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Abstract: Mounting multi-view cameras within a surgical light is a practical choice since some
cameras are expected to observe surgery with few occlusions. Such multi-view videos must be
reassembled for easy reference. A typical way is to reconstruct the surgery in 3D. However, the
geometrical relationship among cameras is changed because each camera independently moves every
time the lighting is reconfigured (i.e., every time surgeons touch the surgical light). Moreover, feature
matching between surgical images is potentially challenging because of missing rich features. To
address the challenge, we propose a feature-matching strategy that enables robust calibration of
the multi-view camera system by collecting a set of a small number of matches over time while
the cameras stay stationary. Our approach would enable conversion from multi-view videos to a
3D video. However, surgical videos are long and, thus, the cost of the conversion rapidly grows.
Therefore, we implement a video player where only selected frames are converted to minimize
time and data until playbacks. We demonstrate that sufficient calibration quality with real surgical
videos can lead to a promising 3D mesh and a recently emerged 3D multi-layer representation. We
reviewed comments from surgeons to discuss the differences between those 3D representations on an
autostereoscopic display with respect to medical usage.

Keywords: multi-camera shadowless lamp; multi-frame multi-view calibration; 3D view synthesis

1. Introduction
1.1. Motivation

Recording surgeries has a potential demand for educational and archiving purposes.
Deeper analyses with video examples encourage better understanding and avoid future
mistakes. Affordable, small form-factor cameras make recordings more casual and multi-
view. Aiming for solid capturing of patients under surgery, mounting multi-view cameras
within a surgical light (aka. shadowless lamp, hereafter referred to as a multi-camera
shadowless lamp: McSL) is a reasonable choice. A shadowless lamp has multiple light
sources verged at a point. At least one of the light sources lights an area; hence, fewer
shadows appear, even with interferences by surgeons’ heads, hands, and tools. The analogy
applies to viewpoints. At least one of the cameras prevents uncollected data capture.

Once the surgery is recorded with a McSL, separated videos must be reassembled
into an easy-to-refer-to format. Shimizu et al. proposed a video analysis approach that can
select the most non-occluded view over frames [1]. Reconstructing the surgery in 3D would
be another option, given that a 3D scene allows viewers to navigate the scene, avoiding
occlusions. However, one McSL video tends to be long (in several tens of minutes to hours),
making frame-to-3D model conversion time consuming. Moreover, a major challenge lies
in frame alignment because of two reasons. First, the geometrical relationship among
the cameras is changed because each camera independently moves every time when the
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lighting is reconfigured (i.e., every time surgeons touch the surgical light). Second, surgery
videos may contain highly reflective tissues and tools, uniform blue covers, and signif-
icantly occluding substances. Therefore, finding feature correspondences over cameras
becomes difficult and 3D point localization becomes fragile. Manual calibration is always
accessible [1], but the video post-processing becomes further cumbersome.

We address the above issues with a video player that allows a user to access a McSL
video hierarchically. First, the user highlights important frames in a McSL video and selects
shorter videos around the frames. Then, our system performs feature matching and frame
alignment algorithms that utilize the shorter video frames to find feature correspondences
robustly. Therefore, only the highlighted frames are converted on-demand into a 3D
mesh or multi-layer scene representation, which renders the frame in 3D and thus in an
autostereoscopic display.

1.2. Background and Related Work

Here, we provide an overview of surgical video recording and 3D view synthesis
approaches and the challenges in their application to non-feature-rich frames of surgeries.

Surgical Video Recording. Recording surgery is needed for various purposes, such
as preserving case studies, educating trainees, and passing on skills [1–4]. Contrary to
laparoscopic surgery [5,6], recording in open surgeries, in which physicians directly view
the affected areas, is challenging because of possible interference with the surgery, spatial
limitations, and occlusions by surgeons.

There are two major ways to install cameras to record surgeries: cameras on the
surgeon’s head [2,7–9] and arms [10], and in the operating room [11]. Knowing possible
cable management, image noises (e.g., motion blurs), and occlusions, McSL is a reasonable
solution for multi-view observations [1].

