from the existing tables(v1 and v5). For the column
name, Squirrel randomly selects a column name from the table it depends on. At this point,
the SELECT statement is filled with semantics.

Figure 1. An instantiation example of Squirrel.

2.2. Motivation
2.2.1. Correctness Feedback

In grey-box fuzzing, fuzzers usually collect some information to guide fuzzing. For
example, AFL collects seeds’ size and execution speed and prioritizes mutating the smaller
and faster seeds. Some studies [15–17] have shown that information, such as the rareness
of branches, the number of memory reads or writes, and the number of branches that
seed changed can guide fuzzer to perform better. In DBMS fuzzing, there is a noticeable
difference in the correctness of the seeds. For example, Listing 1 shows some SQL statements
with different correctness. An intuitive assumption is that seeds with different correctness
contribute differently to fuzzing.

Appl. Sci. 2023, 13, 2519 5 of 23

Listing 1. SQL statements with different correctness.

−−− V a l i d
SELECT row_number () OVER w, v1 FROM v2 WINDOW w AS (PARTITION BY
v3 ORDER BY v4) ;

−−− Semant i cs − e r r o r
SELECT row_number () OVER w, v1 FROM v2 ;
−−− ERROR: Window name ’w’ i s not d e f i n e d .

−−− Syntax − e r r o r
SALECT row_number () OVER w, v1 FROM v2 WINDOW w AS (PARTITION BY
v3 ORDER BY v4) ;
−−− ERROR: MySQL s e r v e r v e r s i o n f o r t h e r i g h t syn ta x t o use
near ’SALECT\ l d o t s ’

To verify our hypothesis, we conducted experiments on Squirrel to evaluate the
contribution of seeds with different correctness. The result is demonstrated in Figure 2.
According to the correctness of seeds, we divided the seeds into three types: valid (or
semantics-correct), syntax-error, and semantics-error. We counted the seeds number of
each type in a DBMS fuzzing process, as shown in Figure 2a. The abscissa indicates the
total number of seeds in the process of fuzzing, and the ordinate indicates the number of
different correctness seeds during the period. We found that most of the seed increments
come from valid seeds. In other words, most of the paths explored by fuzzing were the
program logic of DBMS after the syntactic and semantic check. It is because only inputs that
are syntactic and semantic correct can proceed to the following phases, such as optimization
and execution, triggering new code coverage.

(a) Correctness of seeds (b) Source seed type of valid seeds (c) Source seed type of crashes

Figure 2. Contributions of seeds with different correctness in a DBMS fuzzing process.

We also counted the correctness of the valid seed’s source seed in this fuzzing, as
shown in Figure 2b. The abscissa indicates the total number of valid seeds in the fuzzing
process, and the ordinate indicates the number of different correctness valid seed’s source
seeds during the period. A seed’s source seed means that the seed was generated by
the mutation based on its source seed. It can be seen that the majority of valid seeds
are mutated from valid seeds. Considering the proportion of valid seeds in all seeds, it
shows that valid seeds have a greater probability of generating valid seeds than seeds with
syntactic and semantic errors. It is because if seeds with syntactic and semantic errors want
to generate valid seeds, they need to mutate the wrong structures into correct ones, which
is more difficult.

Moreover, we counted the correctness of the crash source seed, as shown in Figure 2c.
The abscissa indicates the total number of crashes in the fuzzing process, and the ordinate
indicates the number of different correctness crash source seeds during the period. The
result shows that valid seeds are more likely to generate crash inputs than seeds with
syntactic and semantic errors, as crashes often hide in the deep logic of the DBMS. To cause

Appl. Sci. 2023, 13, 2519 6 of 23

a crash, the input needs to pass the DBMS’s syntactic and semantic check so that the DBMS
can execute it. Therefore, the input that causes a crash is often valid.

Motivation. According to the analysis above, we can conclude that seeds with
different correctness have different contributions to fuzzing. Hence, the seed schedulers in
existing fuzzers, which schedules seeds by speed and size, are not efficient. Ideally, valid
seeds should be mutated prior to invalid seeds because of their effectiveness in generating
new paths and crashes. Therefore, a better seed scheduling strategy is demanded.

2.2.2. Limitation of Squirrel’s Instantiation

The instantiation method of Squirrel works well on simple SQL statements. However,
when faced with complex SQL statements, this method shows its limitation. In this paper,
we define complex SQL statements as long SQL statements with nested structures, such as
subqueries. When Squirrel translates SQL statements into AST, it will initialize the node
containing semantics with a corresponding refined data type. It means that when recursive
parsing, such as a subquery, nodes at different levels will be assigned with the same refined
data type, for Squirrel parses them with the same grammar. However, there may be
dependencies between nodes at different levels. Therefore, an error occurs when using the
refined data type to determine the dependencies between nodes in nested structures. From
another point of view, this problem is caused by Squirrel defining the dependency between
nodes in the syntax analysis stage, in which the information about SQL statements is not
enough to construct a complicated dependency.

Suppose there are SQL statements shown in Figure 3, which are similar to that in
Figure 1, except the SELECT statement has a subquery. For descriptive convenience, the
subquery does not have an alias here. Repeating the instantiation described in Section 2.1.2,
the refined data type of x1, x2, x3, and x4 is kDataColumnName. Hence, they all depend
on the table name nodes x5 or x6 in the same statement. Assuming that x1 depends on x5,
and x2, x3, x4 depend on x6, the dependency graph in the figure can be constructed and
filled. We can see that x1 is filled with an invalid column name v2 that does not exist in
the subquery result because x1 comes from table v1 while x3, x4 come from table v5. Even
if there is only one subquery, Squirrel still has a high probability of filling in the wrong
semantics, let alone in the case of multiple subqueries.

Figure 3. Squirrel’s instantiation of SQL statements with a subquery.

In fact, x1 and x2 should depend on x3 and x4, as x1 and x2 should come from the
result of subquery in the FROM clause. Squirrel cannot do that by defining more data
relation rules because it initializes both column name nodes in the subquery and the
main SELECT statement with the same refined data type. During instantiation, it appears
to Squirrel that these nodes are all the same. In this example, Squirrel has no way of
distinguishing between x1 and x3 and has difficulty establishing a dependency that makes

Appl. Sci. 2023, 13, 2519 7 of 23

x1 depend on x3 and x4. Because of the above problem, in practice, Squirrel will discard
the input with multiple subqueries for their low semantics-correct rate after instantiation.

Motivation. A new instantiation method that can correctly generate semantics for
SQL statements with nested structures is demanded. In order to achieve this goal, the new
instantiation method should not rely on the refined data type defined in the AST translator
to construct the dependency graph.

3. Design of Squill

We propose two practical solutions to address the above challenges. First, we provide
correctness-guided mutation, which contains two heuristic methods, utilizing the correct-
ness of seeds as feedback to improve the efficiency of fuzzing (Section 3.1). Second, we
introduce semantics-aware instantiation (Section 3.2). During instantiation, we collect the
context information of nodes. So we can know the level of the node according to the context
information and build dependencies across levels when traversing to a nested structure.

Figure 4 shows an overview of Squill, where the white components are the original
Squirrel, and our design is marked in grey. Squill follows the general flow of grey-box
DBMS fuzzing, which mainly includes mutation, instantiation, and fuzzing. First, Squill
selects the next seed to mutate from the seed queue. Squill will preferentially select the
seeds with syntactic and semantic correctness. Then, the seed is translated into AST. The
mutator randomly performs replacement, insertion, and deletion mutations on the AST.
Squill adds an interesting material library to participate in the mutation. During the
instantiation phase, new inputs generated by mutation will be filled with semantics to
maintain semantic correctness. We design a new instantiator to address the challenge of
correct semantics generation for SQL statements with nested structures. In the end, Squill
will take these test cases as input to the DBMS, detect whether the DBMS has crashed, and
add the input that triggers new code coverage to the seed queue.

