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Abstract: Breast cancer (BC) is the most incident cancer type among women. BC is also ranked as the
second leading cause of death among all cancer types. Therefore, early detection and prediction of
BC are significant for prognosis and in determining the suitable targeted therapy. Early detection
using morphological features poses a significant challenge for physicians. It is therefore important to
develop computational techniques to help determine informative genes, and hence help diagnose
cancer in its early stages. Eight common hub genes were identified using three methods: the maximal
clique centrality (MCC), the maximum neighborhood component (MCN), and the node degree.
The hub genes obtained were CDK1, KIF11, CCNA2, TOP2A, ASPM, AURKB, CCNB2, and CENPE.
Enrichment analysis revealed that the differentially expressed genes (DEGs) influenced multiple
pathways. The most significant identified pathways were focal adhesion, ECM-receptor interaction,
melanoma, and prostate cancer pathways. Additionally, survival analysis using Kaplan–Meier was
conducted, and the results showed that the obtained eight hub genes are promising candidate genes
to serve as prognostic and diagnostic biomarkers for BC. Furthermore, a correlation study between
the clinicopathological factors in BC and the eight hub genes was performed. The results showed that
all eight hub genes are associated with the clinicopathological variables of BC. Using an integrated
analysis of RNASeq and microarray data, a protein-protein interaction (PPI) network was developed.
Eight hub genes were identified in this study, and they were validated using previous studies.
Additionally, Kaplan-Meier was used to verify the prognostic value of the obtained hub genes.

Keywords: breast cancer; gene expression; PPI network; hub genes

1. Background

Cancer is one of the continually-developing non-communicable diseases (NCDs) that
affects many people worldwide. The World Health Organization (WHO) reported that
NCDs are a leading cause of death and responsible for 71% of global deaths [1]. Among
these, cancer is the most common and deadliest in the world [2]. The International Cancer
Statistics indicates that about 19.3 million new cancer cases occurred in 2020 alone, with
close to 10 million deaths of 36 cancers in 185 countries [2]. Breast cancer (BC) is the
most incident cancer among women, with an estimated 2.3 million new cases, followed
by lung, colorectal, prostate, and stomach cancers. BC is a heterogeneous cancer with
different characteristics, such as morphological appearance, profile, response to therapy,
tumour-node-metastasis (TNM) staging, and histological grade [3,4].
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Currently, breast cancer early detection using morphological features poses a sig-
nificant challenge for physicians [5]. For this reason, researchers have recently made
tremendous efforts to develop models that allow early detection or prevention of breast
cancer and increase the likelihood of a cure [6,7]. Next-generation sequencing (NGS) tech-
nologies that detect the expression of thousands of genes in a single assay have proven to
be an effective tool for early cancer diagnosis. These technologies also produce massive
gene expression data, facilitating cancer diagnoses and prognoses. Although numerous
efforts have been made, the predictive and prognostic factors utilized for breast cancer
therapy are insufficient. Therefore, new markers need to be identified to help targeted
treatment [3,8]. Gene expression data allows determining the key biomarkers that might
help in the early and efficient detection of breast cancer and can potentially increase the
patient’s survival rates [9]. Moreover, gene expression data helps identify the pathways
and molecular information driving the disease from early to late stage. Such information
can aid in understanding the disease mechanism more clearly. For example, some genes
could be linked to faster disease progression, and some could be linked to slow progression.
Combining gene expression data with existing proteomic data (i.e., PPI) may help us gain
a deeper knowledge of prevalent human disorders because PPIs exhibit one of the clear-
est functional links between genes. In order to identify protein complexes and signaling
pathways in cancer, it is crucial to construct PPI networks.

