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Abstract: Smart cities are emerging rapidly due to the provisioning of comfort in the human lifestyle.
The healthcare system is an important segment of the smart city. The timely delivery of critical human
vital signs data to emergency health centers without delay can save human lives. Blockchain is a
secure technology that provides the immutable record-keeping of data. Secure data transmission by
avoiding erroneous data delivery also demands blockchain technology in healthcare systems of smart
cities where patients’ health history is required for their necessary treatments. The health parameter
data of each patient are embedded in a separate block in blockchain technology with SHA-256-based
cryptography hash values. Mining computing nodes are responsible to find a 32-bit nonce (number
only used once) value for each data block to compute a valid SHA-256-based hash value in blockchain
technology. Computing nonce for valid hash values is a time-taking process that may cause life losses
in the healthcare system. Increasing the mining nodes reduces this delay; however, the uniform
distribution of mining data blocks to these nodes by considering the priority data is a challenging task.
In this work, an efficient scheme is proposed for scheduling nonce computing tasks at the mining
nodes to ensure the timely execution of these tasks. The proposed scheme consists of two parts, the
first one provides a load balancing scheme to distribute the nonce execution tasks among the mining
nodes such that makespan is minimized and the second part prioritizes more sensitive patient data for
quick execution. The results show that the proposed load balancing scheme effectively allocates data
blocks in different mining nodes as compared to round-robin and greedy algorithms and computes
hash values of most of the higher-risk patients’ data blocks in a reduced amount of time.

Keywords: blockchain; healthcare; smart cities

1. Introduction

In recent years, the concept of smart cities has emerged as a new paradigm in improv-
ing the quality of life. By employing modern information and communication technologies,
smart cities are capable of catering to efficient energy management, intelligent transporta-
tion facilities, waste management, enhanced health monitoring, and and efficient resource
management [1–4]. The data received from different IoT devices used in various smart
city applications are stored in the cloud. Applying artificial intelligence, machine learning,
and modern data analytic techniques to these cloud data are envisioned to play a vital
role in enhancing the economic growth of a country by the optimal utilization of available
resources [5].

With a rapidly growing number of ubiquitously connected IoT devices in different
applications of smart cities, the data produced by these devices are growing exponen-
tially [6,7]. To handle such a large amount of data, recently, fog computing has emerged
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as a new paradigm. Fog nodes consist of single or multiple data centers located at the
edge of user networks without routing over the internet backbone [8–12]. Consequently,
the sensor devices belonging to the same IoT network can transmit their data at faster
rates for quick processing. Fog computing is a better choice for delay-sensitive applica-
tions, such as emergency response in multiple smart cities applications, such as healthcare
services [13,14].

The healthcare system is one of the prime applications in smart cities [15–17]. In the
healthcare system, the vital signs data of different humanly planted sensors are required to
be examined by remotely placed medical physicians for online monitoring. In case the vital
signs of the patient increase their threshold limits, necessary action is urgently required.
To ensure the valid delivery of patients’ data, a secure data-delivery mechanism, such as
blockchain, is required. Moreover, the timely delivery of healthcare services to patients is
also a critical challenge [18–20].

Blockchain, also known as a system of proofs, has been emerging rapidly in many
applications over the last few years. Blockchain is a secure method of handling data that
results in immutable and decentralized maintenance of records in the form of blocks. The
data are stored in the blocks along with the secure hash functions. The blocks are chained
together by using the data of the previous block to compute the hash function of the current
block as shown in Figure 1.
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Figure 1. The structure of blockchain blocks.

Immutability is one of the key features in blockchain technology that allows blockchain
ledgers to keep their time-stamped transaction data permanent and unalterable. Further-
more, immutability in blockchain provides the fast, efficient, and cost-effective audit
of transaction data. This secure data transaction in blockchain attracts multiple supply
chain applications, such as agri-food supply [21], medical equipment demand and sup-
ply [22], and perishable food products in the supply chain [23]. Immutability is achieved
through cryptography hashes by applying the secure hash algorithm (SHA-256). Miners in
blockchain technology are responsible for generating these hash values for each block in
blockchain systems [24].

There are four different types of blockchain, such as public, private, hybrid, and
consortium blockchain. These have been categorized as permissionless, permissioned,
and both. A public blockchain is permissionless and decentralized, which allows anyone
to join the blockchain network with equal rights. It is mainly used in cryptocurrency.
Conversely, a private blockchain is permissioned and partially decentralized, which restricts
network access to certain nodes with varying rights limitations. A hybrid blockchain
is a mixture of permissionless and permissioned blockchains. It is centrally controlled
by a single organization like a permissioned blockchain; however, to perform certain
transaction validations, it offers a level of oversight similar to the public blockchain. A
consortium blockchain is a permissioned blockchain technology and is governed by a group
of organizations rather than a single entity. A consortium blockchain is more decentralized
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as compared to a private blockchain, resulting in a higher level of security. The healthcare
systems can use the consortium blockchain to store and transfer data of the patients among
different hospitals.

The evolution of wireless body area networks since the last decade has increased
the delivery of patient data to health physicians in smart cities. Critical patients require
emergency treatment, and their health parameters data are required to be transmitted to
healthcare systems for immediate medical action. In addition, the vulnerability in wireless
communication causes erroneous data delivery, which results in serious cybersecurity
challenges. For proper data delivery and to avoid misleading information, a blockchain-
based mechanism is proposed that allows only legitimate patients’ data to be forwarded to
medical advisors for timely decisions to avoid any causalities.

Blockchain supports the recording and tracking of resources. In a blockchain, a valid
data block is generated by a mining computing node. The mining node computes a unique
number called nonce against each SHA-256-based valid hash value for each data block.
The fog computing node in smart cities acting as a mining node provides trustfulness of
the data. Moreover, due to its proximity to patients’ data, it provides quick data delivery
to its mining node. However, computing a nonce for hashing key within a specific range
consumes heavy computation and may result in delays that are not required in transferring
sensitive patient data in healthcare systems.

To efficiently compute the nonce, special mining nodes with high computing capacity
can be installed in the network. A major challenge in such a blockchain system is to
design efficient algorithms for offloading the nonce computing tasks to the mining nodes.
The offloading algorithms should not overburden a particular mining node. Thus, load
balancing among the mining nodes must be ensured.

