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Abstract: Expanded anchor cables have been widely used in the rapid development of underground
engineering. However, there are still some deficiencies in the computation of the ultimate bearing
capacity of expanded anchor cables. Based on the upper-bound theorem of limit analysis, the upper-
bound solution of the ultimate bearing capacity of an expanded anchor cable was derived. For
this calculation, the instability mechanism of the soil at the front surface of the anchorage segment
of the expanded anchor cable was assumed to satisfy the logarithmic spiral failure model, its 3D
velocity discontinuity surface was generated using the spatial discretization technique, and the
optimal solution was determined through the particle swarm optimization (PSO) algorithm. The
breakage mechanism of the anchorage side surface was assumed to appear at the interface between
the anchorage body and the soil, and its velocity field satisfied the requirements of the associated
flow rule. The accuracy of the proposed analytical solution was well-verified through a comparison
with three-dimensional numerical simulations, and its superiority was also well-demonstrated in
comparison to the existing theoretical calculation method. Subsequently, the influence of the key
parameters of the anchor cable on the ultimate lateral resistance, end resistance, and total pullout
capacity was discussed. The results showed that: the anchorage segment diameter, anchorage
segment length, and buried depth of the expanded anchor cable had a great influence on the ultimate
lateral resistance, ultimate end resistance, and total ultimate pullout capacity; however, the anchorage
segment length had little influence on the ultimate end resistance, and the inclination angle of the
anchor cable had relatively little influence on the resistance.

Keywords: expanded anchor cable; ultimate pullout capacity; upper-bound theorem of limit analysis;
particle swarm optimization algorithm; numerical simulation

1. Introduction

With the rapid growth of urbanization, the development and utilization of under-
ground space resources has become an important means for the construction of sustainable
urban developments [1]. In order to make better use of underground space and allow the
construction of high-rise structures, foundation-pit engineering has developed rapidly,
with support technology playing an important role in ensuring construction safety and
reducing environmental impacts. As one of the main supporting methods in foundation-pit
engineering, pile-anchor support structures are widely used because of their high safety,
good stability, economy, flexible arrangement, and adaptability [2]. In recent years, the
appearance of many deep and large foundation pits has introduced higher requirements
for the ultimate pullout capacity of anchor cables. However, conventional anchor cables
are not able to achieve a sufficient pullout capacity in cases where the surrounding en-
vironment has certain constraints that necessitate a longer anchor or where soft soil is
widely distributed. This seriously limits the wider application of pile-anchor supports [3–5].
Compared with ordinary anchor cables, expanded anchor cables can provide greater lateral
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resistance and extra end resistance due to the expanded anchorage segment, which can
substantially increase the ultimate pullout capacity. Therefore, these cables have been
widely used in practical engineering [6].

The bearing mechanism of expanded anchor cables has been studied and investi-
gated by several authors, including in studies based on various numerical approaches.
Lin et al. [7] used the finite element method (FEM) to study the supporting effect of ex-
panded anchor cables and ordinary anchor cables in a foundation pit and concluded that
expanded anchor cables have a high bearing capacity and a remarkable effect on controlling
the structure and surrounding rock deformation. Evans and Zhang [8] used the discrete
element method (DEM) to simulate plate anchors and studied the influencing factors of
the ultimate bearing capacity. Hsu et al. [9,10] used the finite difference method (FDM) to
analyze the bearing mechanism of underreamed anchors. At the same time, studies based
on theoretical analyses have also been carried out. Littlejohn et al. [11] deduced a formula
to calculate the pullout capacity of expanded anchor rods by referring to the formula for
the ultimate bearing capacity of piles. Liu et al. [12] established a mechanical model of
an expanded anchor cable in the process of soil deformation based on the elastic theory
and presented a formula for calculating its ultimate pullout capacity. Based on the limit
equilibrium principle, Wang et al. [13] presented a formula for the theoretical calculation of
the ultimate pullout resistance of horizontally arranged expanded anchor cables, with the
influence of the strength of the surrounding rock being taken into consideration. Further-
more, many experimental tests, either in laboratories or in situ, have also been performed to
study this problem and similar problems. Ma et al. [14] studied the axial stress distribution
regulation of an anchor bolt through a laboratory model experiment. Using grating sensors
and photogrammetry methods, Guo et al. [15,16] conducted a series of pullout experiments
on expanded anchors embedded in sand and obtained the corresponding ultimate bearing
capacity and the proportion of end resistance in the ultimate bearing capacity. Meanwhile,
Zhang [17], Zeng et al. [18], and Liang et al. [19] carried out in situ pullout experiments on
an expanded anchor cable, analyzing its bearing mechanism and pullout bearing capacity.