Several studies on analysing microarray and RNASeq gene expression data use path-
way tools to infer meaningful pathways out of these gene expression data. These studies
include the work of Dhirachaikulpanich et al. [10], who integrated gene expression data
based on microarray and RNASeq technologies to find the DEGs and age-related macular
degeneration (AMD) associated pathways. Their results showed two novel pathways
associated with high enrichment in DEGs in AMD, namely the neuroactive-ligand recep-
tor interaction pathway and the extracellular matrix (ECM) receptor interaction pathway.
Moreover, Dhirachaikulpanich et al. conducted a protein-protein interaction (PPI) network
to identify the hub genes, which revealed HDAC1 and CDK1 as two central hub genes
connected with the control of cell proliferation/differentiation processes. Nisar et al. [11]
integrated microarray and RNASeq gene expression data for pancreatic cancer (PaCa) to
find the DEGs. Additionally, they conducted PPI network and pathway analyses. Their re-
sults indicated that ITGA1, ITGA2, ITGB1, ITGB3, MET, LAMB1, VEGFA, PTK2, and TGFβ1
are important hub genes. In addition, their results also identified two important pathways,
which are the ECM–receptor interaction and focal adhesion pathways. Hozhabri et al. [12]
integrated four microarray gene expression datasets of colorectal cancer (CRC) downloaded
from the GEO database. They conducted DEGs, GO terms, and Kyoto Encyclopaedia of
Genes and Genomes pathway (KEGG) enrichment analyses. Their results showed that the
regulation of cell proliferation, biocarbonate transport, Wnt, and IL-17 signaling pathways,
and nitrogen metabolism were the most significant pathways associated with their DEGs
list. They also constructed a PPI network of the DEGs using Cytoscape software, which was
utilized to identify the most critical hub genes (MYC, CXCL1, CD44, MMP1, and CXCL12).
Karimizadeh et al. [13] identified 619, 52, and 119 DEGs from the lung tissues, peripheral
blood mononuclear cell (PBMC), and skin using ten microarray gene expression data,
respectively. The DEGs they identified were used to build a PPI network using the STRING
database to find the interacting genes. Their results showed that 12, 2, and 4 functional
clusters associated with the three tissues were identified, respectively. In addition, their
results revealed that the most significantly enriched pathway in the three tissues was the
tumor necrosis factor (TNF) signaling pathway. Castillo et al. [14] proposed data integration
using microarray, RNASeq, and the integrated data from both microarray and RNASeq.
Their integration pipeline obtained 98 DEGs. Thereafter, they ranked the 98 genes using
the mutual information-based ranking provided by the minimum redundancy maximum
relevance (mRMR) algorithm and selected the first six genes. Their results showed that
SVM, RF, and KNN scored an accuracy of 97.6%, 97.4%, and 94.9%, respectively, when
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using the 98 genes and 96.8%, 87.4%, and 94.1%, respectively, in the case of the reduced
six genes.

This study aimed to discover new biomarkers or hub genes from DEGs of an integrated
analysis of microarray and RNASeq gene expression data, then use these hub genes in a
further analysis. The PPI network is constructed using the STRING database and Cytoscape
software for visualization. In the PPI network, the interaction can be direct or indirect. In
the direct interaction, the interacting proteins are closely bound together in performing
certain functions. The indirect interaction is known as functional association. These
interactions are predicted using computational methods that use the transfer of knowledge
between organisms and the interactions that are collected from other primary databases.
Additionally, Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways and gene
ontology (GO) analyses are conducted to construct meaningful information from the DEGs
using the Enricher web tool. The top 10 hub genes are obtained from each method of the
three methods: maximal clique centrality (MCC), maximum neighborhood component
(MCN), and degree method. The intersection of these three methods’ top ten hub genes
resulted in the eight hub genes (CDK1, KIF11, CCNA2, TOP2A, ASPM, AURKB, CCNB2,
and CENPE). Moreover, the survival information for the patients with nodal, oestrogen,
and progesterone receptor status is used after splitting them into two groups based on the
median expression level of these eight hub genes. Additionally, a correlation analysis of
the clinicopathological variables in BC with the eight hub genes is performed.

2. Material and Methods
Datasets

In this study, three different BC microarray gene expression data sets are down-
loaded from gene expression omnibus (GEO) using R statistical software via the GEOquery
package [15]. Additionally, the TCGA-BRCA RNASeq gene expression data is down-
loaded from Pan-Cancer Atlas using the TCGAbiolinks package in R [16]. The microarray
datasets were obtained according to the accession numbers GSE22820, GSE45827, and
GSE70905. GSE22820 contains 41,000 genes in 186 samples. In contrast, GSE45827 consists
of 29,873 genes in 141 samples. GSE70905 contains 45,015 genes on 94 paired samples. Only
the normal and tumor samples are selected from all the datasets. The BC microarray dataset
was log2-transformed and normalized using normalizeBetweenArrays to ensure consistency
between arrays. The TCGA-BRCA dataset contains 1208 clinical samples, and in each
sample there are 19,948 genes. Since the number of genes is very large, a pre-processing
step is used to reduce the number of genes in order to minimize the noise affecting the
process of extracting the DEGs. The common genes between the four lists of DEGs are
selected. The common genes were then used for further analysis using Cytoscape software
for constructing and visualizing PPI networks [17,18]. Moreover, Cytoscape is used to obtain
hub genes that might help in BC individual prognosis and determine the best therapy
strategies. In addition, the common genes are used in constructing pathways and in GO
analyses using the Enricher tool. Table 1 gives the details of all the datasets that are used in
this study. The overall research process is depicted in Figure 1.