Figure 4. Overview of Squill.

3.1. Correctness-Guided Mutation

Since seeds with different correctness contribute differently to fuzzing, the fuzzer
should not treat them equally. In this section, we propose two correctness-guided heuristic
methods to improve the efficiency of fuzzing in path exploration and bug finding.

3.1.1. Correctness-Focused Seed Selection

In DBMS fuzzing, most of the seed increments come from valid seeds. Valid seeds
can trigger deeper logic of DBMS than those with syntactic and semantic errors, exploring
more paths. In addition, valid seeds have a higher probability of generating valid seeds,
producing more crashes. Based on the conclusion above, we propose a correctness-focused
seed selection strategy. We mutate valid seeds first, then seeds with semantics-error, and
finally seeds with syntax-error. Because mutating valid seeds is more likely to generate

Appl. Sci. 2023, 13, 2519 8 of 23

valid seeds, leading to more path exploration and bug finding. The process of seed selection
is shown in Algorithm 1.

Algorithm 1 Correctness-focused seed selection.

1: // Run when fuzzer generates new seed
2: function UPDATE_BITMAP_SCORE(new_seed)
3: for i from 0 to MAP_SIZE do
4: // trace_bits is the bitmap of current seed
5: if trace_bits[i] is not 0 then
6: if top_rated[i] is not 0 then
7: if new_seed has better correctness than top_rated[i] then
8: top_rated[i] = new_seed;
9: end if

10: // Compare speed and size with top_rated[i]
11: // when they have same correctness
12: if new_seed has the same correctness as top_rated[i] then
13: if new_seed is faster and smaller than top_rated[i] then
14: top_rated[i] = new_seed;
15: end if
16: end if
17: else
18: top_rated[i] = new_seed;
19: end if
20: end if
21: end for
22: end function

We implement correctness-focused seed selection based on AFL’s original seed selec-
tion mechanism. AFL updates top_rated whenever it finds a new seed top_rated is an
array that has the same size as the bitmap, where each value records the seed with the
highest score on the corresponding edge in the bitmap. The faster, smaller seed will have a
higher score. Then, AFL uses a greedy algorithm to select a minimum subset of seeds that
contain all edges in the bitmap from seeds recorded in top_rated. Seeds in this subset are
marked as favored. The favored seeds have a higher probability of mutating. AFL uses
this mechanism to reduce the seed queue and improve the efficiency of fuzzing.

In the original seed selection mechanism, AFL prioritizes fuzzing faster and smaller
seeds. This mechanism tends to select more syntax-error or semantics-error seeds to
participate in fuzzing. The seeds with syntactic or semantic errors usually have a faster
execution speed, as they terminate at the syntactic and semantic check phase of DBMS.
The subsequent phases of DBMS, such as the optimization and storage phase, are often
time-consuming. In our method, we preferentially update seeds with better correctness
into top_rated, as shown in Algorithm 1 Line 7–9. We define that valid seeds are better
than semantics-error seeds, which are better than syntax-error seeds. We first compare the
correctness of seeds and then consider their execution speed and size only if they have the
same correctness (Line 12–16). It ensures that valid seeds are mutated preferentially.

3.1.2. Mutation with Interesting Material Library

Valid seeds usually trigger deep program logic. In contrast, seeds with syntactic
or semantic errors (in other words, invalid) often terminate at the early phase of DBMS,
such as the syntactic and semantic check. It means that the optimizer and executor of
DBMS do not actually process these invalid SQL statements. So some SQL structures in the
syntax-error or semantics-error seed are unactivated, as subsequent phases of DBMS do
not actually process them. That is, although some SQL structures can trigger new DBMS
logic, they are not actually executed because they are in an invalid seed. We call these
SQL structures interesting structures here. For example, the query in Line 4 of Listing 1

Appl. Sci. 2023, 13, 2519 9 of 23

is an invalid input, which uses a not existing window w. The valid one is shown in Line
2. The function row_number() in Line 4 may be an interesting structure. It is not actually
executed since it is in a semantics-error SQL statement that does not pass the semantic
check of DBMS.

Therefore, we designed a method to filter out these interesting structures and activate
them, as shown in Algorithm 2. We maintain an interesting material library, which contains
subtrees of all current favored and invalid seeds (Line 15–17). When the fuzzer needs a
material (subtree) from the mutation material library to participate in mutation, it has a cer-
tain probability of obtaining the material from the interesting material library (Line 21–30).
The variable probability in Line 25 is an input parameter, which is set to 5 by default.

Algorithm 2 Mutation with interesting material library.

1: // Run when top_rated changed
2: function CULL_QUEUE(void)
3: temp_bitmap[MAP_SIZE] = 0;
4: set_empty(interesting_library);
5: for i from 0 to MAP_SIZE do
6: if top_rated[i] is not 0 and temp_bitmap[i] is 0 then
7: // Favored means mutating first
8: top_rated[i] is favored;
9: // Record the bitmap of top_rated[i] to temp_bitmap

10: for j from 0 to MAP_SIZE do
11: if top_rated[i].bitmap[j] is not 0 then
12: temp_bitmap[j] = 1;
13: end if
14: end for
15: if top_rated[i] is invalid then
16: add_into_interesting_library(top_rated[i]);
17: end if
18: end if
19: end for
20: end function
21: // Run when insertion or replacement
22: function GET_IR_FROM_LIBRARY(type)
23: // Get a random number from 1 to 100
24: rand_int = get_rand_int(100);
25: if rand_int<probability then
26: get_from_interestring_library(type);
27: else
28: get_from_all_library(type);
29: end if
30: end function

We utilize the favored mechanism in AFL to select seeds that may contain interesting
structures. After correctness-focused seed selection, the favored and invalid seed must
trigger the program state (edge) that valid seeds have not triggered. For example, some
SQL structures in these seeds might trigger a unique logic of the DBMS parser. When these
SQL structures are actually executed, it is likely to bring path exploration or bug finding
in the optimizer or executor of DBMS. Since it is difficult to generate valid seeds from
the mutation of seeds with syntactic and semantic errors, we give the mutation material
(subtrees) of these seeds more opportunities to participate in mutation, making interesting
structures executed in valid seeds after insertion or replacement.

Appl. Sci. 2023, 13, 2519 10 of 23

3.2. Semantics-Aware Instantiation

We design an instantiation algorithm to address the challenge of correct semantics
generation for SQL statements with nested structures. In instantiation, while traversing
AST nodes in the order of SQL statements, we parse nodes according to the node’s type
and context information (such as the type of parent and adjacent nodes). In this way, we
can distinguish nodes of the same type but at different levels, as their context information
is different. For example, the type of the parent node of a main SELECT statement and a
subquery is distinct. With this information, we can construct a series of detailed constraints
on nodes based on prior knowledge (the relationship between semantics in SQL statements)
and then fill them with semantics correctly according to these constraints. For example, for
a table name node in a CREATE statement, we can know whether it comes from a CREATE
TABLE statement or a CREATE TRIGGER statement according to the context information
when parsing it. For the former, we will fill it with a newly generated unique table name.
For the latter, we will randomly assign a table name to it from the currently existing table
name (created in the previous SQL statement).

We divide semantics into simple and complicated semantics, depending on the com-
plexity of constraints. When traversing to a node, if we can instantly assign semantics to it
without error, we call the semantics that the node has as simple semantics. The dependency
constraints of nodes with such semantics are relatively simple, usually across statements.
For example, the table name dropped in the DROP statement is from tables created in the
previous CREATE statements. When filling a DROP statement with semantics, the previous
CREATE statement has been traversed and instantiated. At this point, the existing table
names are determined, which can be instantly assigned to the table name node in the DROP
statement. When traversing to a node, if we cannot instantly assign semantics to it but
need to wait until the entire SQL statement is parsed and fill it with consideration of the
semantics of other nodes, we call the semantics that the node has as complicated semantics.
For example, the column name in a SELECT clause depends on one of the tables in the
FROM clause, which means that the former should be a column of the latter, and we need
to instantiate the latter before the former.