In this work, an efficient algorithm for offloading nonce computing tasks for a data
block of delay sensitive patients’ data for smart cities healthcare system (DSPSHS) is pro-
posed. DSPSHS offers a load balancing mechanism along with two algorithms, one for the
load balancing node to efficiently distribute the data blocks to mining nodes and the second
for the mining nodes to prioritize the nonce computation task for high-priority patients.

The major features of DSPSHS are described as follows:

1. The proposed scheme reduces the delay in nonce computation tasks by offering a load
balancing mechanism and thus computes more nonce calculation tasks in a specific
time. This is achieved by optimally distributing the data blocks to different mining
nodes to compute their respective SHA-256-based hash values.

2. DSPSHS proposes an algorithm for the load balancer to optimally distribute the nonce
requesting data blocks on different mining nodes.

3. DSPSHS proposes another algorithm for mining nodes to prioritize the highest-priority
patient data blocks over comparatively low-priority data blocks.

The rest of the paper is organized as follows: Section 2 describes the previous research
work in the blockchain and smart cities. The system model and our proposed scheme
are discussed in Sections 3 and 4, respectively. Comparative analysis with the simulation
results is discussed in Section 5. Section 6 concludes the manuscript.

2. Related Work

We divided the literature review section into four parts. The first subsection reviews
the use of blockchain in healthcare systems. The second subsection surveys the efficient
blockchain mining techniques that do not involve load balancing. The third subsection
describes various load-balancing techniques for blockchain systems in the literature. Lastly,
the last subsection explains the novelty of the proposed technique.

2.1. Blockchain in Healthcare

Blockchain technology is widely used in diverse applications and is in high research
areas these days. Zhang et al. [25] propose a consortium blockchain model for data
sharing. The proposed technique uses digital signature-based hash functions to ensure data
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privacy. A tolerance system based on the Byzantine technique is developed and used for
blockchain transactions. The proposed work improves the data transmission capabilities of
the blockchain.

Shrestha et al. [26] focus on a vehicular network environment and divide the area into
different geographical regions for efficient blockchain-based data transmission. By using
the efficient clustering of vehicular nodes, the data are transmitted with low latency in
varying traffic density scenarios. Khan et al. in [27] introduce a different type of blockchain
to increase the trust level of data transmissions in a vehicular network. In particular,
techniques such as certificates, trust algorithms, and revocation schemes are proposed by
the authors to improve the security of data delivery in the presence of malicious users.

Smart cities are emerging rapidly due to the provisioning of ease in human lifestyle,
such as the healthcare system. Secure and trusted data delivery are key challenges in the
healthcare system of smart cities. Due to secure data delivery provision in blockchain
technology, its utility in healthcare systems is under high research area these days.

In [28], the distributed dynamic mutual identity authentication (DDMIA) system is
proposed for such patients that are referred to specialist healthcare from their primary
healthcare center. DDMIA follows blockchain technology for transferring patient data to the
referred medical care without using the registration process. Dass et al. [29] emphasized the
exchange of patient information by using blockchain technology and proposed a large-scale
information infrastructure to access smart contracts as information mediators. These smart
contracts are sponsored by Electronic Health Record, which allows immutable, authentic
accessible medical health records for privacy and faster payments.

In [30,31], problems of the patient-centric healthcare system are highlighted, and a
blockchain-based solution is proposed. The solution proposed in [30] is based on the
uncheckable distributed ledger technology of blockchain to protect the patients’ data
privacy with increased security. In [31], the authors investigated the issues of the internet
of medical things (IoMT), blockchain technologies, and cloud computing and proposed
real-time remote healthcare of a one-to-one care structure.

Vasilatean et al. [32] proposed an IoT and blockchain-based healthcare system by
considering the aging population and catering to the increasing cost of elderly patient care.
The authors validated their proposed scheme with a case study and analyzed how elderly
patients behave in an ambient assisted living environment. In [33], IoT-based healthcare
systems are highlighted in different prospects, and the blockchain-based identity and access
management (IAM) systems in the healthcare environment are discussed. The authors
presented a systematic review of blockchain-based IAM systems to investigate data security,
risk management, and functional parameters.

2.2. Efficient Mining of Blockchain Tasks

Several other techniques propose the efficient mining of blockchain tasks but do not
involve load balancing. The work in [34] consider a blockchain-assisted mobile edge
computing scenario. The goal of the work is to jointly optimize the privacy of mining
computing task offloading and the profit of mining nodes. A reinforcement learning-based
solution is provided to improve the system security, reduce the network costs and increase
the system revenue.

In [24], the idea of using non-mining nodes to assist in the mining of blockchain tasks
is presented. The problem is formulated as an auction game, and the optimal pricing for the
auction is obtained. Similarly, in the work in [35], the problem of mining task offloading is
considered from the perspective of various stakeholders, such as mining nodes and mobile
edge computing service providers. To jointly optimize the utilities of mining nodes and
service providers, a Stackelberg-based game theoretic approach is used.

The work in [36] proposed a novel utility function considering multiple factors for
blockchain task offloading. The idea is to maximize the system utility based on wireless
channels, computational resource allotment, and transmission power selection. The work
uses a deep reinforcement learning approach to improve the system’s utility.
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In [37], the authors proposed a novel drone-based architecture to efficiently offload
the mining tasks from IoT devices to the edge and the cloud. The work in [38] considered a
blockchain-assisted mobile edge computing scenario and proposed a deep learning-based
offloading algorithm to improve the task execution delay in a multi-user multi-fog node
environment.

2.3. Load Balancing in Blockchain Networks

Load balancing in blockchain networks has been considered in several works where
researchers have proposed a fair method of executing blockchain-related tasks. In Table 1,
we present a summary of these techniques along with our proposed idea at the end.

Table 1. Load balancing techniques used in blockchain.

Blockchain Network Used Load Balancing Technique Key Idea

Vehicular network [39] Auction mechanism
Clustering mechanism

Transmission rate improvement
Fairness

IoT [40]
Genetic algorithm

Simple additive weighting
Multicriteria decision making

Find feasible resource allocation
multi-objective optimization

Electric vehicles [41] Contract incentive mechanism Incentive based energy cooperation

Smart grids [42] P2P energy trading Smart contract for energy trading

Financial systems [43] Kademlia based DHT Data sharing based on DHT

Financial systems [44] Round Robin Block creation performance
Block validation performance

IoT (Our technique) Minimum makespan
Prioritization

Fair distribution of nonce tasks
Quick execution of sensitive data

Authors in [39] considered a vehicular network scenario, where vehicles offload their
mining tasks to the roadside units. The idea of the work is to divide the road area into
clusters and assign each mining node to a cluster. By using an auction-based game theoretic
algorithm, the work increases the transmission rate of mining tasks and also ensures the
fairness of tasks at the mining nodes.