Table 1. Metadata for the microarray and RNASeq datasets.

Accession
Number Total Samples Selected Samples Platform Country Reference

GSE22820

186 samples
Sample type:
10 Normal
176 Tumor

All

GPL6480
Agilent-014850
Whole Human

Genome Microarray
4 × 44 K

Canada Liu et al. [19]
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Table 1. Cont.

Accession
Number Total Samples Selected Samples Platform Country Reference

GSE45827

155 samples
Sample type:
11 Normal

14 Human Cell line
130 Tumor

141 samples
Sample type:
11 Normal
130 Tumor

GPL570
[HG-U133_Plus_2]
Affymetrix Human
Genome U133 Plus

2.0 Array

France Gruosso et al. [20]

GSE70905

137 samples
Sample type:
47 Normal

43 Mammaplastic
reduction
47 Tumor

94 samples
Sample type:
47 Normal
47 Tumor

GPL4133
Agilent-014850
Whole Human

Genome Microarray
4 × 44 K G4112F

USA Quigley et al. [21]

TCGA-BRCA

1208 samples
Sample type:
113 Normal
1095 Tumor

All Illumina HiSeq Global Pan-Cancer Atlas
[16,22]Appl. Sci. 2023, 12, x FOR PEER REVIEW 5 of 5 
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3. Differential Gene Expression Analysis
3.1. Microarray Analysis

Class comparison is performed using linear models for the microarray data using the
limma package in R [11,23]. This package performs differential expression using a gene
expression data matrix where the columns denote the samples, and the rows indicate the



Appl. Sci. 2023, 13, 2403 5 of 20

genes [24]. It aims to discover the features (genes) that are differentially expressed. Limma
fits and performs linear models, such as linear regression, multiple linear regression, and
analysis of variance. The linear model along with the empirical Bayes technique was fitted
using the lmFit function from the limma package to determine the differentially expressed
genes in the BC samples relative to normal [24]. Then, the “Empirical Bayes” model is
fitted. This model borrows information across the genes using the eBayes function in R to
calculate moderated t-statistics that determine the statistical significance value (p-value)
for each gene [25]. A p-value threshold was used by different researchers to identify the
genes that can discriminate between different classes [26]. The significant threshold value
of 0.01 was used in this study to identify the genes that discriminate between the normal
and the tumor cases 6089, 14293, and 16432 DEGs are obtained from GSE2280, GSE45827,
and GSE70905 datasets, respectively.

3.2. RNASeq Analysis

In the pre-processing of the RNASeq data, the array-array intensity correlation (AAIC)
is used to determine the correlation between the samples. In AAIC, the correlation is based
on the Spearman correlation [27]. The AAIC is a symmetric matrix, and its visualization is
depicted in Figure 2. The strength of the correlation is represented by the colours, where a
dark colour indicates a strong correlation, and a light colour indicates a weak correlation.
From the AAIC, the samples with low correlation are pinpointed (using a threshold value
of 0.6, the samples with a correlation less than this threshold value are determined to have
low correlation) and removed [28]. To ensure that we can correctly infer the expression level
from the BC gene expression data without bias in the expression measures, a normalization
process is applied using TCGAanalyze_Normalization [29–32]. TCGAanalyze_Normalization is
a function in the TCGAbiolinks library and has a suite of methods. The GC-content method
is used to determine the part of the nucleotides in the nucleic acid strand with either
guanine (G) or cytosine (C). This way, we could remove the strong GC-content bias or the
GC-richer genes that tend to be truly differentially expressed (DE) [29]. Finally, the gene
expression data is filtered using a threshold value of 0.25 to determine the mean values
across all samples that should be selected (these are samples that have a mean of expression
level higher than 0.25). After the pre-processing steps, 1208 samples (113 negative and
1095 positive), each with 14899 genes, are obtained. DEGs analysis is performed using the
TCGAanalyze_DEA function, which revealed 3676 DEGs.