3.2.1. Instantiation of Simple Semantics

Simple semantics mainly exist in CREATE, DROP, and ALTER statements, as well
as nodes that do not have dependencies, such as function names. In instantiation, Squill
maintains a data structure called the information table that stores the current database
information, which mainly contains the table name and column name of the created tables.
This information table also stores information of indexes, views, and triggers. When
instantiating CREATE, DROP, and ALTER statements, we perform creating, deleting, and
modifying operations in the information table correspondingly, such as in real DBMS. For
the CREATE statement, we generate and assign a unique table name and column name
(or index name) to the corresponding node. We record this information in the information
table described above. For the ALTER statement, we will randomly choose a table name
from the currently existing table name. Whether it is to modify, delete, or add a column
name, Squill randomly assigns a column name from the table chosen above and modifies
the corresponding information in the information table. Similarly to the DROP statement,
we randomly assign a table name and delete it in the information table. For nodes without
dependency, including function, integer, and floating point number, Squill will randomly
assign a predefined value to them. In addition, the alias node will be assigned a unique
name when traversed.

3.2.2. Instantiation of Complicated Semantics

Instantiation of complicated semantics is performed in SQL statements with column-
table dependency, including SELECT, INSERT, and UPDATE statements. It is performed
within one SQL statement, as the dependency between column and table is not across
statements. For example, there are two independent SELECT statements. The column

Appl. Sci. 2023, 13, 2519 11 of 23

name in the former and the table name in the latter are irrelevant. The instantiation of
complicated semantics includes three stages, collecting nodes, building dependency, and
filling semantics, as shown in Algorithm 3. Note that since an input of Squill is composed
of multiple SQL statements, the instantiation of complicated semantics is often performed
multiple times for an input.

Algorithm 3 Instantiation of complicated semantics.

1: ColumnList← Column[];
2: VirtualTableList← VirtualTable[];
3: DependencyList← map(Column, VirtualTable);
4: function INSTANTIATION(root)
5: // A. Collecting Nodes
6: for each ColumnNode in SelectTarget, Where. . . do
7: // Convert node to Column
8: ColumnList.add(ColumnParser(ColumnNode));
9: end for

10: for each TableNode in From, InsertTable, UpdateTable do
11: // Convert node to VirtualTable
12: VirtualTableList.add(TableParser(TableNode));
13: end for
14: for each SubQueryNode do
15: // Process subquery recursively
16: Instantiation(SubQueryNode);
17: if SubQueryNode is in From then
18: VirtualTableList.add(SubQueryParser(SubQueryNode));
19: end if
20: end for
21:
22: // B. Building Dependency
23: for each Column in ColumnList do
24: DependencyList[Column]=RandChoose(VirtualTableList);
25: end for
26:
27: // C. Filling Semantics
28: for each (Column, VirtualTable) in DependencyList do
29: if VirtualTable is not filled then
30: FillVirtualTable(VirtualTable);
31: end if
32: FillColumn(Column);
33: end for
34: FillVirtualTableNotInDependencyList();
35: end function

A. Collecting Nodes. While traversing AST, we collect the node with complicated
semantics based on the type and context information of the current node and store it in the
corresponding data structure (Line 5–20). For the SELECT statement, we collect column
name nodes in select target, function parameter, WHERE, GROUP BY, ORDER BY, and
WINDOW clauses, storing them in the data structure called Column (Line 6–9). Column
stores not only the column name node but also the alias node and the table name node
corresponding to the column name node, if they exist. With the help of context information,
we can describe a column abstractly. Similarly, we collect the column name node in the
insert and update the target clause of the INSERT and UPDATE statement.

For the table name, since we want to treat the result of the subquery as a table, we
define a data structure called VirtualTable to represent a table. VirtualTable includes a
table name node, an array of Column, and the alias node of the table, which can describe
a table or the result of a subquery. For the SELECT statement, we collect the table name

Appl. Sci. 2023, 13, 2519 12 of 23

node in the FROM clause. For INSERT and UPDATE statements, we collect their target
table name nodes (Line 10–13). For subqueries, we process them recursively, instantiating
them from inner to outer (Line 14–20). For the subquery in FROM clause of the SELECT
statement, we treat the result of it as a table in the subsequent dependency construction.
For the subquery in other clauses, such as in the WHERE clause, we instantiate it like a
SELECT statement since there is no external dependency within it.

Figure 5 shows the data structure that contains nodes in the main SELECT statement,
where Column_x4 and Column_x5 are the data structure Column which contains nodes x4
and x5. VirtualTable describes a table (x10) or the result of a subquery (s1) by filling
different fields (TableNameNode or ColumnList). When parsing, we recursively processed
subqueries, which means that the subquery and the main SELECT statement will be parsed
with the same function, and the subquery will be instantiated before the outer query.
Therefore, the corresponding data structure (such as Column_x4 and Column_x5) is created
while parsing the subquery.

Figure 5. An example of collecting nodes.

B. Building Dependency. After creating the corresponding data structure, we con-
struct the dependency between Column and VirtualTable (Line 22–25). Obviously, af-
ter processing, the dependency is very clear, which is that all Column depends on the
VirtualTable in FROM clause. We randomly select a VirtualTable for each Column to
depend on and record the dependency.

C. Filling Semantics. For each Column-VirtualTable dependency recorded, we fill
nodes in it with semantics (Line 27–34). We fill VirtualTable first, and then the Column
which depends on it. If the VirtualTable describes a table, we randomly assign the table
name node in it with a table name from currently existing table names. The column name
node in the Column which depends on the VirtualTable will be assigned a random column
name from the table selected. The table name node in the Column will be filled with the
same table name in VirtualTable, if it exists. If the VirtualTable describes the result
of a subquery, we do not need to instantiate nodes of the Column in it, as they have been
filled with semantics in the instantiation of the subquery (Line 16). The column name
node in the Column will be filled with a column name in a random one of the Column in
the VirtualTable. The table name node in the Column will be filled with the alias of the
VirtualTable. At last, we fill semantics of the VirtualTable that is not depended on by
any Column (Line 34).

Example. Figure 6 is an example of the instantiation of complicated semantics in
which the SQL statement is the same as that in Section 2.2.2. Suppose that the first two
CREATE statements have been instantiated, where the table names and column names
have been generated, filled in nodes, and recorded in the information table. For the SELECT
statement, there are two instantiation processes, one is the instantiation of the subquery,
and the other is the instantiation of the main SELECT statement. Since the process is
similar, here we focus on the instantiation of the main SELECT statement. Assume that the
instantiation result of the subquery is as in step1. This SELECT statement contains two
Column and a VirtualTable, where the VirtualTable describes the result of a subquery.
Obviously, both Column_x1 and Column_x2 depend on VirtualTable_s1. We can construct

Appl. Sci. 2023, 13, 2519 13 of 23

a dependency graph as shown in the figure. Compared with Squirrel, the dependency
graph here is more abstract. The dependency graph in Squirrel is constructed with AST
nodes, while the dependency graph in Squill consists of abstract data structures, such as
Column and VirtualTable. As VirtualTable_s1 contains the result of a subquery, assuming
that we randomly choose Column_v7 for Column_x1, and Column_v6 for Column_x2, we can
fill nodes in them with semantics based on the dependencies. The result after filling
in semantics is shown in step2. Compared with Squirrel’s method, semantics-aware
instantiation can effectively handle the SQL statement with nested structures like subquery.

Figure 6. An example of instantiation of complicated semantics.