In [40], a genetic algorithm is proposed to evaluate the feasible resource allocation
solution for IoT networks. After the first step, simple additive weighting and multicriteria
decision making are used to find the optimal allocation of resources such that the load is
balanced, and the requirements of task delay and node energy consumption are achieved.

The work in [41] considered a blockchain-based electric vehicle scenario, where energy
cooperation is desired. A contract incentive mechanism is proposed to promote energy
cooperation among the vehicles and achieve energy load balancing. Similarly, the work
in [42] introduced a peer-to-peer energy trading mechanism for blockchain-based smart
grids. Smart contracts were developed for energy trading such that electric load balancing
is achieved.

In [43], a financial transaction system is considered, and an efficient data-sharing
scheme is proposed so that the data load is balanced. The Kademlia-based distributed
hash table (DHT) is proposed for broadcasting blockchain-related data. Additionally, the
work in [44] proposed a round-robin mechanism for financial blockchains. The detailed
performance analysis of such blockchain systems and the impact of load balancing is
studied. The block creation and block validation performance are analyzed.
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2.4. Novelty of the Proposed Technique

The current work in the literature is focused on using game theoretic techniques
and machine learning algorithms for maximizing the blockchain task transmission rates
and profit of the mining nodes. Moreover, load balancing is generally achieved using
game theoretic techniques, where an auction or incentive is used to promote load balanc-
ing. The simple round robin load balancing techniques have also been used to improve
blockchain systems.

In comparison, we consider a blockchain-assisted healthcare system model which has
not been considered for load balancing. We also utilize the minimum makespan-based load
balancing technique to efficiently schedule the nonce computing tasks which has not been
used in the context of blockchain mining. Moreover, we also propose a priority algorithm
to improve the task computation delay of high-priority patients’ data.

3. System Model

The patient’s healthcare data collected through multiple healthcare sensors are for-
warded directly to the load balancing node. To convert this data block as a member of the
blockchain, a unique nonce value to determine the hash value within a specified range is
required to be computed. To efficiently compute a specific nonce value, the load balancing
node forwards these data blocks to one of its directly connected fog mining nodes by
applying a load balancing algorithm. Each fog mining node fetches one of the data blocks
placed in its cache to compute nonce. Mining nodes compute nonce by generating random
numbers to meet the specified conditions. The successful data block with a nonce value
is sent back to the load balancer to become a part of the blockchain and forwarded to the
healthcare center for necessary action through the internet cloud. We assume that nonce
computing tasks are transmitted using traditional cryptographic schemes and the security
for the transmission of these tasks is not the focus of this paper.

In this work, we considered three different severity levels of a varying number of
patient data, such as high-risk patient data, moderate-risk patient data, and low-risk or rou-
tine patient data. Each of these patient data is treated separately and is required to be sent
to the centrally placed healthcare system of a smart city. These patients’ data are forwarded
to one of the sparsely placed load balancing nodes that are backwardly connected with
multiple fog mining nodes. A load-balancing node randomly receives a varying number of
data requests that are required to be forwarded to one of its neighboring mining nodes by
considering patient data severity and the load on the mining fog computing nodes. Each
mining node has a uniform caching capacity to store a data block before computing its
nonce value that meets the specific conditions.

There are Y healthcare application networks placed in different localities of a smart
city. Each healthcare network Yj comprises three different severity levels of patient data and
are categorized as hls, hms, and hhs as low, medium, and highly sensitive data, respectively.
Each Yj consists of X number of fog mining nodes and each Xi fog mining node has N
number of blocks. If Nls, Nms, and Nhs are the total number of low, medium, and highly
sensitive types of data blocks, respectively, which are received by all fog mining nodes,
then they are computed in Equations (1)–(3) as

Nls =
Y

∑
j=1

X

∑
i=1

Nij(hls) (1)

Nms =
Y

∑
j=1

X

∑
i=1

Nij(hms) (2)

Nhs =
Y

∑
j=1

X

∑
i=1

Nij(hhs) (3)
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The total number of data blocks (NDB) received by all fog mining nodes placed in a
smart city is calculated as:

NDB = Nls + Nms + Nhs (4)

The patient’s data are forwarded directly from the patient to the central load-balancing
node using wireless communications, such as 5G. Similarly, the data from the the load-
balancing node to the mining node also use 5G communications.

We assume that there are multiple channels available between the load balancing node
and healthcare patients’ data nodes to transmit all required data blocks simultaneously
without considering any queuing delay. Similarly, there are multiple channels between load-
balancing nodes and fog-mining nodes. A complete system model is shown in Figure 2.

Figure 2. Load balancing in a mining node.

4. Proposed Scheme

In this work, nonce computing for a data block of delay sensitive patients’ data for
smart cities healthcare system (DSPSHS) is proposed. DSPSHS comprises two algorithms,
one for the load balancer and another for the fog mining node discussed in Sections 4.1 and
4.2, respectively. Multiple healthcare data arrive at the load balancer, which are required to
be forwarded to one of the directly attached mining nodes to determine their nonce value.
The load balancer forwards these data blocks to mining nodes by applying algorithms
described in Section 4.1. The data blocks are stored in the cache of the mining node. When
there are multiple data blocks in the cache of the mining node, then it fetches one of them
to compute nonce by applying the algorithm discussed in Section 4.2.

4.1. Proposed Algorithm for Load Balancing Node

In smart cities, multiple fog nodes act as mining computing nodes to find a valid hash
value of a patient’s health data block. Some of these mining nodes have more data blocks
for execution, whereas some have no data to compute. In this work, we introduced the
concept of a load balancer for mining nodes in a smart city healthcare system. The primary
goal of load balancing is to ensure that no one mining node is overloaded or under-loaded.
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The purpose of load balancing is to reduce the computation time. IoMT continuously sends
patients’ vital signs data to the mining nodes. The mining nodes have a limited processing
capability. Different mining nodes are placed in different locations in the smart city. It may
be possible that one mining node may be overloaded, and the other mining nodes may
have lesser computational nonces of data blocks. Therefore, there is a need to have a load
balancer to equally distribute the requesting data to each mining node. In this work, we
proposed an algorithm for efficient load balancing in multiple mining computing nodes by
applying a modified greedy algorithm.