The list of DEGs is used from the microarray and RNASeq datasets to find common
DEGs (n = 540). A complete list of the common 540 DEGs is provided in a Supplementary
File (Table S1).

3.3. Gene Ontology (GO) and Gene List Pathway Enrichment Analysis

All cells or organisms that possess a clearly defined nucleus share the biological
functions that are specified by a large fraction of genes. Shared proteins in one organism
can be transferred to other organisms if the biological role of such a shared protein is known.
Gene Ontology Consortium can help produce dynamic and controlled vocabulary that can
be applied to all eukaryotes, regardless of whether the protein role in cells is changing or
accumulating [33]. GO determines the biological process, molecular function, and cellular
location of an organism’s genes. In addition, GO is constructed from two units: the GO
annotation and the ontology itself. The structure of the ontology is a tree-like hierarchical
structure of concepts known as GO terms. The list of all annotated genes that are linked to
ontology terms that describe these genes is known as GO annotation [34].

Genes enrichment is computed to identify the gene functionality that is associated
with different pathways and transcription factors which regulate the expression of other
genes. The list of common genes is used as input for computing enrichment, with existing
lists created from prior knowledge organized into gene-set libraries. To perform this
analysis, the enrichR web server (https://maayanlab.cloud/Enrichr/, accessed on 14 July
2022) is used. This web server is an open-source web-based gene enrichment analysis

https://maayanlab.cloud/Enrichr/
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tool developed in the Ma’ayan lab by a group of researchers. It integrates the results from
multiple gene-set libraries [35]. The KEGG pathway database is used to recognise the list
of pathways that are related to the common DEGs list. Moreover, the Fisher’s exact test
p-value is set to be < 0.05 and a high combined score as a threshold for identifying the
significant pathways.
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3.4. Protein-Protein Interaction (PPI) Network Analysis

The STRING (v11.5) biological database (https://string-db.org/, accessed on 14 July
2022) is used for the known and predicted PPI. The STRING database contains informa-
tion from various sources, and it can be used to predict the functional interactions of
proteins [36,37]. STRING is applied to find possible interactions between the DEGs. To
construct the PPI, the required interaction score is set to the highest confidence (0.900), the
false discovery rate (FDR) to 5%, and the organism to Homo sapiens. In addition, active
interaction scores, including text mining, experiments, databases, co-expression, neighbor-
hood, gene fusion, and co-occurrence were applied. Moreover, Cytoscape (v3.9.1) software
was used to analyse the PPIs further and display their network [17]. The analysis of the
PPI resulted in a complex network to be visualized or interpreted. Therefore, a zero-order
interaction network was constructed with 538 nodes and 691 edges to avoid the “hairball
effect” and to make the network interaction properly visualized. The NetworkAnalyzer
(v4.4.8) software is used to calculate the network topological characteristics, such as degree
distribution, clustering coefficients, and centrality, among others. The degree of a node
indicates the number of connections with other nodes, while the betweenness centrality
explains the number of shortest paths between a node and other nodes with the highest
betweenness.

https://string-db.org/
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4. Results
4.1. The GO Term Analysis of the Common DEGs

GO enrichment and KEGG pathway analyses were performed to explore the pos-
sible biological function of the common list of DEGs. The enrichment analysis of GO
terms was performed according to three categories: biological process, molecular function,
and cellular component. This analysis helps classify the DEGs based on their functional
cluster or GO groups. The genes were ranked according to the p-value calculated us-
ing Fisher’s exact test, which indicates the probability of each gene to be in one of the
GO term categories. The enriched GO terms in the biological process category revealed
that our DEGs are significantly enriched and related to extracellular structure organi-
zation (GO:0043062, p-value: 1.11266 × 10−12), external encapsulating structure organi-
zation (GO:0045229, p-value: 1.25244 × 10−12), microtubule cytoskeleton organization
involved in mitosis (GO:1902850, p-value: 4.23453 × 10−12), extracellular matrix organiza-
tion (GO:0030198, p-value: 3.93235 × 10−11), positive regulation of the cell cycle process
(GO:0090068, p-value: 1.64727 × 10−9), regulation of cell migration (GO:0030334, p-value:
1.88723 × 10−9), mitotic spindle organization (GO:0007052, p-value: 9.2914 × 10−9), endo-
derm formation (GO:0001706, p-value: 2.56083 × 10−8), mitotic cytokinesis (GO:0000281,
p-value: 5.77801 × 10−8), and positive regulation of protein kinase B signaling (GO:0051897,
p-value: 7.59979 × 10−8) (see Table 2).