Displaying non-aligned multi-view images makes the analysis difficult as it requires
mental image warping. Mathematically aligning such images requires calibrating the
cameras. However, objects in surgical videos are often featureless, which makes calibration
challenging. Calibration before video recording is useless as cameras in McSL move when
surgeons manipulate it. To address these issues, we implement a feature-matching scheme
that utilizes multiple frames over time to collect sufficient feature points for calibration.

3D View Synthesis. To seek system requirements, we reviewed comments from two
surgeons who have experience using a McSL recording system at Keio University School
of Medicine. One is a Prof. Dr. of the Department of Plastic and Reconstructive Surgery
and the other is a Dr. of the Department of Anatomy. The surgeons requested to see and
compare several frames in 3D each at the beginning and end of the surgery, especially for
plastic surgery. Therefore, we implement a video player that allows medical doctors to seek
and select frames so that the system can instantly reconstruct the view in 3D at the selected
frames only. From this background, we did not use view synthesis approaches that require
per-frame extensive training [12,13].

Another approach is to convert all frames into a 3D video, such as neural videos [14–17]
and multi-layer mesh and texture atlas videos [18,19]. However, neural videos are typically
in low resolution and are computationally demanding. A multi-layer mesh provides
faster rendering at higher resolutions, although conversion is nonetheless computationally
expensive [18]. We instead provide on-demand 3D views only at selected frames.

Disocclusion Rendering. Real-time disocclusion rendering is often referred to as
diminished reality [20]. Multi-view approaches bring observed background pixels from
cameras to the current view to disocclude foreground objects [21–23]. These approaches
either rely on plane geometry proxy [21] or range sensors [22,23] for millisecond-order
rendering, which prevents us from applying them to our application. Another approach
relies on image inpainting, in which the recovered area is completely synthetic (i.e., pixels
are hallucinated by a collection of pixels within the field of view) [24–26]. Therefore,
inpainting approaches are not suitable for our application.
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Rather than relying on the above approaches, we utilize a recently developed offline
multi-view approach [27] and soft 3D representation [28,29] (i.e., multi-layer scene repre-
sentation) that is known to be more robust than explicit 3D representations. Although 3D
rendering allows users to peep at occluded backgrounds, we further extend the soft 3D
representation for disocclusion rendering.

1.3. Contributions

In summary, we contribute to medical imaging and display in the following ways:

• We propose a video player that allows the user to selectively convert a portion of a
long-shot McSL video into free viewpoint images to minimize time and data until
playbacks.

• We propose a multi-frame multi-view feature matching strategy to estimate intrinsic
and extrinsic camera parameters from a set of McSL video frames. This process is
always required after the independent movement of internal cameras (e.g., when
surgeons touch the surgical light during the operation). We also analyze the number
of frames to achieve stable calibration results using real surgical videos.

• With the robustly estimated camera parameters, we demonstrate a 3D mesh and
a recently emerged 3D multi-layer reconstruction. The latter enables disocclusion
rendering to remove foregrounds in the generated 3D scene representation for better
surgical field visibility.

• We reviewed comments from surgeons to discuss the differences between those 3D
representations with respect to medical usage.

2. Materials and Methods

The proposed workflow consists of the following four steps (Figure 1).
Appl. Sci. 2023, 1, 0 3 of 11

Figure 1. Pipeline of our system. Our system consists of four steps, including (a) on-site McSL video
recording, (b) playback with our McSL video player, (c) McSL calibration, and (d) view synthesis on
an autostereoscopic display. The view synthesis is available only after a successful calibration, which
is challenging with non-feature-rich multi-view images in surgical videos. We, therefore, implement
a calibration strategy that utilizes multiple frames over time.

by a collection of pixels within the field of view) [? ? ? ]. Therefore, inpainting approaches
are not suitable for our application.