On the one hand, the theoretical research on the ultimate pullout capacity of expanded
anchor cables ignores the influence of the failure mechanism of the soil at the front end
of the anchorage segment on the end resistance of the expanded anchor cable. On the
other hand, it takes account of certain empirical factors, and these research results lack
universality as they are mostly based on the horizontal or vertical state of expanded anchor
cables. These theoretical calculation formulas are convenient for practical engineering
applications, but it is easy to introduce large errors when the engineering scheme used
for comparison is not closely replicated. For deep and large foundation pits in particular,
design errors in the ultimate pullout capacity of expanded anchor cables can lead to serious
consequences due to their provision of a larger bearing capacity than other components.
Therefore, it is necessary to further study the computation of the ultimate pullout capacity
of expanded anchor cables and clarify their bearing mechanism in practical applications.

This paper aimed to present an effective approach to evaluate the ultimate pullout
capacity of an expanded anchor cable. The logarithmic spiral failure model is widely
used to determine the support pressure of a shield tunnel face. In the present study, this
model was applied for the first time to model the failure of the soil region at the front
surface of an anchorage segment. Based on the upper-bound theorem of limit analysis,
the ultimate end resistance of the expanded anchor cable was derived, and the optimal
upper-bound solution of the ultimate end resistance was obtained through the particle
swarm optimization algorithm. The failure mechanism of the anchorage side surface was
assumed to satisfy the slippage model, and the ultimate lateral resistance was also derived
based on the upper-bound theorem of limit analysis. Then, the upper-bound solution of
the ultimate pullout capacity was obtained by summing the ultimate end resistance and
the ultimate lateral resistance, and this calculation was verified through a comparison with
a three-dimensional numerical simulation. Finally, the influences of the anchor cable’s key
parameters on the ultimate end resistance, ultimate lateral resistance, and total ultimate
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pullout capacity were explored in detail. The upper-bound solution of the ultimate pullout
capacity of an expanded anchor cable presented in this paper is expected to provide a
useful reference for practical engineering applications.

2. Construction of Failure Model

The structure of the expanded anchor cable studied in the present paper is shown in
Figure 1. As shown in this figure, the cable’s structure could be divided into two parts
(i.e., the free segment and the anchorage segment). The anchorage segment included two
bearing bodies and a grouting body. In the present paper, the bearing body near the front-
end surface of the anchorage segment and that near the back-end surface are referred to as
the first and second bearing bodies, respectively. Each bearing body was anchored with two
steel strands that were symmetrically located on both sides of the vertical plane crossing the
longitudinal axis of the anchorage segment cylinder. The bearing bodies were firmly linked
to the surrounding grouting body to ensure that the pullout force was transmitted to the
surrounding soil through the anchorage body. To allow the steel strands to freely deform,
isolating pipes were placed outside the steel strands. The pullout capacity provided by the
free segment of an anchor cable is much smaller than that of the anchorage segment; hence,
it was neglected in the present study. When constructing the failure model of the expanded
anchor cable, its individual structures (i.e., bearing bodies and steel strands) were ignored.
However, these were taken into account in the numerical simulations presented in the
later sections.
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Figure 1. Schematic diagram of expanded anchor cable.