Table 2. The top 10 enriched GO terms in which the DEGs were significantly enriched, in the
biological process group.

GO Term p-Value Odds Ratio Combined Score

extracellular structure organization (GO:0043062) 1.11266 × 10−12 5.849043 160.9906308
external encapsulating structure organization (GO:0045229) 1.25244 × 10−12 5.817629 159.4375212

microtubule cytoskeleton organization involved in mitosis (GO:1902850) 4.23453 × 10−12 7.754571 203.0747621
extracellular matrix organization (GO:0030198) 3.93235 × 10−11 4.510988 108.0796636

positive regulation of cell cycle process (GO:0090068) 1.64727 × 10−9 7.497769 151.6359712
regulation of cell migration (GO:0030334) 1.88723 × 10−9 3.546545 71.24355836
mitotic spindle organization (GO:0007052) 9.2914 × 10−9 5.424761 100.3264924

endoderm formation (GO:0001706) 2.56083 × 10−8 14.10305 246.5261963
mitotic cytokinesis (GO:0000281) 5.77801 × 10−8 10.6279 177.1311462

positive regulation of protein kinase B signaling (GO:0051897) 7.59979 × 10−8 4.961234 81.32732181

We investigated the enriched GO term results in the molecular function category, which
indicated that our DEGs are significantly enriched and associated with protein homodimer-
ization activity (GO: 0042803, p-value: 1.82 × 10−6), platelet-derived growth factor binding
(GO:0048407, p-value: 5.69 × 10−6), microtubule motor activity (GO:0003777, p-value:
1.75 × 10−5), microtubule binding (GO:0008017, p-value: 1.89 × 10−5), tubulin binding
(GO:0015631, p-value: 3.43 × 10−5), motor activity (GO:0003774, p-value: 6.72 × 10−5), actin
binding (GO:0003779, p-value: 9.58 × 10−5), receptor ligand activity (GO:0048018, p-value:
9.99 × 10−5), cell-cell adhesion mediator activity (GO:0098632, p-value: 1.20 × 10−4), and
metalloendopeptidase activity (GO:0004222, p-value: 3.63 × 10−4) (see Table 3).
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Table 3. The top 10 enriched GO terms in which the DEGs were significantly enriched, in the
molecular function group.

GO Term p-Value Odds Ratio Combined Score

protein homodimerization activity (GO:0042803) 1.82 × 10−6 2.459593376 32.51094586
platelet-derived growth factor binding (GO:0048407) 5.68741 × 10−6 30.30218069 365.9672024

microtubule motor activity (GO:0003777) 1.7457 × 10−5 7.000721241 76.69830849
microtubule binding (GO:0008017) 1.89485 × 10−5 3.295333099 35.83274576

tubulin binding (GO:0015631) 3.43055 × 10−5 2.857481542 29.37549443
motor activity (GO:0003774) 6.71537 × 10−5 5.769550996 55.43688284
actin binding (GO:0003779) 9.57553 × 10−5 3.403527337 31.49526963

receptor ligand activity (GO:0048018) 9.98683 × 10−5 2.712680383 24.98828531
cell-cell adhesion mediator activity (GO:0098632) 1.19521 × 10−4 7.288930582 65.8337387

metalloendopeptidase activity (GO:0004222) 3.63166 × 10−4 4.501276991 35.65303972

We also investigated the enriched GO term results in the cellular components category,
which were found to be highly significant and related to our DEGs. These cellular compo-
nents are collagen-containing extracellular matrix (GO:0062023, p-value: 4.04 × 10−12), mi-
crotubule (GO:0005874, p-value: 5.27 × 10−7), spindle (GO:0005819, p-value: 1.20 × 10−6),
polymeric cytoskeletal fibre (GO:0099513, p-value: 1.93 × 10−6), cell-substrate junction
(GO:0030055, p-value: 3.54 × 10−6), spindle microtubule (GO:0005876, p-value: 4.96 × 10−6),
focal adhesion (GO:0005925, p-value: 7.40 × 10−6), cell-cell junction (GO:0005911, p-value:
1.54 × 10−4), platelet alpha granule (GO:0031091, p-value: 1.56 × 10−4), and actin-based
cell projection (GO:0098858, p-value: 3.98 × 10−4) (see Table 4).