Rather than relying on the above approaches, we utilize a recently developed offline
multi-view approach [? ] and soft 3D representation [? ? ] (i.e., multi-layer scene
representation) that is known to be more robust than explicit 3D representations. Although
3D rendering allows users to peep at occluded backgrounds, we further extend the soft 3D
representation for disocclusion rendering.

1.3. Contributions

In summary, we contribute to medical imaging and display in the following ways:

• We propose a video player that allows the user to selectively convert a portion of a
long-shot McSL video into free viewpoint images to minimize time and data until
playbacks.

• We propose a multi-frame multi-view feature matching strategy to estimate intrinsic
and extrinsic camera parameters from a set of McSL video frames. This process is
always required after the independent movement of internal cameras (e.g., when
surgeons touch the surgical light during the operation). We also analyze the number
of frames to achieve stable calibration results using real surgical videos.

• With the robustly estimated camera parameters, we demonstrate a 3D mesh and
a recently emerged 3D multi-layer reconstruction. The latter enables disocclusion
rendering to remove foregrounds in the generated 3D scene representation for better
surgical field visibility.

• We reviewed comments from surgeons to discuss the differences between those 3D
representations with respect to medical usage.

2. Materials and Methods

The proposed workflow consists of the following four steps (Figure 1).

1. On-site McSL video recording: We record a surgery case with a McSL (Figure 1a). At
this point, no additional effort is required (e.g., no calibration pattern recording is
necessary).

2. Playback with our McSL video player: The user (e.g., medical trainees) plays the
video and selects a frame to be reconstructed in 3D (Figure 1b, Section 2.3).

3. McSL calibration: Upon frame selection, we run our calibration algorithm to calculate
the cameras’ intrinsic and extrinsic parameters (Figure 1c, Section 2.1).

Figure 1. Pipeline of our system. Our system consists of four steps, including (a) on-site McSL video
recording, (b) playback with our McSL video player, (c) McSL calibration, and (d) view synthesis on
an autostereoscopic display. The view synthesis is available only after a successful calibration, which
is challenging with non-feature-rich multi-view images in surgical videos. We, therefore, implement
a calibration strategy that utilizes multiple frames over time.

1. On-site McSL video recording: We record a surgery case with a McSL (Figure 1a).
At this point, no additional effort is required (e.g., no calibration pattern recording
is necessary).

2. Playback with our McSL video player: The user (e.g., medical trainees) plays the
video and selects a frame to be reconstructed in 3D (Figure 1b, Section 2.3).

3. McSL calibration: Upon frame selection, we run our calibration algorithm to calculate
the cameras’ intrinsic and extrinsic parameters (Figure 1c, Section 2.1).

4. View synthesis: The 3D frame data are generated and saved (Section 2.2), and the
selected frame is highlighted in the player. Therefore, the user can switch between the
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2D and 3D viewers. We provide ways to avoid occlusions in surgical fields. Given that
the frame is in 3D representation, we can display the frame on an autostereoscopic
display (Figure 1d).

Our McSL consists of the following components.

• The one used to capture the polysyndactyly surgery and the cleft lip surgery: stand-
alone shadowless lamp (DAI-ICHI SHOMEI CO., LTD., LEDXII 5S) + camera (LUCID
Vision Labs, PHX032S-CC) × 5 units;

• The one used to capture the cleft lip surgery and the accessory auricle surgery: stand-
alone shadowless lamp (DAI-ICHI SHOMEI CO., LTD., LEDXIV 5S) + HDR camera
(LUCID Vision Labs, TritonHDR) × 5 units.

2.1. Calibration with a McSL Video

The relative poses of multi-cameras in McSL change every time a surgeon manipulates
the McSL position. This mechanism prevents photographing a calibration target and
calibrating the cameras before the surgery. Instead, we propose to use surgical video frames
for calibration. However, surgical video frames are not feature-rich (see an example in
Figure 1a). Therefore, to collect more features, we utilize feature points and their matching
results that appear on every available time frame.