4. Implementation

Squill is implemented based on Squirrel. Since Squirrel is at the top of AFL, we
implement the correctness-guided mutation based on the seed selection mechanism of AFL.
In the implementation, we judge the correctness of the input according to the error code
returned by the DBMS after executing. Additionally, the interesting material library has
the same structure as the mutation material library in Squirrel, where the main difference
between them is that the former stores subtrees of seeds that are invalid and favored while
the latter stores subtrees of all seeds. We implement a new instantiation stage after mutation

Appl. Sci. 2023, 13, 2519 14 of 23

to replace the instantiator of Squirrel for its fundamental limitation in design. We improve
the grammar of the AST parser since there are omissions and errors in Squirrel’s grammar,
and we remove the code that defines the refined data type.

5. Evaluation

We applied our tool Squill on real-world DBMSs to verify its effectiveness. The
evaluation was designed to answer the following questions:

Q1. Can Squill detect bugs from well-tested DBMSs? (Section 5.1).
Q2. Can Squill perform better than existing tools? (Section 5.2).
Q3. How does correctness-guided mutation help fuzzing? (Section 5.3).
Q4. What is the contribution of semantics-aware instantiation? (Section 5.4).

We selected three popular real-world DBMSs for evaluation, including MySQL, Mari-
aDB, and OceanBase. We mainly compared Squill with Squirrel, as Squirrel had been
shown to outperform other mutation-based fuzzers, such as AFL, and generation-based
fuzzers, such as SQLsmith. We did not compare Squill with SQLRight [18] and SQLancer,
because their target is the logic bug of DBMSs, while Squill, like Squirrel, focuses on the
memory error of DBMSs. We perform the experiments on three computers with Ubuntu
18.04 system, Intel(R) Core(TM) i7-10700 (2.90 GHz) CPU, and 32 GB memory. We used
the llvm mode of AFL to instrument the DBMS. Because of the large codebase of DBMSs,
we set the bitmap size to 256 K and used a 20% ratio instrumentation. The DBMS ver-
sions in the experiment are all the latest, including MySQL 8.0.29, MariaDB 10.10.0, and
OceanBase 3.1.4. In the experiments, due to resource bottleneck, we ran one DBMS and a
fuzzer on each machine for 24 h at a time and repeated three times. Squill and Squirrel
used the same seed and initial library in experiments.

5.1. DBMS Bugs

In total, Squill found 63 bugs, including 30 bugs from MySQL, 27 from MariaDB, and
6 from OceanBase. The details of these bugs are shown in Table 1. We have reported all
bugs to the developers of the appropriate DBMS. At the time of paper writing, 19 of all
bugs have been fixed, with 9 CVEs assigned. The type of bugs found by Squill are listed in
the second column of Table 1. Specifically, Squill found 10 bugs related to buffer overflows
and use-after-free.

Table 1. Bugs detected by Squill.

ID Type Description Status Reference
MySQL 8.0.27
1 SEGV Common_table_expr::clone_tmp_table() Fixed CVE-2022-21509
2 HOF make_join_readinfo() Fixed CVE-2022-21526
3 SEGV Item_field::fix_outer_field() Fixed CVE-2022-21527
4 SEGV push_new_name_resolution_context() Fixed CVE-2022-21528
5 SEGV QEP_shared_owner::table() Fixed CVE-2022-21529
6 SEGV Item_field::used_tables() Fixed CVE-2022-21530
7 SEGV QEP_shared_owner::idx() Fixed CVE-2022-21531
8 HOF compare_fields_by_table_order() Fixed CVE-2022-21438
9 AF Query_expression::accumulate_used_tables() Fixed CVE-2022-21459
10 AF MoveCompositeIteratorsFromTablePath() Fixed BUG106045
11 SEGV Query_block::next_query_block() Fixed BUG106047
12 AF temptable::Handler::position() Verified BUG106048
13 SEGV Item_subselect::exec() Verified BUG106050
14 SEGV Bitmap::merge() Verified BUG106051
15 SEGV TABLE::empty_result_table() Verified BUG106058
16 AF SubqueryWithResult::single_query_block() Verified BUG106061
17 AF TABLE_LIST::create_materialized_table() Verified BUG106055

Appl. Sci. 2023, 13, 2519 15 of 23

Table 1. Cont.

ID Type Description Status Reference
MySQL 8.0.29
18 HUAF Item_field::used_tables_for_level() Verified BUG108241
19 AF handler::ha_index_next_same() Verified BUG108242
20 AF Bounds_checked_array::operator[]() Verified BUG108243
21 SEGV KEY::records_per_key() Verified BUG108244
22 AF add_key_fields() Verified BUG108246
23 AF add_key_field() Verified BUG108247
24 AF Query_block::get_derived_expr() Verified BUG108248
25 AF Item_func_case::find_item() Verified BUG108249
26 SBOF Query_expression::prepare() Verified BUG108251
27 AF Item_func_in::val_int() Verified BUG108252
28 SEGV Item_ref::walk() Verified BUG108253
29 AF copy_contexts() Verified BUG108254
30 SBOF Item_func::fix_fields() Verified BUG108255
MariaDB 10.3.35
31 SEGV update_depend_map_for_order() Verified MDEV-28501
32 SEGV st_select_lex::next_select() Verified MDEV-28502
33 SEGV get_addon_fields() Verified MDEV-28503
34 SEGV With_element::get_name() Verified MDEV-28504
35 SEGV sub_select() Verified MDEV-28505
36 AF find_field_in_table_ref() Verified MDEV-28506
37 SEGV Item_field::fix_outer_field() Verified MDEV-28507
38 AF create_tmp_table() Fixed MDEV-28508
39 SEGV Bitmap::merge() Verified MDEV-28509
40 SEGV get_sort_by_table() Verified MDEV-28510
41 SEGV Item_subselect::init_expr_cache_tracker) Verified MDEV-28614
42 AF handler::ha_rnd_next() Verified MDEV-28615
43 SEGV Item_ref::fix_fields() Verified MDEV-28616
44 SEGV TABLE_LIST::set_check_materialized() Fixed MDEV-28617
45 SEGV Item_equal::val_int() Verified MDEV-28618
46 SEGV Window_funcs_sort::setup() Verified MDEV-28619
47 SEGV Item_subselect::get_cache_parameters() Verified MDEV-28620
48 AF Item_subselect::exec() Verified MDEV-28621
49 SEGV Item_exists_subselect::exists2in_processor() Verified MDEV-28622
50 AF resolve_ref_in_select_and_group() Verified MDEV-28623
51 AF Item_field::fix_fields() Verified MDEV-28624
MariaDB 10.10.0
52 SBOF st_select_lex_unit::set_unique_exclude() Verified MDEV-29358
53 HUAF Field::is_null() Verified MDEV-29359
54 SEGV grouping_field_transformer_for_where() Verified MDEV-29360
55 SBOF resolve_references_to_cte() Verified MDEV-29361
56 AF Item_singlerow_subselect::val_int() Verified MDEV-29362
57 HUAF calc_group_buffer() Verified MDEV-29363
OceanBase 3.1.4
58 AF ObInsertResolver::resolve_insert_values() Fixed issues 986
59 HOF ABitSet::myffsl() Fixed issues 987
60 SEGV ObLatchMutex::try_lock() Fixed issues 988
61 AF ObSelectStmtPrinter::print_with() Fixed issues 989
62 SEGV sql::ObExpr::count() Fixed issues 995
63 SEGV ObMergeJoinOp::ChildRowFetcher::next() Fixed issues 1000

HUAF: heap-use-after-free. SBOF: stack-buffer-overflow. HOF: heap-buffer-overflow. SEGV: segmentation
violation. AF: assertion failure

Appl. Sci. 2023, 13, 2519 16 of 23

Case Study. Squill detected a bug in MariaDB (ID 44 in Table 1, PoC in Listing 2),
which can cause a DBMS crash by a null pointer accessing. This bug happened in IN-
SERT. . . SELECT statements whose WHERE condition contains an IN/ANY/ALL pred-
icand with a special GROUP clause, which can be eliminated and contains a subquery
over a mergeable derived table referencing the updated table. It is caused by the incorrect
access to the derived table which has been eliminated. The bug can cause a similar crash
when executing a single-table DELETE statement with EXISTS subquery whose WHERE
condition is like this. Executing this kind of query will cause a crash of DBMS in the
preparation phase. The stability of the DBMS is critical, as it is usually the infrastructure
for some information systems which require high availability, such as business systems in
banks. Denial-of-service attacks based on such vulnerabilities can make the DBMS crash,
resulting in serious consequences.

