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Abstract: This article focuses on the recent advances in the field of reinforcement learning (RL) as well
as the present state–of–the–art applications in games. First, we give a general panorama of RL while
at the same time we underline the way that it has progressed to the current degree of application.
Moreover, we conduct a keyword analysis of the literature on deep learning (DL) and reinforcement
learning in order to analyze to what extent the scientific study is based on games such as ATARI,
Chess, and Go. Finally, we explored a range of public data to create a unified framework and trends
for the present and future of this sector (RL in games). Our work led us to conclude that deep RL
accounted for roughly 25.1% of the DL literature, and a sizable amount of this literature focuses on RL
applications in the game domain, indicating the road for newer and more sophisticated algorithms
capable of outperforming human performance.
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1. Introduction

Deep learning (DL) algorithms were established in 2006 [1] and have been extensively
utilized by many researchers and industries in subsequent years. Ever since the impressive
breakthrough on the ImageNet [2] classification challenge in 2012, the successes of super-
vised deep learning have continued to pile up. Many researchers have started utilizing this
new and capable family of algorithms to solve a wide range of new tasks, including ways
to learn intelligent behaviors in reward–driven complex dynamic problems successfully.
The agent––environment interaction expressed through observation, action, and reward
channels is the necessary and capable condition of characterizing a problem as an object
of reinforcement learning (RL). Learning environments can be characterized as Markov
decision problems [3], as they satisfy the Markov property, allowing RL algorithms to be
applied. From this family of environments, games could not be absent. In a game–based
environment, inputs (the game world), actions (game controls), and the evaluation criteria
(game score) are usually known and simulated. With the rise of DL and extended computa-
tional capability, classic RL algorithms from the 1990s [4,5] could now solve exponentially
more complex tasks such as games [6] over time, traversing through huge decision spaces.
This new generation of algorithms, which exploits graphical processing unit (GPU) batch
computations, reward/punishment costs, as well as the immense computational capa-
bilities of today’s machines, is called deep reinforcement learning (DRL) [7]. According
to [8,9], neuroevolutionary approaches were demonstrated that directly applied to pixel
data. A year after, the development of the Deep–Q–Network (DQN) by Google was the
most noticeable breakthrough in the era of DRL. This novel algorithm could recognize and
learn behaviors directly from pixels in an unknown environment [10].

However, there were some issues at the early stages of the development due to the
instability of neural networks when acting as approximation functions (correlated inputs,
oscillating policies, large gradients, etc.) that were solved through the natural development
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of the wider DL field. For example, the correlation between the inputs to a Machine
Learning (ML) model can affect their training process, leading to underfitting/overfitting
in many cases. Other issues, such as policy degradation, which can arise from value
function overestimation, has been addressed by using multiple value functions [11,12] or
large gradients by subtracting a previously learned baseline [13,14]. Other approaches to
these instabilities include trust region algorithms, such as trust region policy optimization
(TRPO) [15] or proximal policy optimization (PPO) [16], where the policy is updated by
applying various constraints.

In the beginning, experiments in ATARI 2600 games were followed by a wide range of
testing in more challenging games (DOTA2, Starcraft, Chess, Go, etc.). Finally, they proved
that DQN types of algorithms could score higher than any of the classic RL algorithms,
surpassing the professional human players that were paid to play the Atari game titles [17].

The above are solid intuitive clues on why DRL is inextricably linked with the game
domain. In this study, this exact relation is analyzed, understood, and studied. Therefore,
our study’s contributions are the following:

1. Conduct an in–depth publication analysis via keyword analysis on existing litera-
ture data;

2. Present key studies and publications that presented breakthroughs that addressed
important issues in RL, such as policy degradation, exploding gradients, and general
training instabilities;

3. Draw important inferences regarding the growing nature of published research in
DRL and its various domains;

4. Analyze research on games in the field of DRL;
5. Survey keystone DRL research done in game–based environments.

Our publication analysis [18] has shown that specific terms and keywords such as
“reinforcement learning” and “game” usually pair together. For the time period of 2012
to 2022, from the 92,367 publications containing “reinforcement learning,” over 25% of
them also contained the keyword “game” or referred to a game. Research has also shown
that most of these RL publications [19,20] review or use “deep learning” type techniques
in games, with the majority being deep reinforcement learning (DRL) algorithms (recent
value–based, policy gradient, and model–based DRL methods).

The rest of this paper is organized as follows: Section 2 provides the necessary theo-
retical background for understanding popular RL systems and their essential sub–units.
Section 3 describes the analysis performed on the Scopus, Google Scholar and Dimensions
publication data. Section 4 presents the development of DRL applications in game–based
environments along with their impact on the overall domain of RL and how subsequent
research has helped in overcoming the limitations faced by its predecessors. Additionally,
we briefly present some notable studies published the recent years, according to the num-
ber of citations they received. Finally, Section 5 concludes the paper with suggestions for
overcoming the obstacles to research and possible solution directions for developing DRL
in game–based environments.