In this section, an algorithm for the load-balancing node to fairly distribute the patients’
data blocks to the mining nodes is proposed. In this algorithm, a traditional greedy
algorithm is modified to distribute the data blocks to multiple mining machines to minimize
the computational time.

The salient features of the proposed algorithm are as follows:

• Rearrange the entire data blocks according to their computing time relating to data
block size in descending order.

• Assign the longest data block to the mining node with the lowest computing load.

Suppose we have X indistinguishable fog mining nodes, each having a data caching
limit (Dlim) and N data blocks with varying block sizes. The size of a data block D, which is
required to be cached on a fog mining node is Dj. Our main goal is to assign the data blocks
to the mining node so that no fog mining node is under or overloaded. The maximum load
on a fog mining node at any time instant T is calculated in two ways:

1. Calculate the total data block sizes and divide them by the number of fog mining
machines to get an average of the data load that needs to be assigned on any machine.
The optimum data capacity (D1

Opt) in this case is determined as:

D1
Opt ≥ 1/X ×

N

∑
j=1

Dj (5)

The maximum caching load on any of the machines cannot be less than this average
load. For example, if there are three data blocks D1, D2, D4, and D5 with data sizes of
2, 3, 1, 2, and 2, respectively, and they are required to be allocated on two machines,
then each machine will be assigned a load of 5, which is the average of the load by
allocating 3 and 2 data blocks each.

2. When there is a single large-size data block and the rest are smaller, then the large
block is assigned to one fog mining machine and all the rest to other fog mining
machines. In this case, the optimal load assignment on a machine (D2

Opt) is calculated
as

D2
Opt ≥ maxDj 1 ≤ j ≤ N (6)

In this case, the maximum caching load on a single machine will be equal to the size
of the biggest data block. For example, there are three data blocks D1, D2, and D3
with data sizes of 2, 1, and 6, respectively, that are required to be assigned on two
machines, then one machine will be allocated D3, where D1 and D2 are allocated on
other machines, resulting in a maximum caching load of 6.

In light of the above two scenarios, the optimal allocation of data (DOpt) is formulated
as

Dlim ≥ DOpt ≥ max(1/X ×
N

∑
j=1

Dj, maxDj) (7)

The goal of load balancing is to assign the data blocks on fog mining nodes in such a
way that DOpt should be minimized.

To achieve this goal, we modified the well-known greedy algorithm by incorporating
the longest job first (LJF) algorithm to achieve the efficient distribution of load on fog
mining machines. The proposed scheme is described below by providing an example.
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Suppose there are 3 mining nodes called X1, X2, and X3 with uniform computing
capacity and 7 different sizes data blocks D1, D2, D3, D4, D5, D6, D7 with the varying load
as 6, 8, 4, 10, 2, 1, and 6 respectively. The proposed algorithm allows the load balancing
node to rearrange all these data blocks according to their sizes such as [“D4”, 10], [“D2”,
8] [“D1”, 6], [“D7”, 6], [“D3”, 4], [“D5”, 2], [“D6”, 1]. The proposed algorithm allows the
load balancer to check the load on each mining node and assign these jobs according to the
mining machine load in such a way that the data block is forwarded to that mining node
that holds less load. The distribution of all these 7 data blocks on three mining nodes is
shown in Figure 3.

The maximum load assigned to a mining node is 13 in this example, which is assigned
to the X1 machine. However, the load on X2 and X3 are 12 each.

“D4”, 10

“D5", 2 

“D6” , 1

“D3”, 6

“D2”, 6

“D1”, 6

“D7”, 6

Fog 1 Fog 2 Fog 3

Assigned Load on fog node 1 = 13

Assigned Load on fog node 2 = 12

Assigned Load on fog node 3 = 12

Figure 3. Example of the proposed algorithm technique.

A complete algorithm for load distribution is shown in Algorithm 1.
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Algorithm 1: Proposed algorithm for load balancing

1 Task execution policy
2 Input Datablocks = N

Jobs= job sizes (D1, D2, D3 . . . Dn), number of fog mining nodes
(X1, X2, X3 . . . Xn)

3 Load(Xi) = Current load on Xi

4 Sort the data blocks in descending order according to their job sizes

5 for i = 1 to N do
6 Allocate Di to the fog mining node j with minimum load such that its Dlim is

not exceeded
Load(Xj) = Load(Xj) + Di

7 end

4.2. Nonce Computing Algorithm

The data blocks received by mining nodes are initially placed in their cache before
computing the nonce value. These data blocks may have different priorities depending
on the patients’ critical vital signs values. Such data blocks are required to be computed
on a priority basis. The second algorithm of DSPSHS is proposed for the mining node to
compute the nonce value of a data block according to their data priority. When data arrive
at the mining node from the load balancing node, then the mining node needs to compute
the data according to their sensitivity level.

Suppose the load balancer receives five data blocks DB1, DB2, DB3, DB4, and DB5, and
waits for their nonce values at 12, 15, 20, 25, and 30 s, respectively. These data blocks have
three different priority levels, such as H, M, and L, representing high, medium, and low
priority with priority values of 300, 70, and 10, respectively. Their corresponding priority
values are calculated according to Table 2.

Table 2. Priority values of data blocks.

Data Blocks Priority Levels Time Since Arrival Priority Value (PV )

DB1 High 12 3600
DB2 High 15 4500
DB3 Medium 20 1400
DB4 Medium 25 1750
DB5 Low 30 300

A mining node before fetching the data block in computing their nonce value verifies
the current value of the data block. Value of each block increments after each interval of
time. If there are two different priority blocks available, then their value will be computed
with their time of origin. If there are blocks with the same values, then the data block with
a higher priority level is selected for nonce computation. If two or more data blocks have
the same value with similar priority levels, then that data block is selected, which arrives
in the cache of the mining node.