The key idea is to treat the scene geometry that changes over time as a whole structure
observed at a time since such structure changes are irrelevant from the inter-camera poses.
Assuming that M consecutive frames are recorded under a fixed McSL location, we ran-
domly select N (≤M) multi-camera frames. At a time frame, we extract feature points [30]
at every camera image and run matching [31] between McSL cameras. We obtain N such
sets of inter-camera feature correspondences and use all correspondences as if all features
were detected at a time frame (Figure 2). Finally, we perform structure from motion (SfM),
followed by bundle adjustment, for which we rely on the COLMAP framework [32,33].

Figure 2. Our multi-frame multi-view feature matching strategy. We randomly select N (≤M) frames
from M consecutive frames with a fixed McSL location. We then extract feature points from the camera
images in each frame and run matching between the McSL cameras. The resulting correspondences
between all N sets of inter-camera features are used to determine the geometric relationship between
the cameras.

2.2. Three-Dimensional Frame Generation

Users can choose to generate either a 3D mesh or a recently emerged multi-plane
image (MPI) for an in-depth investigation of the surgery. We discuss the advantages
and disadvantages of those different types of 3D frames through a comparison on an
autostereoscopic display (see Section 3).

Mesh Generation. We create a 3D mesh from a selected multi-view frame. Given the
intrinsic and extrinsic parameters from our calibration procedure, a 3D mesh is constructed
from a 3D point cloud from COLMAP using a multi-view stereo library, OpenMVS [27].
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MPI Generation and Disocclusion Rendering. Given the same multi-camera data for
the mesh generation, we can generate an MPI using local light field fusion (LLFF) [29]. LLFF
is a 3D convolutional neural network that can infer multi-layer scene representation (aka.
MPI) [34] or soft 3D representation [28] from calibrated multi-view images. MPI consists
of multiple RGB+α layers spaced along the camera forward direction in inverse depth for
efficiency. LLFF blends multi-view MPI depending on per-camera weights for quality:

c =
∑K

i=1 wC
i αici

∑K
i=1 wC

i αi + t
, (1)

where wC
i represents a blending weight (scalar) of i−th rendered MPI (among MPIs of

individual McSL cameras). K means the total number of cameras (i.e., K = 5 in our case of
McSL. See Figure 1a). We calculate Euclid distances between the rendered view and the
five McSL cameras so that we blend closer cameras with more weights and vice versa. ci is
a pixel color (RGB values) of the ith rendered MPI and αi is the corresponding opacity. t is a
small value to avoid zero division.

We apply the LLFF inference to a selected McSL frame to render the frame in 3D. To
avoid occlusion, users can control the viewpoint until the rendered view disoccludes the
obstacle. Furthermore, given a camera occlusion metric, we can down-weight cameras
under occlusion:

c =
∑K

i=1 wO
i wC

i αici

∑K
i=1 wO

i wC
i αi + t

, (2)

where wO
i is a per-camera value that suggests disocclusion significance in the camera view

(e.g., the camera score [1]).

2.3. McSL Video Player

Our video player allows the user to switch between the 2D video and 3D scene viewers
(Figure 1b,d). The 2D video player performs similarly to a conventional video player of a
selected camera view or arranged multi-camera views in a grid. Upon a request from the
user (a button click), MPI or 3D mesh at the time frame is generated in the background.
The user can choose which 3D representation to generate. Once the 3D representation
generation is completed, a highlight appears over the sequence bar. Clicking the highlight
toggles the 3D scene viewer. The 3D scene is displayed in an autostereoscopic display for
a glasses-free experience. Users can adjust the position, orientation, and scale of the 3D
representation with mouse dragging and scrolling.

MPI takes several seconds for generation (with our setup using NVIDIA GeForce RTX
3080 GPU, MPI generation for five viewpoints takes approximately 20 s) and increases the
data amount, per camera, by a factor of L (=32 by default) MPI layers, each of which adds
an additional α channel. The 3D mesh likewise requires an amount of time and data to
generate. As such, we do not generate 3D representation at every frame, minimizing the
time and storage.