2. Theoretical Background
2.1. Markov Decision Process

Markov decision process (MDP) is a mathematical decision–making model where the
action impact is partially random and partially controlled. Based on the definitions, we can
mathematically formulate the probability of transitioning from state St to state St+1 as:

Pa
ss′ = P(s′ ∈ St+1|St = s, At = a) (1)

while the immediate reward can be formulated as:

Ra(s, s′) = R(s′ ∈ St+1|St = s, At = a) (2)
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where S is the set of states, A the set of actions, a the selected action in state s at timestep
t, R the reward obtained by transitioning from state s to state s′, with the selected action
a. Simply put, Pa

ss′ is the probability of transitioning from the current state s ∈ St to the
next state s′ ∈ St+1, taking action a ∈ At, at time–step t in the transition of the process.
MDPs can be either deterministic or stochastic. In deterministic approaches, as in every
deterministic system, from state s, we can only transition to a unique state s′, in contrast
with stochastic approaches where s can lead to every possible state s′. MDP is a structural
element of RL since, in these problems, an agent is supposed to decide its next action based
on its current state. In particular, when the above step is repeated over the time–step t, the
problem can be expressed as an MDP.

2.1.1. Reinforcement Learning

In most RL algorithms, the agent obtains a model of the environment or at least some
basic state transition sequences, as is depicted in Figure 1. In a similar model, the agent
can interact with the environment by selecting a set of actions that alter the environment’s
state, producing new states along the way. The structural components of RL are:

1. The discrete different time–steps t;
2. The state space S with state St at time–step t;
3. A set of actions A with action At at time–step t;
4. The policy function π(.);
5. A reward function Ra(St, St′) of an action At, transitioning from state S to S′;
6. The state evaluation V(s) and energy evaluation Q(s, a).

Figure 1. basic RL model.

2.1.2. Policy

In MDPs, the policy π(.) is mathematically defined as a function with input value the
state s from S and output value the action a from AS.

π : S −→ A (3)

According to MDPs in deterministic policy, the function π(.) is defined as π : S −→ A,
for each state sεS corresponds to one action aεAs whereas in a stochastic policy, the function
π(.) is derived from the distribution of probability π(a|s). In the latter case, the agent is
able to choose one action aεAs, based on the distribution π(a|s). During the training phase,
the agent can act based on two policies:

1. Exploration policy: The agent acts randomly to explore the state and the reward spaces.
2. Exploitation policy: The agent acts based on preexisting knowledge.

2.1.3. State Evaluation

State Evaluation in MDPs is defined as V : S −→ R. To formulate it mathematically, it
is important to also define:
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1. γ the reward discount factor, which can take values between zero and one. The rate γ
pushes for immediate rewards;

2. Gt the reward sum (discounted by γ), from state St until the end of the episode;
3. Eπ the expected value of the rewards, given that the agent starts from the state s and

acts based on policy π(.).

Vπ(s) = Eπ{Gt|St = s} = Eπ

{
∞

∑
k=0

γkrt+k+1|St = s

}
(4)

where k is the number of steps before the end of the episode.

2.1.4. Energy Evaluation

The energy evaluation function can provide us with the expected discounted reward
from γ, the sum of rewards that an agent can take if action a from a state s, based on a
policy π(.). It is defined as Q : S× A −→ R.

Qπ(s, a) = Eπ{Gt|St = s, At = a} = Eπ

{
∞

∑
k=0

γkrt+k+1|St = s, At = a

}
(5)

Taking into account the above function, a greedy deterministic policy can be:

V∗(s) = max a{Q∗(s, a)} (6)

2.1.5. Bellman Equations

Richard Bellman introduced a set of equations that help in solving MDPs [13]. They are
extensively used both in RL and in the majority of the algorithms for solving game–based
problems. To provide a proper mathematical definition of these equations, we must
determine the probability of transition p and the expected reward R:

Pa
ss′ = Pr(St+1 = s′|St = s, At = a) (7)

and

r(s, a) = E(rt+1|St+1 = s′, St = s, At = a) (8)

With the above additions, we can reformulate both state and energy evaluation as:

Vπ(s) = ∑
a

π(s|a)∑
s′

Pa
ss′ [r(s, a) + γVπ(s′)] (9)

and

Qπ(S, a) = ∑
s′

Pa
ss′ [r(s, a) + γ ∑

a′
π(a′|s′)Qπ(s′, a′)]. (10)

The importance of the Bellman equations is the fact that they let us describe the value
of a state Sx according to the value of another state Sy. This means that if we know the
value of St+1, we can calculate the value of St. Thus, starting from a random initialization
of the value function and retrospectively applying the Bellman equation, we can apply
the energy evaluation function for all the possible states S and so calculate a new policy
πnew(.). Its policy-based recursion process can be seen in Figure 2.
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Figure 2. Policy–based recursion [21].

2.1.6. Best Policy

The best policy satisfies the Bellman equations and returns the maximum sum of
rewards reduced over time by γ. As the best policy π∗ of an MDP, we can define:

Qπ∗(s, a) ≥ Qπ(s, a), ∀s, aεS, A. (11)

2.1.7. Policy Evaluation and Policy Improvement

Policy evaluation and improvement can be accomplished using dynamic programming
algorithms, based on a value function. If the environment is known, a system of linear
equations is set [22]. However, in this case, linear programming can be computationally
expensive. Another family of RL algorithms that plays an important role in improving
the above policies is the Monte Carlo method [23]. In contrast with linear programming,
this method does not require extensive information about the complete environment. It is
responsible for utilizing samples of state sequences, actions, and rewards. As RL problem
solution concerns, the above method calculates the average of the observed rewards.