A complete nonce computing algorithm for the mining node is shown in Algorithm 2.
It should be noted that the load balancer node handles N data blocks at a time and
distributes them to the fog mining nodes as per the proposed algorithms.
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Algorithm 2: Pseudo code of nonce computing by mining node

1 Data block selection policy
2 Input Number of data blocks = N

timestamp of ith data block = ti
Priority level of ith data block = Pi
Value of ith data block = Vi
for i = 1 to N do

3 Vi = ti × Pi
4 //Select data block with maximum Vi
5 If value and priority levels of two data blocks are same

// Process data block that arrives first in cache
6 End If
7 If value of two data blocks is same and priority levels are different

//Process block with higher value of P
8 End If
9 end

5. Results and Analysis

To analyze the performance of our proposed scheme in different prospects, we created
a simulation environment by taking three different sensitivity levels of multiple data blocks
in the healthcare system of the smart city. The data block sizes with different sensitivity
levels ranged from 300 to 900 kbytes for the highest emergency data block, 300 to 900 kbytes
for a moderate healthcare data block, and 300 to 900 kbytes for routine patient data blocks
with the least priority level. The nonce values of these data blocks are executed from fog
mining nodes and are downloaded at the data rate of 8 Mbps. However, the downloading
data rate from the cloud mining node is taken as 2 Mbps. A fog mining node’s simultaneous
nonce computational capability is 2 nonce/s, whereas the cloud mining server can compute
4 nonce/s. A list of simulation parameters is shown in Table 3. We compared our proposed
technique with the round robin load balancing mechanism [44].

Table 3. Simulation parameters.

Parameter Value

Fog Mining Node coverage area 1500 m
Distance between fog mining node and Nonce requesting data blocks 50–1500

Number of simultaneous data blocks for each mining node 6–30
Number of mining nodes 2–10

Downloading data rate from cloud mining server 2 Mbps
Downloading data rate from fog mining node 8 Mbps

Number of Nonce computing by fog mining node 2
Emergency data blocks 2–10

Medium level sensitive data blocks 2–10
Least sensitive data blocks 2–10

5.1. Load Balancing Greedy vs. Proposed Algorithm vs. Round Robin vs. Round Robin with LJF

Figure 4 shows the comparative results of the proposed scheme as compared to its
competitors in computing nonce value for the varying number of data blocks. The number
of data blocks is incremented by two data blocks from 2 to 22 data blocks simultaneously
with 3 fog mining nodes. The results show that our proposed scheme outperformed
compared to greedy [45], round-robin [46], and round-robin with LJF. The results show
that our proposed scheme reduces the nonce computing time by 35.5%, 18.38%, and 15.94%
against round-robin, greedy, and round-robin with the LJF algorithms, respectively.
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Figure 4. Number of computed nonce against a varying number of data block requests.

The results in Figure 5 show the performance of our proposed scheme in computing
the nonce value against varying numbers of fog mining nodes when data blocks are fixed.
It is evident from the results that total processing time reduces if we increase the no. of the
fog mining node for a fixed number of 24 jobs with varying processing times. The results
verify that with the increase in the number of mining nodes, the job processing time reduces
because the same number of jobs are being distributed among multiple mining nodes. It
is evident from the results that our proposed scheme reduces the processing time by up
to 28 percent against the round-robin algorithm, up to 29.41 percent against the greedy
algorithm, and up to 20 percent against the round-robin with the LJF algorithm.
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Figure 5. Nonce computing against varying number of mining nodes.
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To evaluate the effectiveness of our proposed scheme, the results in terms of standard
deviation ω for varying numbers of mining nodes and the varying number of jobs are
shown in Figures 6 and 7, respectively.

Standard deviation is calculated as

σ =

√√√√ N

∑
i=1

(X − Y)2/N (8)

where X is the mean time required to compute the nonce value of the requested blocks, Y
is the time computed by an algorithm, and N is the number of instances chosen.

Results shown in Figures 6 and 7 verify that the proposed scheme merely deviates
from the mean load computed against a varying number of blocks with fixed mining nodes
and for a varying number of mining nodes with fixed data blocks, respectively.

Figure 6 shows that the standard deviation values of DSPSHS are far less than the
other algorithms when the number of data block requests increases from 4 to 20 in five
different instances and the number of fog mining nodes is 3. It is evident from the results
that DSPSHS merely deviates from the mean mining fog nodes load as compared to round
robin, greedy, and round robin with LJF algorithms.
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Figure 6. Standard deviation against a varying number of mining nodes.

Results in Figure 7 compute the standard deviation values for a fixed number of
data blocks with varying numbers of fog mining nodes. In these results, the data block
requests are fixed to 20; however, fog mining nodes are increasing from 2 to 7 in six different
instances. It is evident from the results that our proposed DSPSHS is very close to the mean
load values of the mining nodes and prominently less than the other three schemes.
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5.2. Proposed Job Sequencing with the Deadline

After the efficient distribution of data blocks to mining nodes for nonce computation,
the second algorithm of our proposed scheme effectively scrutinizes them in accordance
with their sensitivity levels. Varying sizes of patients’ data blocks are divided into three
different sensitivity levels. The number of nonces against varying numbers of data blocks
is such that data requests of all three sensitivity levels of data blocks are uniform. The
results are compared with the first come first serve (FCFS) algorithm by considering the
same computing capacity of all fog mining nodes.

The percentage of under-processed nonce computation against a varying number of
data block requests for six and ten mining nodes, respectively, are shown in Figures 8 and 9,
respectively. Both results include three sub-plots that represent three different priority levels
data blocks, such as high-level sensitivity, medium-level sensitivity, and low sensitivity
level patients’ data blocks. In these results, we consider that there is an equal number of
each type of data block present in the cache of each mining node, such as 2 data blocks in
high-priority nonce computation data blocks indicating that there are 6 data blocks with
2 each in high, medium and low priority levels. The results shown in Figure 8 show that
our proposed algorithm selects 100% nonce against high-level sensitive data blocks for
varying numbers of data block requests when the number of high-priority data blocks in a
mining node is less than data blocks. For medium-level sensitive data blocks, the proposed
scheme computes all nonce when the number of requests is 2 each. However, when the
number of nonce requests increases, the number of nonces computed by FCFS is more than
our proposed scheme. This is because the mining node has already selected high-priority
blocks, and it cannot process the other priority-level blocks. The same impact is shown for
low-priority data blocks. It is evident from the results shown in Figure 9 that the proposed
scheme accommodates most of the high-priority data blocks as compared to FCFS and only
computes nonces for the medium- or low-priority blocks when there is no high-priority
block left for computation.
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Figure 8. Percentage of the computed nonce for 6 mining nodes with varying number of data blocks.
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Figure 9. Percentage of the computed nonce for 10 mining nodes with varying numbers of data blocks.