Table 4. The top 10 enriched GO terms in which the DEGs were significantly enriched, in the cellular
component group.

GO Term p-Value Odds Ratio Combined Score

collagen-containing extracellular matrix (GO:0062023) 4.04 × 10−12 4.231518 111.0119
microtubule (GO:0005874) 5.27 × 10−7 4.317358 62.40844

spindle (GO:0005819) 1.2 × 10−6 4.065692 55.43982
polymeric cytoskeletal fibre (GO:0099513) 1.93 × 10−6 3.489522 45.92285

cell-substrate junction (GO:0030055) 3.54 × 10−6 2.853014 35.81027
spindle microtubule (GO:0005876) 4.96 × 10−6 7.18054 87.70782

focal adhesion (GO:0005925) 7.4 × 10−6 2.792398 32.98852
cell-cell junction (GO:0005911) 1.54 × 10−4 2.779697 24.40338

platelet alpha granule (GO:0031091) 1.56 × 10−4 4.570755 40.05538
actin-based cell projection (GO:0098858) 3.98 × 10−4 4.44022 34.76533

4.2. KEGG Pathway Enrichment Analysis for the DEGs

The R package Enrichr was employed to discover cancer pathways for the significant
DEGs. EGFR and PIK3R1 were involved in most of the pathways, and they can be further
investigated for biological discoveries. Moreover, by ranking the pathway terms using a
combined score, we noticed that focal adhesion, ECM-receptor interaction, melanoma, and
prostate cancer contains many of our genes (see Figure 3).
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4.3. PPI Network Construction and Hub Genes Selection

Further investigation was done to gain insight into our DEGs list by exploring them
using a PPI network. For this purpose, a PPI network was built using the STRING database
and Cytoscape application, with an input of 540 DEGs. The first-order network created
an extensive network comprising 538 nodes and 691 edges. Because there were too many
nodes, the first-order network was too large to be visualized and we needed to focus
only on the important nodes. Therefore, a zero-order PPI network was built to get a
clear network and obtain the most significant nodes. This network has 56 nodes with the
highest connection (degree of 13). Cyclin-dependent kinase 1 (CDK1), Cyclin A2 (CCNA2),
and Cyclin B1 (CCNB1) were the up-regulated genes with the highest node degrees (see
Figures 4–6). These genes are essential for controlling the cell cycle [38–40]. Moreover, the
maximal clique centrality (MCC), maximum neighborhood component (MCN), and degree
methods were used to select the hub genes from the PPI network using the CytoHubba
plugin with default parameters in Cytoscape. The top 10 genes with the highest MNC,
MCC, and node degree scores were identified as hub genes, as shown in Figure 7a–c,
respectively. We observed the intersection from the three methods and generated a Venn
plot to present the overlapped hub genes (see Figure 8). This process revealed eight hub
genes (CDK1, KIF11, CCNA2, TOP2A, ASPM, AURKB, CCNB2, and CENPE).
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colour have the lower MNC, MCC, or node degree in the network.
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4.4. Prognostic Value Verification of Hub Genes

The Kaplan–Meier univariate survival analysis was conducted using the statistical
mining tool of published annotated breast cancer transcriptomic data web portal (bc-
GenExMiner v4.8) [41–43] to verify the prognostic value of the hub genes. The survival
analysis was conducted to discover the association between the hub genes and overall
survival because the hub genes are associated with patient prognosis and overall survival,
and may be used to make future diagnoses [44].

In our analysis, the patients with nodal, oestrogen, and progesterone receptor status
were selected after splitting them into two groups based on the median expression level
of the hub genes. The statistical significance of the hub genes was calculated based on
the p value, where p < 0.05 is considered statistically significant. The results, depicted
in Figure 9, revealed that all eight hub genes have significant differences between the
low-high expression levels groups. The low expression level group of the eight hub genes
was significantly associated with better OS than the high expression level group.
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Figure 9. The prognostic value analysis of the eight hub genes in breast cancer using the bc-
GenExMiner v4.6 web portal. Expression levels of the eight hub genes (CDK1, KIF11, CCNA2,
TOP2A, ASPM, AURKB, CCNB2, and CENPE) are significantly associated with the OS of patients in
breast cancer (all p < 0.05, HR > 1).