3. Results

We evaluate our calibration system in two experiments using real surgical videos. We
first present a quantitative evaluation of the McSL camera calibration (Section 2.1). Then,
we demonstrate disocclusion view synthesis using MPI (Section 2.2).

Note that other 3D surgical video reconstruction works than this study are for laparo-
scopic surgery and these approaches assume a single-view moving video input with fewer
significant occlusions in the input [5,6]. In our McSL setups, one or a few cameras are
significantly or entirely occluded. Namely, [5,6] and we explore distinct problems and,
thus, direct comparison is difficult.
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3.1. McSL Calibration Accuracy

We prepared McSL videos with five cameras of three different types of surgeries:
polysyndactyly surgery, cleft lip surgery, and accessory auricle surgery (Figure 3). To
investigate the impact of frame counts used in calibration, we randomly selected N = 1, 10,
20, . . ., 100 frames 10 times in each video and performed the calibration. We calculated the
mean and standard deviation values of reprojection errors for each number of frames and
the success ratios. For the success ratios, we calculated the number of fails of COLMAP
bundle adjustment over all trials.
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Figure 3. Examples of none-feature-rich frames. Each shows one of five view images in McSL in
three different surgeries: Polysyndactyly, cleft lip, and accessory auricle surgery (from left to right).

3. Results

We evaluate our calibration system in two experiments using real surgical videos. We
first present a quantitative evaluation of the McSL camera calibration (Section 2.1). Then,
we demonstrate disocclusion view synthesis using MPI (Section 2.2).

Other 3D surgical video reconstruction works except this study are for laparoscopic
surgery, and these approaches assume a single-view moving video input with less sig-
nificant occlusions in the input [? ? ]. In our McSL setups, one or a few cameras are
significantly or entirely occluded (See typical examples in Figure 7a, b). Namely, [? ? ] and
we explore distinct problems, and thus, direct comparison is difficult.

In 3D reconstruction, in general, COLMAP [? ? ] is the de facto standard and state-of-
the-art method. Although the approach is extended with a graph-based neural network
approach (i.e., SuperPoint [? ] and SuperGlue [? ]) instead of SIFT features and heuristic
matching, the result is summarized as 1-frame (the leftmost result) in Figure 4 in our
experiment.

3.1. McSL Calibration Accuracy

We prepared McSL videos with five cameras of three different types of surgeries:
polysyndactyly surgery, cleft lip surgery, and accessory auricle surgery (Figure 3). To
investigate the impact of frame counts used in calibration, we randomly selected N =
1, 10, 20, ..., 100 frames 10 times in each video and performed the calibration. We calculated
the mean and standard deviation values of reprojection errors for each number of frames
and the success ratios. For the success ratios, we calculated the number of fails of COLMAP
bundle adjustment over all trials.

Figure 4 summarizes the results. A 1-frame input is not enough for the calibration
because of the lack of features in the frames. Increasing the number of inputs increases the
success ratio. However, no improvement is observed over the 20-frame input. The use of
more than 70 frames shows a slight decrease in success ratio, perhaps due to the increased
interference of erratic feature matching. The reprojection errors stay very similar regardless
of the number of images.

Figure 5 presents a qualitative result of our calibration method with the 20-frame
input. The red cones represent the camera view frustum, and their heights indicate the
focal lengths. The direction and position of a cone represent the extrinsic parameters. The
points below the red cones are a 3D point cloud reconstruction. These results show our
method provides qualitatively reasonable performance.

3.2. 3D Mesh Rendering

We show the 3D mesh generation results. As in Section 3.3, we used 20 randomly
selected frames for the calibration. Figure 6 (2nd row) shows the 3D meshes at the beginning
and ending in the same surgical video and frames to compare the differences.

Figure 3. Examples of none-feature-rich frames. Each shows one of five view images in McSL in
three different surgeries: polysyndactyly, cleft lip, and accessory auricle surgery (from left to right).