2.1.8. Temporal Difference Learning

Temporal difference learning (TDL) [24] is one of RL’s most popular and innovative
concepts. It is a hybrid of dynamic programming and Monte Carlo simulations. TDL,
like dynamic programming, adjusts its reward predictions depending on estimations the
agent has already learned. Furthermore, it does not require substantial knowledge about
the agent’s surroundings, but merely sequences of interactions, similar to Monte Carlo
approaches. Because TDL approaches offer the aforementioned benefits over all other
methods, they are widely employed in RL algorithms [17]. As a result, they are the most
effective instrument for determining the appropriate policy. They can be employed with
minimum computing expense, in the proper context, and, most significantly, with only
one equation [25]. The techniques (TD(0)) are the simplest TDL approximation, using the
following update rule:

V(St)←− V(St) + lr[rt+1 + γ max aV(St+1)˘V(St)] (12)

where 0 < lr < 1 is the learning rate, rt+1 + γV(St+1) is the target of the temporal
difference, and rt+1 + γV(St+1)˘V(St) is the loss of the temporal difference.

2.1.9. Q–Learning Algorithm

One of the most well–known temporal difference (TD) algorithms is Q–learning (see
Algorithm 1) [26,27]. Q–learning is an out–of–policy algorithm; therefore, its policy does not
have to coincide with the evaluated and updated policy. It uses the following update rule:

Q(St, At)←− Q(St, At) + a[rt+1 + γQ(St+1, a)˘Q(St, at)]. (13)
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This algorithm approximates the best function Q∗, independently from the policy that
the agent follows, as γ max Q(St+1, a) refers to the best action the agent can perform being
at state St+1.

Algorithm 1 Q–learning algorithm.
1: initialize Q(St, At)
2: for every episode do
3: observe state St
4: while St in terminal do
5: select action At and evaluate Q
6: take action a
7: observe r, St
8: Q(St, At)← Q(St, At) + a[rt+1 + γQ(St+1, a)˘Q(St, at)]
9: St ← St+1

10: end while
11: end for

So far, all these methods require intense memory allocations to work correctly. Specif-
ically, we must keep s and a for every state St and action At. A solution is impossible in
real–world applications where the state space is vast. This is why reward functions need to
be approximated with other types of functions, such as parametric [28]. Therefore:

Q(s, a) ≈ Qθ(s, a). (14)

3. Publication Analysis and Trends
3.1. Statistics

So as to demonstrate the first argument, we examined Scopus (curated abstract and
citation database, https://www.scopus.com/ (accessed on 20 December 2022), Google
Scholar (search engine for scholarly literature, https://scholar.google.com/ (accessed
on 20 December 2022)), and Dimensions (linked research information dataset, https://
www.dimensions.ai/ (accessed on 20 December 2022)) publication/literature data for each
year, searching for terms and keywords such as “deep reinforcement learning,” “games,”
“reinforcement learning,” and “deep learning,” as illustrated in the corresponding graph
(Figure 3).

More specifically, the total publication (proven research) count for the jointed terms
“reinforcement learning” and “games” was 92,367 for the time interval 2012–2022, and the
publication count for the jointed words “deep reinforcement learning” and “games” was
56,613 for the period 2012–2022.

For the second point, we examined the period 2012–2022, utilizing publication data
from Scopus, Google Scholar, and Dimensions focusing on the broader fields of “deep
reinforcement learning” and “reinforcement learning”. For the terms and keywords “re-
inforcement” and “learning” and “games”, 92,367 findings were reported between 2012
and 2022. From our previous 2018–2022 findings, we observed that 73,245 results had been
released, accounting for almost 73% of all publications.

To summarize, the recent trend in RL–based research on games has focused on DL
approaches. Specifically, several methods from genetic programming (GP) demonstrate
competitive results on ALE, ViZDoom, StarCraft, and Dota 2, which actually indicate the
converse, meaning that the computational cost of deploying DL solutions to such games is
considerably higher than GP [29–32]. This arises from the fact that conventional methods
have substantial memory and calculation complexity drawbacks. DL has overcome these
limitations because of its ability to handle such multidimensional data and its scalability.
The same diagram in Figure 3 also depicts the research activity related with the terms and
keywords “deep”, “reinforcement”, “learning” and “games” in the time interval 2012–2022,
as well as the keywords “reinforcement”, “learning” and “games” in the period 2012–2022,
relative to the publication count [14].

https://www.scopus.com/
https://scholar.google.com/
https://www.dimensions.ai/
https://www.dimensions.ai/
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Figure 3. Deep reinforcement learning and games publications per year.

3.2. Trends

The literature on the subject of deep RL revealed various patterns linked to specific
game titles [33]. For some earlier titles, the results were created using “deep reinforcement
learning” or “reinforcement learning”. ATARI games, in particular, have piqued the scien-
tific community’s curiosity, followed by board games (almost half of which are “Chess”)
and some newer multiplayer online battle arena (MOBA) or strategic games.

The following sections analyze the role of each deep RL component in each game. As
a result, the study focuses on these six game “trends” regarding game titles, attaching a
little more importance to ATARI [34].