It should be noted that we only studied the ultimate pullout capacity of a single
expanded anchor cable arranged in a homogeneous soil stratum. We assumed that: (1) the
soil was an ideal elastic–plastic material, obeying the Mohr–Coulomb yield criterion and
complying with the associated flow rule when yielding; (2) the potential slip surface in the
soil area outside the pit was generated due to the construction of the foundation pit and
followed Rankine’s active earth pressure theory. It was necessary for the anchorage segment
to be buried below the potential slip surface in order to obtain the pullout capacity. Thus,
the resistance provided by the soil above the potential slip surface was not considered.

The calculated pullout capacity of the expanded anchor cable consisted of the later
resistance and the end resistance, as the pullout capacity provided by the free segment was
neglected in the present study. Corresponding to these two forces, the failure model of
the expanded anchor cable was divided into two regions (i.e., the soil region at the front
surface of the anchorage segment, and the anchorage segment and its surrounding soil,
which is also referred to as the anchorage segment region). This is described in further
detail in the following sections.

2.1. Failure Model of the Soil Region at the Front Surface of the Anchorage Segment

(1) Failure mechanism
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Under the end resistance of an expanded anchor cable, the strained condition of the
soil located in the front-end surface of the anchorage segment (Figure 2) is similar to the
condition of the soil in front of a shield tunnel face when the shield pressure is uniformly
distributed on the tunnel face. Therefore, referring to the failure mechanism of the soil in a
tunnel face [20,21], a three-dimensional logarithmic spiral failure model was adopted for
the soil at the front surface of the anchorage segment. The soil region at the front surface of
the anchorage segment could be renamed the logarithmic spiral region. To be specific, the
logarithmic spiral region represents the soil zone at the front end of the anchorage segment,
which is surrounded by three-dimensional logarithmic spirals.
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Figure 2. Stress diagram of anchorage segment front-end surface.

Figure 3 shows the cross-sections of the failure model of the logarithmic spiral region
in the vertical plane (YAZ) passing through the cable axis. As shown in Figure 3, the
expanded anchor cable with a buried depth of h in a homogeneous stratum is destroyed
under the action of pullout capacity P, the cross-section is bounded by two log spirals
emerging from A and B with a common center O, the intersection of the side surface of the
anchorage segment and the YAZ plane is AA’ and BB’, and D1D2 is the intersection of the
potential slip surface and the YAZ plane.
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(2) Velocity field

The velocity field was considered in this study as follows: the logarithmic spiral region
was damaged according to the above failure model under the action of pullout capacity P,
leading to velocity discontinuity on the rupture surface or the so-called velocity discon-
tinuity surface. Specifically, the logarithmic spiral region presented a three-dimensional
rotation failure mechanism generated by rotation around the horizontal axis of point O with
a uniform angular velocity ω. Its velocity discontinuity surface intersected the symmetric
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plane at two logarithmic spirals, AN and BM, with a common rotation center O, as shown
in Figure 3. In the YAZ plane, the possible region of the rotation center point O was the
region formed by the intersection of the semi-infinite region on the right side of the straight
line BA and above the straight line AA′, as shown in Figure 4.
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The expressions of the logarithmic spirals AN and BM could be written as follows:

rAN = rA· exp[(βA − β)· tan ϕ] (1)

rBN = rB· exp[(β− βB)· tan ϕ] (2)

where
rA =

√
Z2

0 + Y2
0 (3)

rB =

√
(Dm sin α− Z0)

2 + (Dm cos α + Y0)
2 (4)

βA = arctan(−Z0

Y0
) (5)

βB = arctan(−Dm sin α− Z0

Dm cos α + Y0
) (6)

In the above expressions, rA and rB are the lengths of OA and OB, respectively; βA
and βB are the angles between the lines OA or OB and the vertical direction, respectively;
ϕ is the internal friction angle of the soil stratum; and Y0 and Z0 are the Y-axis and Z-axis
coordinates of the rotation center O in the cartesian coordinate system YAZ, respectively.