Listing 2. A PoC of ID 44 in Table 1.

CREATE TABLE v0 (v1 BOOLEAN, v2 INT , v3 INT) ;
CREATE TABLE v4 (v5 INT NOT NULL, v6 INT , v7 INT) ;
INSERT INTO v4 (v7) VALUES (((TRUE , v5) NOT IN
(SELECT (− 49) AS v8 , −128 FROM v0 GROUP BY (TRUE, v3)

NOT IN (SELECT v5 , (SELECT v2 FROM (WITH v9 AS (SELECT v7
FROM (SELECT NOT v5 <= ’ x ’ , FROM v4 GROUP BY v7) AS v10)
SELECT v7 , (v7 = 67 OR v7 > ’ x ’) FROM v4) AS v11 NATURAL JOIN
v0 WHERE v7 = v3) AS v12 FROM v4) , v2) OR v5 > ’ x ’)) ;

5.2. Comparison with Existing Tools

We evaluate Squill and Squirrel on three real-world DBMSs, MySQL, MariaDB, and
OceanBase, to help us better understand the performance of Squill. As shown in Figure 7,
we compare the capability of bug finding and path exploration between the two tools. The
number details are listed in Table 2. More program paths explored and more bugs found
per unit of time means better fuzzer performance. We also compared the type of bugs they
found, which represents how harmful the bug is. Since Squirrel will drop long inputs with
multiple subqueries, we disable the length and the subquery check of Squirrel, denoted as
Squirrel!check.

Table 2. The number of paths and bugs explored by each fuzzer in 24 h.

Squill Squirrel Squirrel!check
DBMS Paths Bugs Paths Bugs Paths Bugs
MySQL 32,827 15 46,232 3 26,387 6

MariaDB 33,904 17 62,465 7 23,835 10
OceanBase 13,081 2 16,684 0 10,630 0

In statistics, we deduplicate crashes to the corresponding bug since a bug often
causes hundreds of crashes and summarize the number of bugs by the hour. Due to
the multithreading feature of DBMSs, the unique crash mechanism of AFL is hard to
deduplicate DBMS crashes accurately. For MySQL and MariaDB, we deduplicate crashes
according to the report output by ASan [19]. For OceanBase, we use GDB [20] to debug
each crash after fuzzing and deduplicate according to the information, such as the call stack
of functions, at the time of the DBMS crash.

Path Exploration. Figure 7a–c show the number of paths explored by Squill, Squirrel,
and Squirrel!check over time in MySQL, MariaDB, and OceanBase. As we can see, Squirrel
explored more paths than Squill and Squirrel!check. It is because Squirrel drops long inputs
with multiple subqueries for their low semantics-correct rate after instantiation. The input
generated by Squirrel is very short and simple and with a fast execution speed. However,

Appl. Sci. 2023, 13, 2519 17 of 23

with semantics-aware instantiation, we do not need to limit the number of subqueries
in inputs generated by Squill. Thus Squill can generate long and complex inputs, which
means a slow execution speed. Faster execution usually means more paths. So we tested
Squirrel!check, which can also generate long and complex inputs, to evaluate Squill more
comprehensively. Compared with Squirrel!check, Squill explored 24% more paths in MySQL,
40% in MariaDB, and 23% in OceanBase. Moreover, Squill and Squirrel found many more
paths on MySQL and MariaDB than OceanBase. We think this may be caused by the feature
of OceanBase as a distributed database and the bad grammar compatibility of the fuzzer
with OceanBase.

(a) MySQL new paths (b) MariaDB new paths (c) OceanBase new paths

(d) MySQL bugs (e) MariaDB bugs (f) OceanBase bugs

(g) MySQL bugs type (h) MariaDB bugs type

Figure 7. Comparison with existing tools.

Bug Finding. Figure 7d–f show the number of bugs found by Squill, Squirrel, and
Squirrel!check over time in MySQL, MariaDB, and OceanBase. In total, Squill found 3.4x and
2x more bugs than Squirrel and Squirrel!check, which shows the effectiveness of Squill in
bug finding. Note that Squill and Squirrel!check found more bugs than Squirrel in MySQL
and MariaDB. The result proves that there is no fundamental reason that maximizing the
number of paths (or seeds) is directly connected to finding bugs [21]. Figure 7g,h show
the type of bugs found by Squill, Squirrel, and Squirrel!check. The main types of bugs are
assertion fails and SEGV. It shows that Squill found a total of four buffer-related errors,
while Squirrel and Squirrel!check only found one.

Appl. Sci. 2023, 13, 2519 18 of 23

Overall, Squill outperforms Squirrel in finding memory error bugs of real-world
DBMSs. Because Squill has the ability to generate valid complex SQL while Squirrel
cannot. Moreover, Squill embeds correctness-guided mutation, which can improve the
efficiency of fuzzing. Squill can also explore more paths than Squirrel!check, which shows
the effectiveness of Squill.

5.3. Contribution of Correctness-Guided Mutation

To understand the contribution of different factors in correctness-guided mutation,
we disable each factor to perform unit tests in MySQL and measure various aspects of
the fuzzing process. In addition to the capabilities of bug finding and path exploration,
we also compare the correctness of the input. Figure 8 shows the result, where Squill!seed

!lib
means we disable both correctness-focused seed selection and mutation with interesting
material library, and Squill!lib means we only disabled interesting material library. Since
the implementation of the mutation with interesting material library relies on correctness-
focused seed selection, we do not disable the latter and keep the former.

(a) Valid rate of inputs (b) Paths number

(c) Valid seeds number (d) Bugs number

Figure 8. Contributions of correctness-guided mutation. The experiment is performed on MySQL.

Correctness of Inputs. Figure 8a shows the valid rate of inputs when fuzzing, which
means the proportion of valid inputs in all inputs. Higher valid rate of inputs when fuzzing
is better, because we want the input to pass the validity check of the DBMS. The result is
Squill≈ Squill!lib > Squill!seed

!lib , where Squill!lib is 6% higher than Squill!seed
!lib . The result shows

Appl. Sci. 2023, 13, 2519 19 of 23

that the correctness-focused seed selection improves the ability of the fuzzer to generate
more valid inputs because of its strategy to prioritize mutating seeds which is valid.

Path Exploration. Figure 8b shows the number of paths explored by each fuzzer.
Squill, Squill!lib, and Squill!seed

!lib are almost equal in the number of paths, and Squill!seed
!lib is

slightly higher than the other two. Due to that Squirrel!seed
!lib generates more syntactically

and semantically incorrect inputs, as shown in Figure 8a, its inputs are executed faster,
leading to more paths. In addition, we count the number of valid seeds generated during
fuzzing, as shown in Figure 8c. A seed represents a path since only if an input triggers a
new path will it be saved into the seed queue as a seed. Therefore, the number of valid
seeds reflects the capability of exploring the path which passes the syntactic and semantic
check of DBMS. The result is Squill > Squill!lib > Squill!seed

!lib , where Squill is approximately
9% higher than Squill!seed

!lib , and Squill!lib is about 3% higher than Squill!seed
!lib . The result shows

that both two mechanisms can help fuzzing in path exploration.
Bug Finding. Figure 8d shows the number of bugs found by Squill with each setting,

where the original Squill achieves the best results. Squill and Squill!lib found 15 and 14 bugs
in MySQL, while Squill!seed

!lib only found 10. The results show that the correctness-guided
mutation plays an important role in bug finding.