3.3. Deep Reinforcement Learning and Games
3.3.1. Transition to Deep Reinforcement Learning

Humans can perceive patterns and complete complicated tasks in a very short period.
Inside this framework, they successfully interpret optical data, transcribe them into mean-
ingful entities, process them, and eventually make intelligent judgments. Over the last few
decades, the scientific community has made significant efforts to accomplish these crucial
human capabilities. Even before the turn of the century, studies suggested that intelligent
algorithms that could adapt/learn from data may be used to solve this problem [35]. The
most widely accepted explanation is that it works similarly to the human brain and central
nervous system. These “brain modelling” algorithms can adapt to various problems. They
were, however, hampered by the lack of computationally powerful equipment at the time.
At its pinnacle, the family of theories, methods, and algorithms based on this principle
was known as “neural networks”, and it was considered to be the top choice in most prob-
lem–solving domains [36]. Over the last ten years, vast and parallel computing capability
has allowed us to tackle exceedingly complicated, fundamental issues in a short period and
often outperform humans. Reinforcement learning welcomed this new potential, extending
unsupervised learning’s limitations further and morphing into a new area known as “deep
reinforcement learning.”

3.3.2. Deep Q–Network in ATARI

According to [19] that DeepMind published in February 2015, the combination of deep
neural networks (DNNs) with classic RL methods was described. The results in games of
the ATARI console were excellent (high score in the famous breakout game; see Figure 4).

There are several games in which superhuman–level performance has been achieved.
DQN can represent states using deep convolutional neural networks (CNNs) to reduce
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the complexity, which in real–world problems is prohibitive using the classic methods, as
analyzed in the previous section. The architecture of the network is illustrated in Figure 5.
More specifically, the architecture of the DQN was consisted of a 4–dimensional 84 × 84
input image that included the RGB channels of the game’s current frame, along with the
luminance channel. The input layer is then followed by three convolutional layers with
32 8 × 8 filters with a stride of 4, 64 4 × 4 filters with stride of 2, and 64 3 × 3 filters with
stride of 1, respectively. Moreover, the first and second convolutional layers also applied a
rectifier nonlinearity, whereas the third one was followed by a simple rectifier. The final
layers consisted of a fully connected dense layer with 512 units, followed by the output
layer that consisted of a single output for each of the 4–18 valid actions, considering the
“no action” as well.

Figure 4. ATARI pinball game high scores, with double DQN [37].

Figure 5. ATARI deep Q–network architecture based on DeepMind’s 2015 publication in Nature [38].

The expected result is that the agent will be capable of interacting with the rest of the
environment with actions, observations, and rewards [39]. Therefore, the agent’s target
is to choose which actions will maximize its rewards. In this case, in particular, the deep
neural network (DNN) tries to approximate the best energy evaluation function:

Q(s, a) = max E[rt + γ2rt+2 + . . . |St = s, At = a, π]. (15)

RL is not predictable from the beginning or even deviates when a nonlinear function
approximation, such as NNs, is applied to estimate the energy evaluation function. The
correlation in sequence observations, as well as the one between energy values and the TD
target and the fact that tiny changes in the energy value function would result in many
substantial changes in the agent’s policy [40], contribute to the turbulence. DQN, a variation
of the Q–learning method that utilizes two core principles, was developed by DeepMind to
solve this instability. Initially, an experience replay (experience repetition) mechanism was
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used, which chose random observations for learning and thereby eliminated the association
between a sequence of observations [41].

The second idea was to shift the energy value function in the direction of the TD
goal [42,43], but only periodically rather than after each observation, thereby diminishing
the relationship between the two. This is performed by regularly replicating the Q network
into a second Q network, which is used to estimate the TD target and update the Q–network
parameters [44].

The neural network (NN) shown in Figure 5 was used to configure an estimated value
function of energy Q(s, a|θi) in the DQN implementation, where θi is the parameter (i.e.,
the weights) of the Q–network in iteration i. Agent “experience” is then processed in quads
et = (St, At, rt, St+1) to enforce experience repetition. At any time t during training, the
energy value function’s values are renewed based on samples of experiences randomly
selected from the stored data collection. This update is based on the derivative convergence
algorithm (gradient descent) and uses the following function error:

L(θi) = E(s, a, r, s′)∼U(D)[(r + γ max Q(s′, a′|θi)˘Q(s, a|θi))
2] (16)

where γ is the discount factor (or rate) that defines the agent’s “visibility”, θi is the
Q–network parameters in iteration i, and θi is the parameter of the Q–network used
to measure the TD goal in iteration i. The parameters θi are modified every C iterations by
copying the parameters, and they remain stable between their renewals [45]. The algorithm
is also shown in Algorithm 2.

Algorithm 2 Deep Q–learning algorithm.
initialize replay memory

2: initialize value function
initialize target value function

4: for every episode do
initialize sequences

6: for t = 1, T do
select random action At

8: otherwise select At = arg max Q(Φ(St), a|θ)
execute action At, observe reward rt and image xt+1

10: set St+1 = St, at, xt+1
preprocess Φt+1 = Φ(St+1)

12: save transition Φt, at, rt, Φt+1
pick new random transition Φt, at, rt, Φt+1

14: set yj

perform Gradient Descent to the (yj˘Q(Φj, aj|θ))2

16: reset the approximation Q = Q
end for

18: end for

DeepMind used this technique (DQN) to train video data, incentives, terminals, and
accessible moves for ATARI games [46]. The network was not given any fundamental
knowledge about the game and was trained using video data, rewards, terminals, and
accessible movements. This is how a typical user would approach it. Its purpose was
to create a single neural network agent that could train (and play) many games. In six
of the seven games, the DeepMind Technologies agent defeated every other algorithm
with DQN while also beating the world record set by human players in three of them (see
Figure 6) [41].
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Figure 6. The first games trained by DeepMind Technologies. From the left to right, top to bottom:
Beam Rider, Breakout, Enduro, Pong, Q∗ bert, Seaquest, and Space Invaders. All images taken using
the OpenAI Gym Python package [47].