(3) Geometrical construction of the 3D velocity discontinuity surface in logarithmic spiral
region

The spatial discretization technique proposed in [20,21] was adopted to generate the
3D velocity discontinuity surface in the logarithmic spiral region. The basic principles were
as follows: the failure model was discretized by several radial planes that all intersected at
one point, and the intersection lines of the radial planes and velocity discontinuity surfaces
were discretized into a series of points. The discrete points representing the contour of
the failure model in any radial plane could be generated through those located in the
previous radial plane according to the normality condition between the newly generated
points and the points in the previous plane. Following this method, the contours of the
failure model were successively generated; hence, the 3D velocity discontinuity surface
was also generated.

As shown in Figure 5, each point Pi,j of the velocity discontinuity surface was defined
by an index i, representing the position of this point in a given plane, and an index j,
corresponding to the plane in which this point was located. The method for the generation
of the 3D surface involved computing the coordinates of any point Pi,j+1 of plane ∏j+1
using the coordinates of two points, Pi,j and Pi+1,j, in the previous plane ∏j. The spatial dis-
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cretization technique was applied in this paper, as shown in Figure 6. In this case, according
to whether the plane passed through the front-end surface of the anchorage segment, the
failure range could be divided into Range I or Range II, as shown in Figure 6a. Range
I contained the radial plans that intersected with the front-end surface of the anchorage
segment, and Range II contained the radial plans that did not intersect the front-end surface
of the anchorage segment. In Range I, the generation of new points began with the use of
points A1 and A′1 of the front-end surface of the anchorage segment (Figure 6b). These two
points belonged to plane ∏1 and could be renamed Pi,1 and Pi+1,1. Then, the new point Pi,2,
which belonged to plane ∏2, could be generated by these two points. Similarly, the points
A2 and A′2, belonging to ∏2, could be renamed Pi−1,2 and Pi+1,2. Therefore, two new points
(Pi−1,3 and Pi,3) could be created by the three points Pi−1,2, Pi,2, and Pi+1,2. This operation
was repeated until the end of Range I. In each plane ∏j+1, j points were generated, with
two other points located on the contour of the front-end surface of the anchorage segment
already present. Thus, the total number of points in plane ∏j+1 was j+2. In Range II,
the contours were successively generated until the end of Range II, following the same
method. Finally, the entire velocity discontinuity surface in the logarithmic spiral region
was generated. For more details concerning the spatial discretization technique, the reader
can refer to [20,21].
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2.2. The Failure Model of the Anchorage Segment Region

(1) Failure mechanism

When the failure limit of the anchorage segment region occurs, the interface between
the anchorage segment and the soil presents shear failure, and its breakage mechanism was
assumed to satisfy the slippage model [13].

(2) Velocity field

The velocity field of the anchorage segment region is shown in Figure 7. The velocity
discontinuity surface between the anchorage segment and the soil is referred to as the
anchorage segment side surface, which presented as a cylindrical surface [13]. The narrow
transition layer of the interface between the anchorage segment and its surrounding soil,
which was bounded by two parallel surfaces (i.e., the anchorage side surface and the soil slip
surface), was considered in the present study. The relative velocity along the axial direction
of the rod body is

.
u. To satisfy the requirement of the dilatancy effect of Mohr–Coulomb

materials on the relative velocity of the two sides of the velocity discontinuity surface, the
separation velocity between the two sides of the velocity discontinuity surface should be
.
u tan ϕ [22,23]. The front-end surface of the anchorage segment, located at the intersection
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of the logarithmic spiral region and the anchorage segment region, was assumed to be a
disc with infinite stiffness, independent of the cylinder, as shown in Figure 8.
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3. Upper-Bound Solution of Ultimate Pullout Capacity of Expanded Anchor Cable

The deduction of the upper-bound solution for the ultimate pullout capacity of the
expanded anchor cable based on the upper-bound theorem of limit analysis is presented
in this section. Because of the different velocity fields, the power of the logarithmic
spiral region and the anchorage segment region were calculated separately; then, the end
resistance and lateral resistance were obtained, followed by several algebraic operations.
Finally, the ultimate pullout capacity could be computed by summing the end resistance
and lateral resistance.