Figure 4 summarizes the results. A one-frame input is not enough for the calibration
because of the lack of features in the frames. Increasing the number of inputs increases the
success ratio. However, no improvement is observed over the 20-frame input. The use of
more than 70 frames shows a slight decrease in success ratio, perhaps due to the increased
interference of erratic feature matching. The reprojection errors stay very similar regardless
of the number of images.
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Figure 4. Reprojection errors and success ratios over various numbers of images for McSL calibration.
A 1-frame input is apparently not enough for calibrating the system. Almost identical mean errors
and standard deviations are observed. However, the success ratio reaches 1.0 in a 20-frame input.
Notably, with more than 70 frames, the success ratio is slightly lower, which suggests that including
a significantly larger number of images would introduce erratic and less beneficial images for
calibration.

Figure 5. Qualitative results of our calibration method with the 20-frame input. The red cones
represent the camera view frustum, and their heights indicate the focal lengths. The direction and
position of a cone represent the extrinsic parameters. The points below the red cones are a 3D point
cloud reconstruction. The results are qualitatively valid compared to the camera poses attached to
the shadowless lamp (Figure 1a).

3.3. Occlusion-Free View Synthesis Using MPI

We show the rendering view synthesis results. From the results in the previous section,
we used 20 randomly selected frames for the calibration in all results.

Figure 6 (3rd row) shows the free-viewpoint images at the beginning and ending of a
polysyndactyly surgery to compare the differences. We emphasize that such a comparison
in 3D rendering is achieved because of our successful calibration.

Figure 4. Reprojection errors and success ratios over various numbers of images for McSL calibration.
A 1-frame input is apparently not enough for calibrating the system. Almost identical mean errors
and standard deviations are observed. However, the success ratio reaches 1.0 in the 20-frame
input. Notably, with more than 70 frames, the success ratio is slightly lower, which suggests that
including a significantly larger number of images would introduce erratic and less beneficial images
for calibration.

In 3D reconstruction, in general, COLMAP [32,33] is the de facto standard and state-
of-the-art method. Although the approach is extended with a graph-based neural network
approach (i.e., SuperPoint [30] and SuperGlue [31]) instead of SIFT features [35] and
heuristic matching, the result is summarized as 1-frame (the leftmost result) in Figure 4 in
our experiment.



Appl. Sci. 2023, 13, 2447 7 of 12

Figure 5 presents a qualitative result of our calibration method with a 20-frame input.
The red cones represent the camera view frustum and their heights indicate the focal lengths.
The camera views are posed with extrinsic parameters. The colored points represent a
3D point cloud reconstruction. These results show our method provides qualitatively
reasonable performance.

Figure 5. Qualitative results of our calibration method with a 20-frame input. The red cones represent
the camera view frustum and their heights indicate the focal lengths. The cone directions and
positions represent the extrinsic parameters. The colored points are a 3D point cloud. The results are
qualitatively convincing, compared to the camera poses attached to the shadowless lamp (Figure 1a).

3.2. Three-Dimensional Mesh Rendering

We show 3D mesh generation results. From the results in Section 3.1, we used 20
randomly selected frames for calibration in all results. Figure 6 (2nd row) shows the 3D
meshes at the beginning and ending in the same surgical video and frames to compare the
differences.

Appl. Sci. 2023, 1, 0 8 of 11

(a) Beginning of the surgery (b) Ending of the surgery

Figure 6. Comparing the (a) beginning and (b) ending of a polysyndactyly surgery in 3D mesh and
MPI at the selected McSL frames. Notice the difference in the suture of the little toe.

(a) Changing viewpoint in a cleft lip surgery (b) Disocclusion rendering in a polysyndactyly surgery

Figure 7. Occlusion-free rendering using two techniques. These frames contain a viewpoint where
the operation field is occluded by the surgeon’s head (first row). Our free-viewpoint rendering
techniques a) by changing the viewpoint in 3D or b) by disocclusion rendering (Eq. 2) can reveal the
occluded area.