3.3.3. Double Q–Learning

Even though double Q–learning (shown in Algorithm 3) and DQN were watershed
moments in the world of RL, they had some flaws. Many researchers suggested improved
versions to address these problems [48]. DeepMind also made further improvements
regarding the deep Q–learning algorithm and the network, achieving even more excellent
high scores in ATARI games such as pinball, as shown in Figure 4. Double Q–learning is
the first significant improvement of the initial algorithm.

Algorithm 3 Double Q–learning algorithm.
initialize QA, QB, s
for every episode do

3: choose a related with QA and QB
observe r, s′

choose at random UPDATE(A) or UPDATE(B)
6: if UPDATE(A) then

Define a∗ = arg max QA(s′, a)
QA(s, a)← QA(s, a) + a(s, a)(r + γQB(s′, a∗)˘QA(s, a))

9: else if UPDATE(B) then
Define b∗ = arg max QB(s′, a)
QB(s, a)← QB(s, a) + a(s, a)(r + γQA(s′, b∗)˘QB(s, a))

12: end if
end for

Hado van Hasselt explains that the Q–learning algorithm does not perform well in
specific stochastic environments [49]. This occurred due to overestimating the energy
values using max Q(s′, a). The suggested solution was to hold two Q–value functions, QA
and QB, which are renewed for the next state by each other. The renewal is carried out by
first determining the energy a∗ that maximizes QA in the following state:

Q(s, a) = max Q(s′, a) (17)

and then calculating the value of QB(s, a) based on a∗ so that the renewal in QA can be
carried out as QA(s, a).

This particular technique can be combined with DQN, boosting its capabilities, by
using the following loss function:

[Rt+1 + γt+1qθ(St+1 arg max qθ(St+1, a′))˘qθ(St, At)]
2. (18)
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This modification was shown to reduce the overestimation of energy values in the
DQN algorithm, resulting in improved algorithm efficiency.

3.3.4. Prioritized Experience Replay

According to the replay buffer technique, the DQN algorithm selects samples from
memory. However, it would be preferable to use samples from state transitions that are
crucial in training. Tom Schaul [50] presented the concept of priority inexperience in 2015.
The idea is to choose experience samples with a significant difference between them at the
approximate value of Q and the TD target, as this means that these particular experiences
“carry” much information. The transitions––experiences are chosen with a probability of p
based on the last occurrence of an absolute error:

pt|Rt+1 + γt+1 max q̄θ(St+1, a′)˘qθ(St, At)|ω (19)

where ω is a hyperparameter that defines the shape of the distribution. Finally, new
experiences are added to the memory with the highest priority, giving recent transitions
precedence.

3.3.5. Dueling Networks

Dueling Network architecture is based on the idea that assessing the value of each
possible action is not always essential. Knowing which energy should employ would
be critical in certain situations, but the energy choice has the minimum impact on the
outcome in many others. However, estimating the relevance of the states is necessary for
bootstrapping methods.

To obtain this discovery, Google DeepMind created the Dueling Network [14]. The
lowest layers are convolutional, as they were in the DQNs [51] at the time. They employ
two sequences (or streams) of ultimately linked layers instead of utilizing coherent layers
followed by a single sequence of fully connected layers. The streams are set up to produce
independent estimations of value and reward functions. Finally, the two streams are
combined to provide only one Q mode output. There are Q values in the network output,
one for each service. Because the Dueling Network’s performance is a Q function, it may be
trained using several techniques, including DDQN and SARSA [52]. It will also benefit from
improvements to these algorithms, such as improved repetition memories and exploration
strategies. The module that combines the two streams of completely connected layers to
generate a Q rating necessitates meticulous design.

It is worth noting that Q values indicate how profitable it is for the agent to be in state
s and take action a (Q(s, a)) as shown in the function below:

Q(s, a) = A(s, a) + V(s) (20)

where V(s) is the agent’s value for being in state s, and A(s, a) is the advantage of the agent
choosing energy a in state s (how much better the outcomes would be if this action were
chosen, over all the possible actions).

There is a need to isolate the estimator of these two components using two new streams
in conjunction with DQN:

1. One that calculates the state value V(s);
2. One that will estimate the advantage of each action a in state s, A(s, a).

Finally, the two estimators are combined through an aggregation layer to obtain
Q(s, a). Figure 7 portrays the network architecture. This distinction was chosen as all
potential actions will lead to a negative outcome in some instances. Consequently, there is
no need to compute the values of all potential actions in that case. As a result, we can only
measure V(s), which is particularly useful in circumstances where all actions have little or
no impact on the environment. The entire procedure corresponds to the following energy
value factorization:
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qθ(s, a) = vn( fξ(s), a)˘
∑( a′)aψ( fξ(s), a′)

Nactions
(21)

where ξ, n, ψ are the parameters of the convolutional decoder fξ , the value stream vn, and
the advantage stream aψ, and θ = ξ, n, ψ is the set.

Figure 7. Dueling Q–network architecture, DeepMind [14].