Results shown in Figure 10 are obtained against varying numbers of mining nodes
when there is a fixed number of nonce requests. In these results, there is a total of 12 nonce
computation requests that are equally distributed in high-, medium-, and low-priority
patient data blocks. It is evident from the results that our proposed scheme entertains
a maximum of the high-priority data blocks and 50% of high-priority data blocks are
entertained when the number of mining nodes is only two. The nonce computation of the
high-priority patients’ data block is 100% when the number of mining nodes is 4 and above.
However, FCFS only computes the nonce of those data blocks that arrive in their cache first.
The results further show that when the number of mining nodes is more than the available
high-priority data blocks, then it allows medium-priority data blocks in computing their
nonce values, and nonce against low-priority data blocks are only entertained when all the
high-priority data blocks are successfully entertained.
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Figure 10. Percentage of the computed nonce for 12 data blocks with varying numbers of mining nodes.

6. Conclusions

The efficient computation of nonces is a major challenge in blockchain networks. This
work proposes a reduced nonce computational time scheme for patients’ data for smart
cities healthcare system (DSPSHS). In this scheme, we propose two algorithms, one for
the load balancing node to equally distribute the nonce computing tasks and another
one for the mining computing node to scrutinize and prioritize nonce computation for
sensitive patients’ data. The performance of the load balancing algorithm is compared
with round robin, round robin with longest job first algorithm, and greedy algorithms. The
performance of the nonce computing algorithm is compared with FCFS. It is evident from
the results that (DSPSHS) performs better than its competitors by computing more nonce
values for data blocks of serious patients’ data. In addition, it fairly distributes the data
blocks in different mining nodes as compared to other algorithms. In the future, we aim to
jointly optimize the latency and energy of mining nodes in blockchain networks.

Author Contributions: This article was prepared through the collective efforts of all the authors.
Conceptualization, F.N.T., A.N.A., A.A.M., M.A.J., M.B.K., A.K.J.S., M.A. and M.H.A.H.; Writing—
original draft, F.N.T., A.N.A., A.A.M. and M.A.J.; Writing—review and editing, M.B.K., A.K.J.S. and
M.A. All authors have read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deanship of Scientific Research at Imam Mo-
hammad Ibn Saud Islamic University for funding this work through Research Group no. RG-21-07-07.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is available from corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zeadally, S.; Javed, M.A.; Hamida, E.B. Vehicular Communications for ITS: Standardization and Challenges. IEEE Commun.

Stand. Mag. 2020, 4, 11–17. [CrossRef]
2. Esposito, C.; Castiglione, A.; Frattini, F.; Cinque, M.; Yang, Y.; Choo, K.K.R. On Data Sovereignty in Cloud-Based Computation

Offloading for Smart Cities Applications. IEEE Internet Things J. 2019, 6, 4521–4535. [CrossRef]

http://doi.org/10.1109/MCOMSTD.001.1900044
http://dx.doi.org/10.1109/JIOT.2018.2886410


Appl. Sci. 2023, 13, 2411 17 of 18

3. Javed, M.A.; Nguyen, T.N.; Mirza, J.; Ahmed, J.; Ali, B. Reliable Communications for Cybertwin driven 6G IoVs using Intelligent
Reflecting Surfaces. IEEE Trans. Ind. Inform. 2022, 18, 7454–7462. [CrossRef]

4. Du, R.; Santi, P.; Xiao, M.; Vasilakos, A.V.; Fischione, C. The Sensable City: A Survey on the Deployment and Management for
Smart City Monitoring. IEEE Commun. Surv. Tutorials 2019, 21, 1533–1560. [CrossRef]

5. Javed, M.A.; Zeadally, S.; Hamida, E.B. Data analytics for Cooperative Intelligent Transport Systems. Veh. Commun. 2019,
15, 63–72. [CrossRef]

6. Malik, U.M.; Javed, M.A.; Zeadally, S.; Islam, S.U. Energy-Efficient Fog Computing for 6G-Enabled Massive IoT: Recent Trends
and Future Opportunities. IEEE Internet Things J. 2022, 9, 14572–14594. [CrossRef]

7. Malik, U.M.; Javed, M.A. Ambient Intelligence assisted fog computing for industrial IoT applications. Comput. Commun. 2022,
196, 117–128. [CrossRef]

8. Rahim, M.; Ali, S.; Alvi, A.N.; Javed, M.A.; Imran, M.; Azad, M.A.; Chen, D. An intelligent content caching protocol for connected
vehicles. Emerg. Telecommun. Technol. 2021, 32, 1–14. [CrossRef]

9. Martinez, I.; Hafid, A.S.; Jarray, A. Design, Resource Management, and Evaluation of Fog Computing Systems: A Survey. IEEE
Internet Things J. 2021, 8, 2494–2516. [CrossRef]

10. Rahim, M.; Javed, M.A.; Alvi, A.N.; Imran, M. An efficient caching policy for content retrieval in autonomous connected vehicles.
Transp. Res. Part A Policy Pract. 2020, 140, 142–152. [CrossRef]

11. Ali, B.; Adeel Pasha, M.; Islam, S.u.; Song, H.; Buyya, R. A Volunteer-Supported Fog Computing Environment for Delay-Sensitive
IoT Applications. IEEE Internet Things J. 2021, 8, 3822–3830. [CrossRef]

12. Malik, U.M.; Javed, M.A.; Frnda, J.; Rozhon, J.; Khan, W.U. Efficient Matching-Based Parallel Task Offloading in IoT Networks.
Sensors 2022, 22, 6906. [CrossRef]

13. Reis, J.; Marques, P.A.; Marques, P.C. Where Are Smart Cities Heading? A Meta-Review and Guidelines for Future Research.
Appl. Sci. 2022, 12, 8328. [CrossRef]

14. Esashika, D.; Masieroa, G.; Maugerb, Y. An investigation into the elusive concept of smart cities: A systematic review and
meta-synthesis. Technol. Anal. Strateg. Manag. 2021, 33, 957–969. [CrossRef]

15. Zhang, L.; You, W.; Mu, Y. Secure Outsourced Attribute-Based Sharing Framework for Lightweight Devices in Smart Health
Systems. IEEE Trans. Serv. Comput. 2022, 15, 3019–3030. [CrossRef]

16. Venkatesh, J.; Aksanli, B.; Chan, C.S.; Akyurek, A.S.; Rosing, T.S. Modular and Personalized Smart Health Application Design in
a Smart City Environment. IEEE Internet Things J. 2018, 5, 614–623. [CrossRef]