3.1. Calculation Theory of Upper-Bound Theorem of Limit Analysis

The upper-bound theorem of limit analysis was adopted to account for any failure
mechanism with kinematic permission. Based on the virtual power theory, a reasonable
upper-bound solution for the failure load of any failure model, which can be regarded as
the upper limit of the actual ultimate load, can be obtained by equating the rate of work of
the external force with the internal energy dissipation [24–26]. This reads as follows:∫

A
Ti

.
ui
∗dA +

∫
v

Fi
.
ui
∗dv =

∫
A

σij
.
εij
∗dv (7)

where Ti and Fi are the surface traction and physical force, respectively; σij is the stress
tensor; and

.
ui
∗ and

.
εij
∗ are the virtual velocity and strain rate in the velocity field corre-

sponding to the virtual failure model, respectively.
In this study, the external forces were the weight of the soil included in the failure

model and the weight of the expanded anchor cable, and the only source of internal energy
dissipation was the soil deformation that occurred along the velocity discontinuity surfaces.
The power calculation was divided into two regions (i.e., the logarithmic spiral region
and the anchorage segment region), according to the different velocity fields presented in
Section 2; then, the lateral resistance and end resistance could be computed, respectively.

For each region, by equating the total rate of work carried out by the external forces
with the total rate of internal energy dissipation on the velocity discontinuity surfaces, and
by conducting several algebraic operations, the ultimate lateral resistance P1 and ultimate
end resistance P2 were determined as follows:

P1 =
W1 + WG1

.
u

(8)

P2 =

.
WD +

.
Wγ

.
u

(9)

where P denotes the ultimate pullout capacity;
.
u denotes the axial velocity along the cable;

W1 denotes the rate of internal energy dissipation of the anchorage segment region; WG1

denotes the rate of work carried out by the gravity of the anchorage segment;
.

WD denotes
the rate of internal energy dissipation of the velocity discontinuity in the logarithmic
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spiral region; and
.

Wγ denotes the rate of work carried out by the gravity of the soil in the
logarithmic spiral region.

By summing P1 and P2, the ultimate pullout capacity of the expanded anchor cable
could be obtained as follows:

P = P1 + P2 (10)

3.2. Ultimate End Resistance Calculation

Through the power calculation of the logarithmic spiral region and several algebraic
operations, the ultimate end resistance could be obtained (Equation (9)), and the final
solution was determined through the particle swarm optimization (PSO) algorithm. The
calculations are discussed in detail in this section.

3.2.1. Power Calculation of Logarithmic Spiral Region

In the logarithmic spiral region, through the calculation method of elementary surfaces
and volumes generated by adjacent points [27], the elementary rates of work and rates of
internal energy dissipation were obtained. Finally, the computation of the rate of work
was achieved by the summation of the elementary rates of work, and the calculation of the
internal energy dissipation was carried out by the summation of the elementary energy
dissipations along the different elementary surfaces. The rate of work of the soil weight
and the rate of internal energy dissipation of the velocity discontinuity surfaces in the
logarithmic spiral region could be finally calculated as follows [20]:

.
Wγ =

t
V
→
γ ·→v dV = Σ

i,j
(
→
γ ·→v i,j ·Vi,j +

→
γ ·→v

′
i,j
·V′

i,j
)

= ωγΣ
i,j
(Ri,jVi,j sin βi,j + R′

i,j
V′

i,j
sin β′

i,j
)