To summarize, DeepMind outperformed the competition in the majority of ATARI
games using the new dueling Q–network architecture, with notably higher high scores
(compared to old DQN) in Asterix (shown in Figure 8) and Atlantis (shown in Figure 9)
games (in comparison with Double DQN). Except for Bowling, where the top scores
attained decreased by 1.89%, dueling DQN was more successful in all other ATARI games.
Of course, not all ATARI games benefited from this attempt to enhance training. Examples
include Pinball (72.10% reduction) and Freeway (absolute reduction, i.e., 100%).

Figure 8. Atari game Asterix, in which dueling Q–network outperformed the double DQN by 1097%.
Image taken using the OpenAI Gym Python package [47].

In the games Atlantis (as illustrated in Figure 9), Tennis, and Space Invaders, dueling
DQN outperformed ordinary DQN by more than 100%. It is crucial to remember that each
game is unique. As a result, the earlier DQ learning algorithm outscored even the more
powerful DQN architecture in certain games. Ms. Pacman is a classic example of a game in
this setting.
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Figure 9. Atari game Atlantis, in which dueling Q–network outperformed the classic DQN by 296%.
Image taken using the OpenAI Gym Python package [47].

3.3.6. Microsoft’s Success

In June 2017, Microsoft reported that it had reached the highest possible score to be
accomplished, despite continuous training failures of the Ms. Pacman game, both from
Google using neural networks and other companies using different approaches. This
phenomenal score of 999,990 was obtained by people cheating at the time. According to
Twin Galaxies, a man’s highest score is 933,580, which belongs to Abdner Ashman.

This success came relatively late, as previous years saw substantial performances
in other more challenging games, as described in the previous section. Beyond that,
DeepMind’s AlphaGo has defeated human Go experts, while Libratus and DeepStack
also easily defeated some poker professionals in heads–up no–limit Texas Hold’em. The
A team from Maluuba used artificial intelligence (AI) to build tasks, broke them down
into roles, and delegated them to over 150 agents. The hybrid reward architecture was
used–––a mixture of enhanced learning and a divide and conquer algorithm. Every agent
had different responsibilities (for example, finding a particular pill from the Ms. Pacman
grid), which they shared with other agents to achieve better results. Another agent was
then used that took into account all of the roles presented to each agent and decided which
move Ms. Pacman would take.

The best results were obtained when each agent behaved entirely selfishly, and the
super–agent concentrated on the best move for the entire club. This was achieved by
assigning weights to the various options based on their relevance. For example, fewer
agents attempt to stop ghost–enemies than those attempting to make the Pacman gain
more points. There are four agents for ghost–enemies (one for each ghost–enemy) and
four for chased ghosts. If the super agent’s decision were based on what the majority
wanted, it would undoubtedly end up with a ghost enemy and lose. According to Harm
Van Seijen, [53], there is significant importance in how agents should collaborate based on
their options and how they should behave selfishly based on each agent’s only competence.
This relationship benefits the entire process.

The method also employs RL, in which each behavior leads to a positive or negative
reward, resulting in agents learning by trial and error. Over 800 million frames of the game
were used to train the mechanism in total. Earning more points is less probable because
it resets back to zero when the score hits one million points, as can be seen in Figure 10.
Microsoft reaches the high scores in Pacman writing history.
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Figure 10. Game Ms. Pacman, in which Microsoft reached a high score in 2017, with 999,990 points,
outperforming all the other human/computer high scores. Image taken using the OpenAI Gym
Python package [47].

3.3.7. AlphaGo

AlphaGo is an RL algorithm created by Google DeepMind and implemented to play
the Go board game. It was the first algorithm capable of defeating a professional Go player
on a full–size 19 × 19 game board [54]. In a series of best–of–five games in March 2016, the
AlphaGo algorithm won the title against professional player Lee Sedol. Although Sedol
won the fourth game (Figure 11a), he resigned in the third game, making the final score 4–1
in favor of AlphaGo.

Figure 11. (a) This is the fourth game of Sedol vs. AlphaGo, where Sedol won. This was the only win
Sedol achieved, with the final score of the series Alpha Go 4–Sedol 1. (b) This is the computational
consumption of the AlphaGo Zero vs. all of the other AlphaGo implementations. AlphaGo Fan, the
first in the graph, needed 156 GPUs in order to run, whereas Alpha Zero only utilized 4 TPUs.

AlphaGo employs the Monte Carlo tree search algorithm (MCTS), combining branch-
ing machine learning approaches with intensive human and computer games training. DL
networks are also utilized, getting as input a description of the game board in every state
s, passing it through different layers (hidden layers). Subsequently, the policy network
chooses the next optimal action (for the computer player), and the value network (or
evaluation) estimates the value of the current state s.

AlphaGo Zero is a recent AlphaGo development, which, unlike AlphaGo that learned
to play professionally through thousands of games with novice and professional players,
is learning by playing against itself. In just a few days, the agent accumulated thousands
of years of human experience with the assistance of the best player in the world, none
other than AlphaGo itself. AlphaGo Zero succeeded quickly and outperformed all of its
previous versions.
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There is a single NN during the game that knows nothing about Go at first. Eventually,
the algorithm ends up playing with itself, combining the DNN with a robust NN search
algorithm regulated and updated to assess movements. The updated network is combined
with the same algorithm once more, and a stronger Zero emerges. This process is repeated
many times, with each iteration increasing the system’s performance by a small percentage.
Furthermore, Zero employs a single NN that combines the logic of the two policies and
value networks presented in the initial implementations. As a result of these changes, Zero
evolved in terms of algorithmic power and better computing power management. The
graph in Figure 11b compares power consumption as a percentage of thermal design power
(TDP) to previous AlphaGo implementations. AlphaGo Zero uses only 4 TPUs, making it,
along with AlphaGo, the most power–efficient system for this task.