Figure 6. Comparing (a) beginning and (b) ending of a polysyndactyly surgery in 3D mesh and MPI
at the selected McSL frames. Notice the difference in the suture of the little toe.



Appl. Sci. 2023, 13, 2447 8 of 12

3.3. Occlusion-Free View Synthesis Using MPI

We show view synthesis results. As in Section 3.2, we used 20 randomly selected
frames for the calibration.

Figure 6 (3rd row) shows the free-viewpoint images at the beginning and ending of a
polysyndactyly surgery to compare the differences. We emphasize that such a comparison
in 3D rendering is achieved because of our successful calibration.

Figure 7 shows the free-viewpoint images generated with two different disocclusion
rendering strategies, as discussed in Section 2.2. Navigating the viewpoint to where no
occlusion occurs simply clarifies the view (Figure 7a). With our disocclusion rendering
(Equation (2)), the occlusion is virtually diminished at any viewpoint. We prioritized the
second MPI by setting weights manually depending on the interruption degrees of the
surgeon’s head to demonstrate our disocclusion rendering conceptually (Figure 7b).
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Figure 6. Comparing the (a) beginning and (b) ending of a polysyndactyly surgery in 3D mesh and
MPI at the selected McSL frames. Notice the difference in the suture of the little toe.

(a) Changing viewpoint in a cleft lip surgery (b) Disocclusion rendering in a polysyndactyly surgery

Figure 7. Occlusion-free rendering using two techniques. These frames contain a viewpoint where
the operation field is occluded by the surgeon’s head (first row). Our free-viewpoint rendering
techniques a) by changing the viewpoint in 3D or b) by disocclusion rendering (Eq. 2) can reveal the
occluded area.

Figure 7. Occlusion-free rendering using two techniques. These frames contain a viewpoint where
the operation field is occluded by the surgeon’s head (first row). Our free-viewpoint rendering
techniques (a) by changing the viewpoint in 3D or (b) by disocclusion rendering (Equation (2)) can
reveal the occluded area.

3.4. Experts’ Comments

Using the camera’s intrinsic and extrinsic parameters calculated by the calibration
method in this paper, we performed 3D scene recovery in two ways: 3D mesh and MPI.
Our main contributions are the pipeline and calibration system (the first and second item in
Section 1.3) that enable 3D rendering (the third item in Section 1.3) in the medical imaging
context. As such, we consider that asking medical doctors to provide their comments is the
best way to investigate how well and in what way the generated 3D rendering performs in
medical usage. We asked two medical doctors from Keio University School of Medicine to
observe and provide comments on each rendering result displayed on the spatial reality
display (SRD) from Sony Corporation [36], an autostereoscopic display that reproduces 3D
spatial images using real-time gaze recognition and dedicated image generation algorithms.
One of the medical doctors is a Prof. Dr. of the Department of Plastic and Reconstructive
Surgery and the other is a Dr. of the Department of Anatomy.

Figure 8 shows the 3D mesh models and MPIs on SRD shown to the doctors. The
following summarizes the positives (P) and negatives (N) from the medical doctors.
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Figure 8. 3D mesh and MPI on Sony SRD. We showed polysyndactyly, cleft lip, and accessory auricle
surgery images to medical doctors to review their comments.

in McSL videos are obvious and easy to detect visually, automation of the process is a
reasonable future extension. In the previous approach [? ], experts need to align images
from McSL by hand, although the resultant alignment is image-to-image registration in 2D.
Once a frame chunk is specified, our approach can automate the process, and the resultant
alignment is 3D registration and 3D view synthesis.

Blurry artifacts. We observe blurry artifacts in MPI rendering results, especially when
there are significant occlusions. The LLFF network, which we rely on for MPI generation,
implicitly finds color matches between images. Therefore, ambiguous mismatches intro-
duced by occlusion pixels can lead to blurred pixels. Denser camera arrangements can
provide appropriate plenoptic sampling [? ]. However, further quality improvements in
MPI inference using non-feature-rich images exceeds our focus and remains for future
work.