4.5. Correlation Analysis of the Clinicopathological Variables in BC with the Eight Hub Genes

There is a relatively large number of samples with rich clinical information in the
bc-GenExMiner platform. We analysed the relationship between the clinical information
variable in this platform and the expression levels of the eight hub genes (CDK1, KIF11,
CCNA2, TOP2A, ASPM, AURKB, CCNB2, and CENPE). The results depicted in Figure 10
show that the expression levels of all eight hub genes are significantly higher in the subjects
aged ≤ 51 years (p < 0.05, Figure 10a). High expression levels of the eight hub genes were
associated with lymph node metastasis (p < 0.05, Figure 10b). Additionally, the expression
level of the eight hub genes is higher in the TNBC and basal-like BC patients than in
the non-TNBC and non-basal-like patients (p < 0.05, Figure 10c). Moreover, the results
show that high expression levels of all eight hub genes are associated with higher SBR
grades and Ki67 status. Thus, we conclude that all eight hub genes are associated with the
clinicopathological variables of BC.
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5. Discussion

Cancer is a disorder associated with cells that divide more rapidly compared to healthy
cells. This rapid growth makes cells accumulate continuously and form a mass or lump,
known as a tumour. Breast cancer is caused by abnormal growth of the cells in the milk-
producing ducts or in the lobules, which are glandular tissues. Additionally, it can be
caused by other tissues or cells within the breast mass. Breast cancer affects the quality of
life of patients and increases their mortality. Although lifestyle and environmental factors
increase the risk of breast cancer, it is not known why some people with known risk factors
do not develop breast cancer, yet others with no risk factors develop breast cancer. Gene
mutations passed through generations are estimated to be responsible for 5 to 10 percent
of breast cancer cases [45,46]. Researchers have identified several inherited genes that are
linked to breast cancer. Therefore, a person with a strong family history of breast cancer, or
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other cancer types, will be recommended to undergo a blood test to identify specific gene
mutations in the family history.

Although great efforts have been made to understand the molecular mechanism of
breast cancer development, this mechanism is not yet completely understood. Therefore,
it is very important to understand the pathogenesis of breast cancer. It is worth noting
that the disease diagnosed and discovered in the early stage is typically treated with a
high probability of success. Additionally, in precision medicine, identifying biomarkers or
genes responsible for breast cancer is becoming more important to match a targeted therapy
with those most likely to benefit from it and increase the clinical outcomes profoundly.
Detecting biomarkers in body fluids, such as urine and blood, using laboratory tools
has shown great success in the early diagnosis and treatment of this disease. However,
the potential of biomarkers has not been completely explored because of the technical
difficulties in the currently available technologies. Additionally, the biomarkers are often
present at very low concentrations in the body fluids, making their identification difficult
and time-consuming [47]. Although RNASeq is considered a new technology and is
more accurate and powerful than microarray technology, the information that can be
extracted from microarray is truthful and robust [14]. Therefore, recent studies show
that integrating different data sources has helped significantly in using all the available
information effectively, facilitating the decision-making of the diagnosis and treatment
process. This approach also points out a strategy of employing hybrid models to analyse
such type of integrated data.

In this study, limma and TCGAbiolinks R packages were used to obtain DEGs in
microarray and RNASeq data, respectively. Since we have three microarray datasets
and one RNASeq dataset, we obtained four lists of DEGs. These four lists of DEGs were
integrated through the intersection to select the common DEGs. We found that there were
540 common DEGs from these two platforms. Thereafter, the STRING database was used
to build the PPI network to find the hub genes. The STRING database contains more than
14,000 genomes, which encode more than 67 million proteins. STRING is used to infer the
physical interaction and the functional association to discover which proteins are likely to
work together even if they are not physically bound. The clue for this comes from different
sources. These sources are genomic context and gene co-expression to identify genes with
similar expression pattern. The genomic context information can be pulled out from the
genes themselves, including gene fusion, where two genes from one organism are fused
into a single protein coding gene in one or more organisms. Additionally, it includes gene
neighborhoods, which can be used to identify evolutionarily conserved operands in these
genomes. Genome context also helps to look into phylogenetic profiles to identify genes that
show similar present or absent patterns across the tree of life. The STRING database also
considers curated knowledge from the manually annotated database of protein complexes
and molecular pathways. Using the STRING database, we can visualize a subset of the
proteins as interacting networks, and perform enrichment analysis on the entire input.
KEGG pathways and GO enrichment analysis were applied to all the DEGs, and we found
that they engage in a significant role in several biological processes, molecular functions,
and cellular components. Moreover, we identified eight common hub genes using three
methods, namely, MCC, node degree, and MNC from the Cytohubba plugin in Cytoscape.
These eight hub genes are CDK1, CCNA2, AURKB, TOP2A, KIF11, ASPM, CENPE, and
CCNB2.