Overall, both mechanisms of correctness-guided mutation improve the effectiveness
of Squill in path exploration and bug finding, where correctness-focused seed selection
improves the ability of Squill to generate more valid inputs and mutation with inter-
esting material library helps Squill explore more DBMS states after the syntactic and
semantic check.

5.4. Contribution of Semantics-Aware Instantiation

In this section, we evaluate semantics-aware instantiation introduced in Section 3.2.
We perform instantiation method of Squill and Squirrel to instantiate SQL statements of
the same dataset and input the SQL statements with semantics to DBMS. We evaluate the
instantiation of Squill by comparing the correctness of these inputs. The higher valid rate
of input after instantiation is, the better instantiation method is. In the end, we illustrate
the advantages of Squill instantiation through a practical example.

The dataset contains all valid seeds in one MySQL fuzzing of Squill because we want
to compare the two methods’ capability to instantiate some critical inputs and ensure that
these inputs can be correctly instantiated. We normalize the seeds before adding them to
the dataset, that is, removing the semantics in them. Due to the design of translating AST to
string, the input generated by Squill has a very tiny probability that it cannot be parsed by
itself (same with Squirrel). Moreover, there are differences between the grammar of Squill
and Squirrel, and Squirrel cannot parse some inputs of Squill. So we remove the seeds that
both Squill and Squirrel cannot parse. The evaluation results are shown in Table 3.

Table 3. The comparison between instantiation of Squill and Squirrel.

Fuzzer Seed Size Valid Invalid Total Valid Rate
<1 kb 5246 373 5619 93.36%

1∼1.5 kb 15,810 1328 17,138 92.25%
>1.5 kb 8280 676 8956 92.45%Squill

total 29,336 2377 31,713 92.5%
<1 kb 4304 1315 5619 76.6%

1∼1.5 kb 9747 7391 17,138 56.87%
>1.5 kb 4419 4537 8956 49.34%Squirrel

total 18,470 13,243 31,713 58.24%

The results show that the instantiation of Squill (92.5% valid rate) outperforms Squir-
rel’s (58.24% valid rate). In addition, we make separate statistics according to the file size
of the seeds. The file size of seeds corresponds to the length of the SQL statement, which
we think is positively related to the complexity of the SQL statement. Long SQL statement

Appl. Sci. 2023, 13, 2519 20 of 23

usually means more complicated dependencies between nodes and more nested structures,
such as subquery. With the increased complexity of SQL statements (file size), the valid
rate of Squirrel’s instantiation is significantly reduced, while the correct rate of Squill’s
instantiation changes less. This shows the advantage of Squill’s instantiation in processing
complex SQL statements. Because of the randomness in semantics filling, the valid rate of
Squill’s instantiation is not 100%, though the input was instantiated correctly before.

Listing 3 is a PoC of ID 23 in Table 1. It can be seen that there is a nested structure
containing subqueries in the SELECT statement in Line 3. This kind of nested structure
is pervasive in SQL statements generated by mutation, which may be closely related to
overflow vulnerabilities. It is difficult for Squirrel to instantiate such type of structure since
Squirrel is hard to build correct dependencies between subqueries, such as the semantics of
the first two v4 positions in Line 3.

Listing 3. A PoC of ID 23 in Table 1.

CREATE TABLE v0 (v1 NUMERIC UNIQUE, v2 BIGINT) ;
CREATE TABLE v3 (v4 INT , v5 INT) ;
SELECT 1 FROM v3 GROUP BY (SELECT v4 FROM
(SELECT v4 FROM (SELECT v4 FROM v3 UNION SELECT v1 FROM v0)
AS v7 WHERE (v4 = 0 AND v4 = −1 AND v4 = 67)) AS v9) ;

6. Discussion

In this section, we discuss several limitations of our current implementation and
possible future directions.

Universality of Fuzzer. In this paper, the instantiation of Squill is based on the
grammar of MySQL, which has low universality. So we chose MariaDB and OceanBase,
which are compatible with MySQL grammar, for evaluation. The cost of migrating this
approach to other DBMSs is slightly higher than Squirrel. Moreover, the universality of the
method is also very important [22,23]. In the future, we plan to achieve the universality
of the fuzzer by implementing an instantiation method that satisfies the intersection of
most SQL grammars and then writing extensions for each DBMS based on this universal
method.

Mode of Input. Both Squill and Squirrel start with an empty database, and the input
is a combination of CREATE, INSERT, and SELECT statements. We observed that most of
the seeds that triggered new code coverage were mutated in SELECT statements. Changing
the data inserted and the table structure created usually does not bring new paths. We
think there is room for optimization. For example, we can construct a series of tables with
complex structure and data as the initial database and only input SELECT statements in
fuzzing. This can save the overhead of table creation and data insertion of each input.

Mutation Operator. Squill and Squirrel use the same mutation operators, including
insertion, deletion, and replacement of AST nodes. We think there are other mutation oper-
ators suitable for DBMS fuzzing scenarios. For example, the random recursive mutation
operator mentioned in Nautilus [24] randomly selects a recursive tree and repeats the re-
cursion 2n times. Such mutation operators may help trigger buffer overflow vulnerabilities
of DBMSs.

Fuzzing Partial. Most of the vulnerabilities detected by Squill and Squirrel are located
in the parser and optimizer components of the DBMS. It means the main target of the
current DBMS fuzzer is the parser and optimizer rather than the executor of the DBMS.
However, the storage process in the executor is time-consuming, as it involves the disk
IO. So one optimization idea is to separate the parser and optimizer by analyzing the
source code of the DBMS. Fuzzing these separated-out functions can significantly reduce
the overhead during the execution phase of the DBMS, improving the efficiency of fuzzing.

7. Related Work

In this section, we discuss the recent DBMS testing technologies related to Squill.

Appl. Sci. 2023, 13, 2519 21 of 23

Black-box DBMS Fuzzing. Black-box fuzzing, or generation-based fuzzing, has been
widely used to detect DBMS bugs. With a specific predefined schema, continuously gen-
erating a large number of SQL statements into the DBMS to trigger abnormal behaviors
(usually crashes) of the DBMS is one method of black-box DBMS fuzzing. Sqlsmith [1] is a
representative of this kind of black-box DBMS fuzzer. Based on AST, it randomly gener-
ates SQL query statements for the initial database through a series of highly customized
rules. In addition, differential testing is another standard method used to detect DBMS
vulnerabilities in black-box DBMS fuzzing. Rags [25] and Sparkfuzz [26] send the same
SQL query to different DBMSs and detect correctness bugs by comparing the differences in
the results. Sqlancer [2–4] constructs different SQL statements of functionally equivalent
through several different patterns and inputs them into the same DBMS. If the results are
different, the DBMS might have a logical bug. Similarly, AMOEBA [27] constructs query
pairs that are semantically equivalent to each other and then compares their response time
on the same database system to detect performance bugs. The main difference between
Squill and the works above is that Squill is a grey-box fuzzer with feedback like code
coverage. Compared with blind fuzzing, fuzzing with feedback can comprehensively
explore program states and trigger the deep logic of DBMSs.