Scale ambiguity. As pointed out by the medical doctors, scale ambiguity needs to be
manually resolved in our system. Camera baselines or scene objects with a known scale
can potentially resolve this issue. Whereas the former varies depending on McSL video
frames, the latter can be estimated from known faces, hands, and tools in the field of view.

Figure 8. 3D mesh and MPI on Sony SRD. We showed polysyndactyly, cleft lip, and accessory auricle
surgery images to medical doctors to review their comments.

3D mesh.

• (P1) Very close impression to what we see in actual surgeries regarding appearance
and shape;

• (N1) The blind spots on the sides are sharply vertical, unlike the actual shape;
• (N2) The scale should be adjusted.

MPI.

• (P1) Feeling of being there, however, worse than 3D mesh;
• (P2) Interesting to see “images” in 3D;
• (N1) Blurry and unclear;
• (N2) Only rough shapes can be grasped;
• (N3) Planes are obvious from a steep angle (i.e., stack-of-cards artifacts);
• (N4) The scale should be adjusted.

Although MPI enables new disocclusion rendering, as demonstrated in Section 3.3,
there are clear limitations. MPI has more disadvantages and one of the main reasons would
be wider baselines between the cameras in McSL. One medical doctor commented that “it is
difficult to list advantages from a clinical point of view” due to the limitations. Nonetheless,
we should note that MPI can be extended to videos rather more straightforwardly than
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the 3D mesh [18]. As a common issue, the medical doctors must have adjusted the scale
manually for individual scenes, given that the scene scale is unknown and thus different in
each scene.

4. Discussion

Our approach successfully estimates the intrinsic and extrinsic parameters of multi-
view cameras in McSL using non-feature-rich multi-view image sequences. The generated
multi-layer scene enables disoccluding visual disturbances, such as a surgeon’s head, for
better surgical field visibility. However, we found several limitations to be addressed that
indicate future research directions.

Shorter video extraction. The current calibration procedure assumes that the user
extracts a shorter video, in which McSL does not move, from a long video. Although such
changes in McSL videos are obvious and easy to detect visually, automation of the process
is a reasonable future extension. In the previous approach [1], experts need to align images
from McSL by hand, although the resultant alignment is image-to-image registration in 2D.
Once a frame chunk is specified, our approach can automate the process, and the resultant
alignment is 3D registration and 3D view synthesis.

Blurry artifacts. We observe blurry artifacts in MPI rendering results, especially when
there are significant occlusions. The LLFF network, which we rely on for MPI generation,
implicitly finds color matches between images. Therefore, ambiguous matches introduced
by occlusion pixels can lead to blurred pixels. Denser camera arrangements can provide
appropriate plenoptic sampling [29]. However, further quality improvements in MPI
inference using non-feature-rich images exceeds our focus and remains for future work.

Scale ambiguity. As pointed out by the medical doctors, scale ambiguity needs to be
manually corrected in our system. Camera baselines or scene objects with a known scale
can potentially resolve this issue. Whereas the former varies depending on McSL video
frames, the latter can be estimated from known faces, hands, and tools in the field of view.

5. Conclusions

This paper presents a system to calibrate McSL cameras using non-feature-rich multi-
view frames and recover a 3D scene representation. Given the long-shot surgical videos
from McSL, the system provides a way to seek video frames where the user wishes to
recover the 3D structure. Given that McSL camera configurations can change every time
surgeons move McSL, calibration must be performed with a selected shorter clip, in which
McSL is static. Within the shorter clip, our calibration algorithm randomly selects multiple
frames to robustly estimate the intrinsic and extrinsic parameters. Owing to the robust
calibration, the system can generate a 3D mesh or a multi-layer scene representation to
provide 3D frames. The evaluation results using real surgical videos revealed the advan-
tages and the reasonable number of frames for the calibration, and the future challenges in
automation and rendering quality improvements.
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