3.3.8. OpenAI Five in DOTA2

Dota 2 (https://www.dota2.com/home, accessed on 20 December 2022) is a MOBA
game that is known, among other games in the same genre, for being a highly challenging
video game, due to the large number of moves the player has in their hands (action space),
the various calculations needed, and the multiple goals during a match. Figure 12 shows
a snapshot during a game of Dota 2. The players, such as the units, are only visible in
some areas of the world, making the environment partially visible (partial observability).
This deep and nuanced style of play necessitates a steep learning curve. In 2019, OpenAI
Five [55] succeeded in overcoming this difficulty by winning the OpenAI Five Finals in a
five agents vs. the world champions match. Five consisted of five NNs that observe the
game environment as a list of 20,000 numbers (input) encoding the observable field of play
and function by selecting moves from an 8–number list [56].

Figure 12. OpenAI Five wins back–to–back games versus Dota 2 world champions OG at Finals,
becoming the first AI to beat the world champions in an esports game.

The game’s general concept was based on the fact that the player is self–taught,
beginning with random parameters and using a modified version of the PPO algorithm [55].
Each of the five team’s NNs is a single long short–term memory (LSTM) network [57] with
1024 units that obtains game status through a Bot API and exports moves with semantic
value. For example, this value is counted in the number of ticks (unit of measurement used
in game production that expresses how long one step takes) required to postpone the given
motion in the X and Y coordinates surrounding the section where the movement will be
performed, and so on. Each NN calculates its own movements, which means each agent
makes its own decisions based on the current match goal and whether a teammate agent
requires assistance. OpenAI Five was able to interpret conditions considered risky, such
as the drop of ammunition in the region where the agent was put, using sufficient reward
arrangement (reward shaping) and taking into account measurements, such as the fall and
its health. The system was able to adapt to advanced gaming practices such as team play
pressure on the opponent’s area (5–hero push) and stealing vital items (bounty runes) from

https://www.dota2.com/home
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the opponent after several days of practicing, with 80% of the time spent playing against
himself and 20% against previous models. In a strategy setting such as Dota 2, the idea
of exploration is also challenging. During training, properties such as health, speed, and
the agent’s initial level were obtained at random values to force the agents to explore the
environment strategically.

After losing many 1 vs. 1 battles against a single experimental player, the random
training values were increased, allowing the system to start winning. OpenAI Five does
not have a direct contact channel between agents and players regarding collaboration. A
hyper–parameter is used to monitor how well they fit together. This hyper–parameter takes
values ranging from 0 to 1 and calculates how heavy their individual reward is versus the
average value of a group reward function.

3.3.9. AlphaStar in StarCraft II

StrarCraft II (https://starcraft2.com/en\T1\textendashus/) (accessed on 10 December
2022) is also an real time strategy game of high complexity and competitiveness, is regarded
as one of the games with the most hours of esports competitions, and is a significant
challenge for AI research teams. There is no right technique when it comes to being playful.
The environment is again partially observable, while the agent must explore it. The amount
of space available for movement is determined by two factors. Numerous manageable
components result in many combinations [58].

Google’s DeepMind unveiled its 2019 AlphaStar implementation, the first AI to defeat
Grzegorz Komincz, one of the best StarCraft II players, in a series of experimental races
held on 19 December 2019, under professional classification match conditions, with a score
of 5–0 in favor of AlphaStar [13].

This particular AI employs DL, RL techniques, and DNNs and accepts raw game data
as input in the StarCraft II setting. These data are interpreted as a list of available sections
and properties, and it outputs a collection of commands that comprise the movement
performed at each time level. DeepMind called this architecture Transformer, which
is based on attention mechanisms distributed using recurrent neural networks (RNNs)
and CNNs [55]. The Transformer’s body utilizes one deep core LSTM, a strategy of
self–regulating tactics, followed by an indicator network [59] and an approximation of an
assessment aggregate value [60].

AlphaStar employs a multidisciplinary algorithm preparation. The network was
initially trained using supervised learning by observing people playing games and imitating
their short–term and long–term strategies. The training data were then used to power
a multi–agent framework. For this technique, they conducted 14 consecutive days of
confrontations with competing agents in a competition consisting solely of AI agents,
where new entrants, who were branches of existing agents, were dynamically introduced.
Each agent was given the goal of defeating either one or a group of opponents. The agents
learned from the matches, which enabled them to explore a vast space of strategies related
to the way StarCraft II plays while also ensuring that each contestant worked effectively
against stronger strategies and did not forget how to face the weakest older strategies.