17. Ahmed, J.; Nguyen, T.N.; Ali, B.; Javed, A.; Mirza, J. On the Physical Layer Security of Federated Learning based IoMT Networks.
IEEE J. Biomed. Health Inform. 2023, 27, 691–697. [CrossRef] [PubMed]

18. Corsini, R.R.; Costa, A.; Fichera, S.; Pluchino, A.; Parrinello, V. System design of outpatient chemotherapy oncology departments
through simulation and design of experiments. Int. J. Manag. Sci. Eng. Manag. 2022, 1–14. [CrossRef]

19. Edwards, L.; Hermis, K.; LeGette, C.R.; Lujan, L.A. Acuity-Based Scheduling: Outcomes in Ambulatory Oncology Centers. Clin.
J. Oncol. Nurs. 2017, 21, 250–253. [CrossRef] [PubMed]

20. Kallen, M.A.; Terrell, J.A.; Lewis-Patterson, P.; Hwang, J.P. Improving Wait Time for Chemotherapy in an Outpatient Clinic at a
Comprehensive Cancer Center. JCO Oncol. Pract. 2012, 8, e1–e7. [CrossRef] [PubMed]

21. Menon, S.; Jain, K. Blockchain Technology for Transparency in Agri-Food Supply Chain: Use Cases, Limitations, and Future
Directions. IEEE Trans. Eng. Manag. 2021, 1–15. [CrossRef]

22. Ahmad, R.W.; Salah, K.; Jayaraman, R.; Yaqoob, I.; Omar, M.; Ellahham, S. Blockchain-Based Forward Supply Chain and Waste
Management for COVID-19 Medical Equipment and Supplies. IEEE Access 2021, 9, 44905–44927. [CrossRef] [PubMed]

23. Ahamed, N.N.; Thivakaran, T.K.; Karthikeyan, P. Perishable Food Products Contains Safe in Cold Supply Chain Manage-
ment Using Blockchain Technology. In Proceedings of the 2021 7th International Conference on Advanced Computing and
Communication Systems (ICACCS), Coimbatore, India, 19–20 March 2021; Volume 1, pp. 167–172. [CrossRef]

24. Guo, S.; Dai, Y.; Guo, S.; Qiu, X.; Qi, F. Blockchain Meets Edge Computing: Stackelberg Game and Double Auction Based Task
Offloading for Mobile Blockchain. IEEE Trans. Veh. Technol. 2020, 69, 5549–5561. [CrossRef]

25. Zhang, X.; Chen, X. Data Security Sharing and Storage Based on a Consortium Blockchain in a Vehicular Ad-hoc Network. IEEE
Access 2019, 7, 58241–58254. [CrossRef]

26. Shrestha, R.; Nam, S.Y. Regional Blockchain for Vehicular Networks to Prevent 51% Attacks. IEEE Access 2019, 7, 95033–95045.
[CrossRef]

27. Khan, A.S.; Balan, K.; Javed, Y.; Tarmizi, S.; Abdullah, J. Secure Trust-Based Blockchain Architecture to Prevent Attacks in VANET.
Sensors 2019, 19, 4954. [CrossRef]

28. Hegde, M.; Rao, R.R.; Nikhil, B.M. DDMIA: Distributed Dynamic Mutual Identity Authentication for Referrals in Blockchain-
Based Health Care Networks. IEEE Access 2022, 10, 78557–78575. [CrossRef]

29. Vardhini, B.; Dass, S.N.; R, S.; Chinnaiyan, R. A Blockchain based Electronic Medical Health Records Framework using
Smart Contracts. In Proceedings of the 2021 International Conference on Computer Communication and Informatics (ICCCI),
Coimbatore, India, 27–29 January 2021; pp. 1–4. [CrossRef]

30. Zhuang, Y.; Sheets, L.R.; Chen, Y.W.; Shae, Z.Y.; Tsai, J.J.; Shyu, C.R. A Patient-Centric Health Information Exchange Framework
Using Blockchain Technology. IEEE J. Biomed. Health Inform. 2020, 24, 2169–2176. [CrossRef]

http://dx.doi.org/10.1109/TII.2022.3151773
http://dx.doi.org/10.1109/COMST.2018.2881008
http://dx.doi.org/10.1016/j.vehcom.2018.10.004
http://dx.doi.org/10.1109/JIOT.2021.3068056
http://dx.doi.org/10.1016/j.comcom.2022.09.024
http://dx.doi.org/10.1002/ett.4231
http://dx.doi.org/10.1109/JIOT.2020.3022699
http://dx.doi.org/10.1016/j.tra.2020.08.005
http://dx.doi.org/10.1109/JIOT.2020.3024823
http://dx.doi.org/10.3390/s22186906
http://dx.doi.org/10.3390/app12168328
http://dx.doi.org/10.1080/09537325.2020.1856804
http://dx.doi.org/10.1109/TSC.2021.3073740
http://dx.doi.org/10.1109/JIOT.2017.2712558
http://dx.doi.org/10.1109/JBHI.2022.3173947
http://www.ncbi.nlm.nih.gov/pubmed/35536821
http://dx.doi.org/10.1080/17509653.2022.2134223
http://dx.doi.org/10.1188/17.CJON.250-253
http://www.ncbi.nlm.nih.gov/pubmed/28315537
http://dx.doi.org/10.1200/JOP.2011.000281
http://www.ncbi.nlm.nih.gov/pubmed/22548015
http://dx.doi.org/10.1109/TEM.2021.3110903
http://dx.doi.org/10.1109/ACCESS.2021.3066503
http://www.ncbi.nlm.nih.gov/pubmed/34812386
http://dx.doi.org/10.1109/ICACCS51430.2021.9442057
http://dx.doi.org/10.1109/TVT.2020.2982000
http://dx.doi.org/10.1109/ACCESS.2018.2890736
http://dx.doi.org/10.1109/ACCESS.2019.2928753
http://dx.doi.org/10.3390/s19224954
http://dx.doi.org/10.1109/ACCESS.2022.3193238
http://dx.doi.org/10.1109/ICCCI50826.2021.9402689
http://dx.doi.org/10.1109/JBHI.2020.2993072