Grey-box DBMS Fuzzing. In recent years, grey-box or mutation-based fuzzing has
shown its effectiveness in memory error bug detection [28–37]. AFL [6], which is an
important milestone in the area of software security testing [38], has been applied to DBMS
fuzzing. However, the fuzzer, like AFL, performs poorly in generating structural inputs,
such as SQL statements. Though there are many works trying to address this challenge,
such as Zest [39], GRIMOIRE [40], and Nautilus [24]. Their ability to generate syntactically
and semantically correct SQL queries is still not good enough due to the strict syntactic
and semantic requirements of the DBMS. The recent work Squirrel [11] focuses on the
DBMS fuzzing scenarios. Through a customized parser based on Bison [41] and Flex [42],
Squirrel translates SQL statements into AST and mutates based on the AST to guarantee the
syntax correctness of the inputs. After mutation, Squirrel fills the newly generated inputs
with semantics to increase their semantic correctness. There are many works based on
Squirrel. With its industry-oriented design, Ratel [43] improves the feedback precision in
DBMS fuzzing and enhances the robustness of input generation. SQLRight [18] combines
differential testing and mutation-based fuzzing to detect logic bugs of the DBMS. Squill
is also based on Squirrel, using the correctness of seeds as feedback to guide fuzzing.
Moreover, Squill introduces an instantiation method that can generate correct semantics for
SQL statements with nested structures.

8. Conclusions

In this paper, we design and implement Squill to find memory errors in DBMSs.
We introduce the correctness of seeds into DBMS fuzzing as feedback and propose two
methods: correctness-focused seed selection and mutation with interesting material library.
Additionally, we investigate the challenge of semantics filling in DBMS fuzzing and design
a new instantiation method to address this challenge. We evaluated Squill on popular
real-world DBMSs and found 30 bugs in MySQL, 27 in MariaDB, and 6 in OceanBase, with
9 CVEs assigned. The evaluation showed that Squill could find more bugs in DBMSs than
existing tools.

Author Contributions: Conceptualization, P.J.; Data curation, P.Y.; Formal analysis, S.W.; Funding
acquisition, P.J.; Methodology, S.W.; Software, S.W.; Supervision, C.H.; Validation, P.Y.; Visualization,
S.W.; Writing—original draft, S.W.; Writing—review and editing, P.J. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by National Key R&D projects of China OF FUNDER grant
number 2021YFB3101803.

Institutional Review Board Statement: Not appliable.

Appl. Sci. 2023, 13, 2519 22 of 23

Informed Consent Statement: Not appliable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Seltenreich, A. SQLSmith. Available online: https://github.com/anse1/sqlsmith (accessed on 22 November 2022).
2. Rigger, M.; Su, Z. Detecting Optimization Bugs in Database Engines via Non-Optimizing Reference Engine Construction. In

Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2020, Virtual Event, 8–13 November 2020; Association for Computing Machinery: New
York, NY, USA, 2020; pp. 1140–1152. [CrossRef]

3. Rigger, M.; Su, Z. Testing Database Engines via Pivoted Query Synthesis. In Proceedings of the 14th USENIX Conference on
Operating Systems Design and Implementation, OSDI’20, Virtual, 4–6 November 2020; USENIX Association: Berkeley, CA,
USA, 2020.

4. Rigger, M.; Su, Z. Finding Bugs in Database Systems via Query Partitioning. Proc. ACM Program. Lang. 2020, 4, 1–30. [CrossRef]
5. Wikipedia. Fuzzing. Available online: https://en.wikipedia.org/wiki/Fuzzing (accessed on 22 November 2022).
6. Zalewski, M. American Fuzzy Lop. Available online: https://github.com/google/AFL (accessed on 22 November 2022).
7. Consortium, S. How SQLite Is Tested. Available online: https://www.sqlite.org/testing.html (accessed on 22 November 2022).
8. LLVM. LibFuzzer. Available online: https://www.llvm.org/docs/LibFuzzer.html (accessed on 22 November 2022).
9. Google. Honggfuzz. Available online: https://github.com/google/honggfuzz (accessed on 22 November 2022).
10. Fioraldi, A.; Maier, D.; Eißfeldt, H.; Heuse, M., AFL++: Combining Incremental Steps of Fuzzing Research. In Proceedings of the

14th USENIX Conference on Offensive Technologies, Berkeley, CA, USA, 11 August 2020; USENIX Association: Berkeley, CA,
USA, 2020.

11. Zhong, R.; Chen, Y.; Hu, H.; Zhang, H.; Lee, W.; Wu, D. SQUIRREL: Testing Database Management Systems with Language
Validity and Coverage Feedback. In Proceedings of the CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communica-
tions Security, Virtual Event, 9–13 November 2020; Ligatti, J., Ou, X., Katz, J., Vigna, G., Eds.; ACM: New York, NY, USA, 2020;
pp. 955–970. . [CrossRef]

12. Oracle. MySQL Server. Available online: https://github.com/mysql/mysql-server (accessed on 22 November 2022).
13. Foundation, M. MariaDB. Available online: https://github.com/MariaDB/server (accessed on 22 November 2022).
14. Group, A. OceanBase. Available online: https://github.com/oceanbase/oceanbase (accessed on 22 November 2022).
15. Lemieux, C.; Sen, K. FairFuzz: A Targeted Mutation Strategy for Increasing Greybox Fuzz Testing Coverage. In Proceedings of the

33rd ACM/IEEE International Conference on Automated Software Engineering, ASE 2018, Montpellier, France, 3–7 September
2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 475–485. [CrossRef]

16. Wang, Y.; Jia, X.; Liu, Y.; Zeng, K.; Bao, T.; Wu, D.; Su, P. Not All Coverage Measurements Are Equal: Fuzzing by Coverage
Accounting for Input Prioritization. In Proceedings of the 27th Annual Network and Distributed System Security Symposium,
NDSS 2020, San Diego, CA, USA, 23–26 February 2020; The Internet Society: Washington, DC, USA, 2020.

17. Yue, T.; Wang, P.; Tang, Y.; Wang, E.; Yu, B.; Lu, K.; Zhou, X. EcoFuzz: Adaptive Energy-Saving Greybox Fuzzing as a Variant of
the Adversarial Multi-Armed Bandit. In Proceedings of the 29th USENIX Conference on Security Symposium, SEC’20, San Diego,
CA, USA, 12–14 August 2020; USENIX Association: Berkeley, CA, USA, 2020.

18. Liang, Y.; Liu, S.; Hu, H. Detecting Logical Bugs of DBMS with Coverage-based Guidance. In Proceedings of the 31st USENIX
Security Symposium (USENIX Security 22), Boston, MA, USA, 10–12 August 2022; USENIX Association: Boston, MA, USA, 2022;
pp. 4309–4326.

19. Google. AddressSanitizer. Available online: https://github.com/google/sanitizers/wiki/AddressSanitizer (accessed on 22
November 2022).

20. Foundation, F.S. GDB: The GNU Project Debugger. Available online: http://www.sourceware.org/gdb/ (accessed on 22
November 2022).

21. Klees, G.; Ruef, A.; Cooper, B.; Wei, S.; Hicks, M. Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’18, Toronto, ON, Canada, 15–19 October 2018; Association for Computing
Machinery: New York, NY, USA, 2018; pp. 2123–2138. [CrossRef]

22. Yan, L.; Ahmad, M.W.; Jawarneh, M.; Shabaz, M.; Raffik, R.; Kishore, K.H.; Azeem, I. Single-Input Single-Output System with
Multiple Time Delay PID Control Methods for UAV Cluster Multiagent Systems. Secur. Commun. Netw. 2022, 2022, 3935143.
[CrossRef]

23. Gao, H.; Kareem, A.; Jawarneh, M.; Ofori, I.; Raffik, R.; Kishore, K.H. Metaheuristics Based Modeling and Simulation Analysis of
New Integrated Mechanized Operation Solution and Position Servo System. Math. Probl. Eng. 2022, 2022, 1466775. [CrossRef]

24. Aschermann, C.; Frassetto, T.; Holz, T.; Jauernig, P.; Sadeghi, A.; Teuchert, D. NAUTILUS: Fishing for Deep Bugs with Grammars.
In Proceedings of the 26th Annual Network and Distributed System Security Symposium, NDSS 2019, San Diego, CA, USA,
24–27 February 2019; The Internet Society: Washington, DC, USA, 2019.