Such an approach is not dissimilar to how people invent new and improved tactics
while dismissing the old ones as obsolete. The weights of each agent’s NNs were changed
to optimize the achievement of agent goals across different confrontations and with the aid
of RL. This renewal is accomplished by using an RL algorithm called off–policy actor–critic,
in conjunction with experience repetition (experience replay), practicing self–imitation, and
passing strategies to a new NN (policy distillation).

https://starcraft2.com/en\T1\textendash us/
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3.3.10. Other Recent Notable Approaches

In paper [61], the authors proposed a deep reinforcement learning architecture for
playing text–based adventure games. The game state is represented as a knowledge graph
that is learned during exploration and is used to prune the action space, resulting in more
efficient decision–making. The authors introduced three key contributions to this field:
(1) using a knowledge graph to effectively prune the action space, (2) a knowledge–graph
DQN (KG–DQN) architecture that leverages graph embedding and attention techniques
to determine which portions of the graph to focus on, and (3) framing the problem as a
question–answering task, where pre–training the KG–DQN network with existing ques-
tion–answering methods improves performance. They demonstrated that incorporating a
knowledge graph into a reinforcement learning agent results in faster convergence to the
highest reward, compared to strong baselines.

LeDeepChef [62] is a deep reinforcement learning agent aimed at showcasing its
generalization abilities in text–based games. The design of the agent involved the use
of an actor–critic framework and a novel architecture that evaluates different elements
of the context to rank commands. The agent’s structure is recurrent, allowing it to keep
track of past context and decisions. The agent was optimized for generalization to new
environments through abstraction and a reduction in the action space. The agent also has
a module that predicts missing steps in a task, trained on a dataset based on text–based
recipes. As a result, LeDeepChef achieved a high score in the validation games and
placed second in the overall competition of Microsoft Research’s First TextWorld Problems
challenge, which focuses on language and reinforcement learning.

ReBeL [63] is a self–play framework that leverages reinforcement learning and search
to tackle imperfect–information games. It outperforms human experts in large–scale
two–player zero–sum imperfect–information games such as heads–up no–limit Texas
hold’em poker, while requiring less domain knowledge. ReBeL employs bootstrapped
value network predictions and a fixed–depth search policy that enables it to simplify to an
algorithm similar to AlphaZero for perfect–information games. This framework represents
a general solution for imperfect–information games and has the potential to impact domains
with hidden information.

The authors presented a study in [64] on using deep reinforcement learning to solve
complex control problems in 1v1 MOBA games. To address the challenge of large state
and action spaces, the authors propose a scalable and low coupling framework with novel
techniques decoupling of control dependencies, action mask, target attention, dual–clip
PPO, to efficiently train an actor–critic network. The AI agent “Tencent Solo” was tested in
the MOBA game “Honor of Kings” and was able to defeat human players.

4. Benchmarks and Comparisons

For over a decade, a great number of companies, including Google’s DeepMind, Mi-
crosoft (Figures 13 and 14), and a few others, have been researching the best algorithms to
beat the most popular games based on publications in RL. Comparisons often happen on
ATARI and some other board games due to the absence of an accurate metric to compare
the outcome of two intelligent agents on a strategy or MOBA game with enough accu-
racy [28]. The following benchmarks refer to the results of the specific DQN algorithm
when combining Q–learning and a DNN in ATARI games, as DeepMind published. The
study also contains a human performance indicator for comparison.
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Figure 13. Performance of the DQN agent in ATARI games [19].



Appl. Sci. 2023, 13, 2443 19 of 23

Figure 14. Performance of the Dueling architecture in ATARI games, in comparison with the Priori-
tized Double DQN [14].

The next agent after DQN, which outperformed everything (including DQN), was
the double DQN. This intelligent deep RL agent, as analyzed in the last section, used
two identical NN models. One learns during the experience replay, just like DQN does,
and the other is a copy of the last episode of the first model. The next diagram depicts that
the double DQN has better performance in the same set of ATARI games in comparison
with the DQN.

As we can see from Figure 15, there were some games, including Atlantis, Tennis,
and Space Invaders, that DDQN improved the maximum achievable scores by 296%. On
average, the DDQN performed 63% better than DQN, which was the biggest leap in
performance between two intelligent deep RL agents playing a video game. The next
model that came into production, also by Google’s DeepMind, was the dueling DQN. This
specific architecture achieved better scores in some games, but, in comparison with DQN
and double DQN, it was not that noticeable.
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Figure 15. Performance of the Dueling architecture in ATARI games, in comparison with the single
DQN [14].

5. Discussion

Although game–based environments provide an easy way of mitigating the issue of
building a comprehensive and interactive environment, a lot of the cutting–edge research
has either been on a single complex environment such as AlphaGo or on a cohort of simpler
systems such as the ATARI games. This raises an important question on whether the field
of DRL as a whole is progressing toward general intelligence. The authors strongly feel that
generalizability across multiple complex environments and focus on using past experiences
by the agents should be the paramount focus of current research rather than just producing
good results in some simple settings.

The study supported the notion that there has been a recent trend in “game” related
articles that have used RL or deep RL in the last decade. In most studies, RL or deep RL
is employed to make the intelligent agent live in a game rather than a raw simulation.
These patterns repeat themselves over certain games, periods, or types. We hope that by
focusing on algorithms that outperformed other algorithms, we might define their use in
some essential gaming contexts.
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Various algorithms have recently demonstrated promising performance in managing
complicated multi–centric decision–making. These can be used to solve challenges in
the real world. By expanding on the surroundings, the success of racing games may be
transferred to self–driving cars. On the other hand, deep RL’s practical uses are still in their
infancy. This is because a simulation cannot perfectly replicate complicated real–world
settings. Although real–life testing is possible to some extent, it can be dangerous if it is
used without safety precautions.
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