Appl. Sci. 2023, 13, 2411 18 of 18

31. Indumathi, J.; Shankar, A.; Ghalib, M.R.; Gitanjali, J.; Hua, Q.; Wen, Z.; Qi, X. Block Chain Based Internet of Medical Things for
Uninterrupted, Ubiquitous, User-Friendly, Unflappable, Unblemished, Unlimited Health Care Services (BC IoMT U6 HCS). IEEE
Access 2020, 8, 216856–216872. [CrossRef]

32. Vasilateanu, A.; Diaconu, A.T. Ambient Assisted Living Environment based on Blockchain for Elderly Care. In Proceedings of
the 2020 International Conference on e-Health and Bioengineering (EHB), Iasi, Romania, 29–30 October 2020; pp. 1–4. [CrossRef]

33. Alamri, B.; Crowley, K.; Richardson, I. Blockchain-Based Identity Management Systems in Health IoT: A Systematic Review.
IEEE Access 2022, 10, 59612–59629. [CrossRef]

34. Nguyen, D.C.; Pathirana, P.N.; Ding, M.; Seneviratne, A. Privacy-Preserved Task Offloading in Mobile Blockchain With Deep
Reinforcement Learning. IEEE Trans. Netw. Serv. Manag. 2020, 17, 2536–2549. [CrossRef]

35. Zhang, K.; Cao, J.; Leng, S.; Shao, C.; Zhang, Y. Mining Task Offloading in Mobile Edge Computing Empowered Blockchain. In
Proceedings of the 2019 IEEE International Conference on Smart Internet of Things (SmartIoT), Tianjin, China, 9–11 August 2019;
pp. 234–239. [CrossRef]

36. Nguyen, D.; Ding, M.; Pathirana, P.; Seneviratne, A.; Li, J.; Poor, V. Cooperative Task Offloading and Block Mining in Blockchain-
based Edge Computing with Multi-agent Deep Reinforcement Learning. IEEE Trans. Mob. Comput. 2021. [CrossRef]

37. Luo, S.; Li, H.; Wen, Z.; Qian, B.; Morgan, G.; Longo, A.; Rana, O.; Ranjan, R. Blockchain-Based Task Offloading in Drone-Aided
Mobile Edge Computing. IEEE Netw. 2021, 35, 124–129. [CrossRef]

38. Samy, A.; Elgendy, I.A.; Yu, H.; Zhang, W.; Zhang, H. Secure Task Offloading in Blockchain-Enabled Mobile Edge Computing
with Deep Reinforcement Learning. IEEE Trans. Netw. Serv. Manag. 2022, 19, 4872–4887. [CrossRef]

39. Jameel, F.; Javed, M.A.; Zeadally, S.; Jäntti, R. Efficient Mining Cluster Selection for Blockchain-Based Cellular V2X Communica-
tions. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4064–4072. [CrossRef]

40. Xu, X.; Zhang, X.; Gao, H.; Xue, Y.; Qi, L.; Dou, W. BeCome: Blockchain-Enabled Computation Offloading for IoT in Mobile Edge
Computing. IEEE Trans. Ind. Inform. 2020, 16, 4187–4195. [CrossRef]

41. Yahaya, A.S.; Javaid, N.; Javed, M.U.; Shafiq, M.; Khan, W.Z.; Aalsalem, M.Y. Blockchain-Based Energy Trading and Load
Balancing Using Contract Theory and Reputation in a Smart Community. IEEE Access 2020, 8, 222168–222186. [CrossRef]

42. Khalid, R.; Javaid, N.; Almogren, A.; Javed, M.U.; Javaid, S.; Zuair, M. A Blockchain-Based Load Balancing in Decentralized
Hybrid P2P Energy Trading Market in Smart Grid. IEEE Access 2020, 8, 47047–47062. [CrossRef]

43. Kaneko, Y.; Asaka, T. DHT Clustering for Load Balancing Considering Blockchain Data Size. In Proceedings of the 2018 Sixth
International Symposium on Computing and Networking Workshops (CANDARW), Takayama, Japan, 27–30 November 2018;
pp. 71–74. [CrossRef]

44. Fan, C.; Lin, C.; Khazaei, H.; Musilek, P. Performance Analysis of Hyperledger Besu in Private Blockchain. In Proceedings of
the 2022 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS), Newark, CA, USA, 15–18
August 2022; pp. 64–73. [CrossRef]

45. Mukherjee, M.; Liu, Y.; Lloret, J.; Guo, L.; Matam, R.; Aazam, M. Transmission and Latency-Aware Load Balancing for Fog Radio
Access Networks. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab
Emirates, 9–13 December 2018; pp. 1–6. [CrossRef]

46. Ahmad, N.; Javaid, N.; Mehmood, M.; Hayat, M.; Ullah, A.; Khan, H.A. Fog-Cloud Based Platform for Utilization of Resources
Using Load Balancing Technique. In Advances in Network-Based Information Systems: The 21st International Conference on Network-
Based Information Systems; Barolli, L., Kryvinska, N., Enokido, T., Takizawa, M., Eds.; Springer International Publishing: Cham,
Switzerland, 2019; pp. 554–567.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2020.3040240
http://dx.doi.org/10.1109/EHB50910.2020.9280203
http://dx.doi.org/10.1109/ACCESS.2022.3180367
http://dx.doi.org/10.1109/TNSM.2020.3010967
http://dx.doi.org/10.1109/SmartIoT.2019.00043
http://dx.doi.org/10.1109/TMC.2021.3120050
http://dx.doi.org/10.1109/MNET.011.2000222
http://dx.doi.org/10.1109/TNSM.2022.3190493
http://dx.doi.org/10.1109/TITS.2020.3006176
http://dx.doi.org/10.1109/TII.2019.2936869
http://dx.doi.org/10.1109/ACCESS.2020.3041931
http://dx.doi.org/10.1109/ACCESS.2020.2979051
http://dx.doi.org/10.1109/CANDARW.2018.00022
http://dx.doi.org/10.1109/DAPPS55202.2022.00016
http://dx.doi.org/10.1109/GLOCOM.2018.8647580

	Introduction
	Related Work
	Blockchain in Healthcare
	Efficient Mining of Blockchain Tasks
	Load Balancing in Blockchain Networks
	Novelty of the Proposed Technique

	System Model
	Proposed Scheme
	Proposed Algorithm for Load Balancing Node
	Nonce Computing Algorithm

	Results and Analysis
	Load Balancing Greedy vs. Proposed Algorithm vs. Round Robin vs. Round Robin with LJF
	Proposed Job Sequencing with the Deadline

	Conclusions
	References