Yuan et al. [48] used the MCC method to identify the hub genes that are associated with
breast cancer. They found cyclin B1 (CCNB1), cyclin A2 (CCNA2), cyclin dependent kinase
1 (CDK1), cell division cycle 20 (CDC20), DNA topoisomerase II alpha (TOP2A), BUB1
mitotic checkpoint serine/threonine kinase (BUB1), aurora kinase B (AURKB), cyclin B2
(CCNB2), kinesin family member 11 (KIF11), and assembly factor for spindle microtubules
(ASPM). These genes, except for CCNB1, CDC20, and BUB1 are the same genes that we
identified as hub genes that are associated with breast cancer. In our study, CENPE is
identified as one of the hub genes, but Yuan et al. did not identify it as one of the hub genes.
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CDK1, CCNA2, AURKB, and CCNB2 that we identified among the hub genes are also
identified among the hub genes that are associated with colon cancer in a study conducted
by Toolabi et al. [49]. Moreover, in a study conducted by Pan et al. [50], CDK1, CCNA2,
and TOP2A are also identified as hub genes associated with thyroid cancer. A study for
screening and identification of hub genes found that CDK1, AURKB, KIF11, CENPE, and
CCNB2 are also associated with bladder cancer [51]. Suman and Mishra [52] proposed
overlapping modules that identify the common hub genes for five cancer types (breast,
ovarian, cervical, vulvar, and endometrial). They found that TOP2A and CCNB2 are linked
to these five cancer types. We also identified these two genes among the hub genes.

More recently there have been many studies designed for hub gene identification for
BC. These studies include the work of Ma et al. [8], and Alam et al. [9]. Ma et al. identified
22 DEGs from four microarray gene expression datasets (GSE65194, GSE64790, GSE41970,
and GSE38959 datasets). Their analysis revealed six hub genes (TOP2A, CHEK1, CCNA2,
PCNA, MSH2, and CDK6) based on the PPI network of the DEGs. They used survival
analysis to assess their identified hub genes’ reliability. Their results show that five of the six
hub genes (TOP2A, CCNA2, PCNA, MSH2, CDK6) are associated with the triple-negative
breast cancer prognosis. Alam et al. identified 127 common DEGs from five microarray
gene expression datasets (GSE139038, GSE62931, GSE45827, GSE42568, and GSE54002)
using the LIMMA and SAM statistical methods. Thereafter, they constructed a PPI network
using the string database and identified the top seven rank genes (BUB1, ASPM, TTK,
CCNA2, CENPF, RFC4, and CCNB1) as hub or key genes. They then used multivariate
survival analysis to validate their identified genes, and the results show that the hub genes
have a strong prognosis power for BC. The hub genes identified by Ma et al. and Alam et al.
intersect with three genes (TOP2A, CCNA2, ASPM) from the genes we identified as hub
genes in our study. CCNA2 is identified as a hub gene by the studies of both Ma et al. and
Alam et al.

The contribution of this study is developing a PPI network based on an integrated
analysis of RNASeq and microarray data. Additionally, in this study eight hub genes
associated with BC were identified and then validated with previous studies. Our analysis
resulted in genes among the hub genes that did not exist in the previous studies. We
used the Kaplan–Meier univariate survival analysis to verify the prognostic value of the
hub genes.

6. Conclusions

In this study, a PPI network was constructed for the DEGs obtained from RNASeq
and microarray gene expression data integration. Common hub genes associated with the
BC were identified from the constructed PPI using MCC, MNC, and node degree methods.
Additionally, enrichment analysis was conducted, and the results show that CDK1, KIF11,
CCNA2, TOP2A, ASPM, AURKB, CCNB2, and CENPE are the hub genes that contribute
significantly to breast cancer. These hub genes were validated with the previous studies,
and extra genes not identified before were found as biomarkers in our study. The results
also show that focal adhesion, ECM-receptor interaction, melanoma, and prostate cancer
were the most significant pathways. Additionally, the results show that EGFR and PIK3R1
were involved in most of the pathways. The obtained hub genes were also validated using
the Kaplan–Meier and correlation analysis, and the results show that they can serve as
prognostic and diagnostic biomarkers for BC.
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