25. Slutz, D. Massive Stochastic Testing of SQL; Technical Report MSR-TR-98-21; Publisher: Burlington, MA, USA, 1998.

https://github.com/anse1/sqlsmith
http://doi.org/10.1145/3368089.3409710
http://dx.doi.org/10.1145/3428279
https://en.wikipedia.org/wiki/Fuzzing
https://github.com/google/AFL
https://www.sqlite.org/testing.html
https://www.llvm.org/docs/LibFuzzer.html
https://github.com/google/honggfuzz
http://dx.doi.org/10.1145/3372297.3417260
https://github.com/mysql/mysql-server
https://github.com/MariaDB/server
https://github.com/oceanbase/oceanbase
http://dx.doi.org/10.1145/3238147.3238176
https://github.com/google/sanitizers/wiki/AddressSanitizer
http://www.sourceware.org/gdb/
http://dx.doi.org/10.1145/3243734.3243804
http://dx.doi.org/10.1155/2022/3935143
http://dx.doi.org/10.1155/2022/1466775

Appl. Sci. 2023, 13, 2519 23 of 23

26. Ghit, B.; Poggi, N.; Rosen, J.; Xin, R.; Boncz, P. SparkFuzz: Searching Correctness Regressions in Modern Query Engines.
In Proceedings of the Workshop on Testing Database Systems, DBTest ’20, Portland, OR, USA, 19 June 2020; Association for
Computing Machinery: New York, NY, USA, 2020. [CrossRef]

27. Liu, X.; Zhou, Q.; Arulraj, J.; Orso, A. Automatic Detection of Performance Bugs in Database Systems Using Equivalent Queries.
In Proceedings of the 44th International Conference on Software Engineering, ICSE ’22, Pittsburgh, PA, USA, 25–27 May 2022;
Association for Computing Machinery: New York, NY, USA, 2022; pp. 225–236. [CrossRef]

28. Gan, S.; Zhang, C.; Qin, X.; Tu, X.; Li, K.; Pei, Z.; Chen, Z. CollAFL: Path Sensitive Fuzzing. In Proceedings of the 2018 IEEE
Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 679–696. [CrossRef]

29. Manès, V.J.M.; Kim, S.; Cha, S.K. Ankou: Guiding Grey-Box Fuzzing towards Combinatorial Difference. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, ICSE ’20, Seoul, Republic of Korea, 27 June–19 July 2020;
Association for Computing Machinery: New York, NY, USA, 2020; pp. 1024–1036. [CrossRef]

30. Lyu, C.; Ji, S.; Zhang, C.; Li, Y.; Lee, W.H.; Song, Y.; Beyah, R. MOPT: Optimized Mutation Scheduling for Fuzzers. In Proceedings
of the 28th USENIX Conference on Security Symposium, SEC’19, Berkeley, CA, USA, 14–16 August 2019; USENIX Association:
Berkeley, CA, USA, 2019; pp. 1949–1966.

31. Zhou, C.; Wang, M.; Liang, J.; Liu, Z.; Jiang, Y. Zeror: Speed up Fuzzing with Coverage-Sensitive Tracing and Scheduling.
In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering, ASE ’20, Melbourne,
Australia, 21–25 September 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 858–870. [CrossRef]

32. Aschermann, C.; Schumilo, S.; Blazytko, T.; Gawlik, R.; Holz, T. REDQUEEN: Fuzzing with Input-to-State Correspondence. In
Proceedings of the 26th Annual Network and Distributed System Security Symposium, NDSS 2019, San Diego, CA, USA, 24–27
February 2019; The Internet Society: Washington, DC, USA, 2019.

33. Chen, P.; Chen, H. Angora: Efficient Fuzzing by Principled Search. In Proceedings of the 2018 IEEE Symposium on Security and
Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 711–725. [CrossRef]

34. Park, S.; Xu, W.; Yun, I.; Jang, D.; Kim, T. Fuzzing JavaScript Engines with Aspect-preserving Mutation. In Proceedings of the
2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020; pp. 1629–1642. [CrossRef]

35. Yun, I.; Lee, S.; Xu, M.; Jang, Y.; Kim, T. QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In Proceedings
of the 27th USENIX Security Symposium (USENIX Security 18), Vancouver, BC, Canada, 16–18 August 2017; USENIX Association:
Baltimore, MD, USA, 2018; pp. 745–761.

36. Pham, V.T.; Böhme, M.; Santosa, A.E.; Căciulescu, A.R.; Roychoudhury, A. Smart Greybox Fuzzing. IEEE Trans. Softw. Eng. 2021,
47, 1980–1997. [CrossRef]

37. Wüstholz, V.; Christakis, M. Harvey: A Greybox Fuzzer for Smart Contracts. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2020,
Virtual Event, 8–13 November 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1398–1409. [CrossRef]

38. Fioraldi, A.; Maier, D.; Zhang, D.; Balzarotti, D. LibAFL: A framework to build modular and reusable fuzzers. In Proceedings of
the CCS 2022, 29th ACM Conference on Computer and Communications Security, Los Angeles, CA, USA, 7–11 November 2022;
ACM: New York, NY, USA, 2022.

39. Padhye, R.; Lemieux, C.; Sen, K.; Papadakis, M.; Le Traon, Y. Semantic Fuzzing with Zest. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2019, Beijing, China, 15–19 July 2019; Association
for Computing Machinery: New York, NY, USA, 2019; pp. 329–340. [CrossRef]

40. Blazytko, T.; Aschermann, C.; Schlögel, M.; Abbasi, A.; Schumilo, S.; Wörner, S.; Holz, T. GRIMOIRE: Synthesizing Structure
while Fuzzing. In Proceedings of the 28th USENIX Security Symposium (USENIX Security 19), Santa Clara, CA, USA, 14–16
August 2019; USENIX Association: Santa Clara, CA, USA, 2019; pp. 1985–2002.

41. Foundation, F.S. Gnu Bison. Available online: https://www.gnu.org/software/bison (accessed on 22 November 2022).
42. Paxson, V. Flex. Available online: https://github.com/westes/flex (accessed on 22 November 2022).
43. Wang, M.; Wu, Z.; Xu, X.; Liang, J.; Zhou, C.; Zhang, H.; Jiang, Y. Industry Practice of Coverage-Guided Enterprise-Level

DBMS Fuzzing. In Proceedings of the 43rd International Conference on Software Engineering: Software Engineering in Practice,
ICSE-SEIP ’21, Madrid, Spain, 22–30 May 2021; IEEE Press: Hoboken, NJ, USA, 2021; pp. 328–337. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3395032.3395327
http://dx.doi.org/10.1145/3510003.3510093
http://dx.doi.org/10.1109/SP.2018.00040
http://dx.doi.org/10.1145/3377811.3380421
http://dx.doi.org/10.1145/3324884.3416572
http://dx.doi.org/10.1109/SP.2018.00046
http://dx.doi.org/10.1109/SP40000.2020.00067
http://dx.doi.org/10.1109/TSE.2019.2941681
http://dx.doi.org/10.1145/3368089.3417064
http://dx.doi.org/10.1145/3293882.3330576
https://www.gnu.org/software/bison
https://github.com/westes/flex
http://dx.doi.org/10.1109/ICSE-SEIP52600.2021.00042

	Introduction
	Background
	Overview of Squirrel
	Mutation of Squirrel
	Instantiation of Squirrel

	Motivation
	Correctness Feedback
	Limitation of Squirrel's Instantiation

	Design of Squill
	Correctness-Guided Mutation
	Correctness-Focused Seed Selection
	Mutation with Interesting Material Library

	Semantics-Aware Instantiation
	Instantiation of Simple Semantics
	Instantiation of Complicated Semantics

	Implementation
	Evaluation
	DBMS Bugs
	Comparison with Existing Tools
	Contribution of Correctness-Guided Mutation
	Contribution of Semantics-Aware Instantiation

	Discussion
	Related Work
	Conclusions
	References