(11)

.
WD =

s
S cv cos ϕdS =Σ

i,j
(cvi,jSi,j cos ϕ + cv′

i,j
S′

i,j
cos ϕ)

= ωc cos ϕΣ
i,j
(Ri,jSi,j + R′

i,j
S′

i,j
)

(12)

In contrast to the blow-out failure mechanism of the shield tunnel face described in [20],
which presented only one type of failure model wherein the velocity discontinuity surfaces
all intersected with the ground surface, two typical failure models for the logarithmic spiral
region are shown in Figure 8 because the coordinates of the rotation center point O differed,
and the potential slip surface was also considered. In the first model, the boundary lines
AN and BM of the velocity discontinuity surface in the vertical plane intersect with the
ground surface at point N and with the potential slip surface at point M, respectively
(Figure 9a); in the second model, the logarithmic spirals AN and BM both intersect with
the potential slip surface (Figure 9b).

3.2.2. Determination of Minimum Upper-Bound Solution of End Resistance

The upper-bound solution of the ultimate end resistance was determined by the
coordinates of the rotation center point O. It was necessary to decide the coordinates of
point O that could minimize the possible upper-bound solution in order to obtain the real
upper-bound solution for the ultimate end resistance. In the present study, the particle
swarm optimization (PSO) algorithm [28,29] was adopted to identify the optimal upper-
bound solution for the ultimate end resistance of the expanded anchor cable and determine
the corresponding failure model under the determined ultimate end resistance.
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The application of the particle swarm optimization algorithm was as follows: (1) each
particle represented the coordinates of the rotation center O, denoted xi

j(Yi
j, Zi

j), with index
i representing the number of particles and index j representing the number of iterations; (2)
each particle’s fitness, which was represented by the ultimate end resistance corresponding
to the rotation center xi

j(Yi
j, Zi

j), could be calculated according to Equation (9). For the
initial population number N, each particle had an initial position x1

0, x2
0, · · ·, xN

0 and an
initial velocity v1

0, v2
0, · · ·, vN

0. The particle fitness values calculated from all the initial
positions were regarded as the individual optimal solutions p1

0, p2
0, · · ·, pN

0, and the
minimum value of all the individual optimal solutions was taken as the group optimal
solution pg

0. In the second step of the iteration, the particle velocity and position were
updated according to Equations (13) and (14), respectively, and then the individual optimal
solutions p1

1, p2
1, · · ·, pN

1 and the group optimal solution pg
1 could be obtained following

the same method. This process was repeated until G iterations had been completed, and
the individual optimal solutions p1

G, p2
G, · · ·, pN

G and group optimal solution pg
G could

be obtained. In each iteration, the optimal solution (i.e., minimum upper-bound solution
for the end resistance) needed to be compared with the group optimal solution. If the
optimal solution was greater than the group optimal solution, the optimal solution was
updated with the current group optimal solution. To be specific, in the first iteration,
the optimal solution was equal to pg

0; after G iterations, the optimal solution was the
minimum of pg

1, pg
2, · · ·, pg

G. In order to ensure the accuracy of the calculation results, the
population number and the number of iterations were determined through a corresponding
convergence analysis:

vj
i = wvj−1

i + c1r1(p
j−1
i − xj−1

i ) + c2r2(pgj−1 − xj−1
i ) (13)

xj
i = xj−1

i + vj
i (14)

where w is the weighting factor; c1 and c2 are the individual learning factor and group
learning factor, respectively; and r1 and r2 are two random numbers with a value in the
range [0, 1], which were introduced to increase the computation randomness.

3.3. Ultimate Lateral Resistance Calculation

Through the power calculation of the anchorage segment region and several algebraic
operations, the ultimate lateral resistance could be obtained (Equation (8)). In the anchorage
segment region, the source of internal energy dissipation was the expansion deformation
of the soil and the relative motion between the anchorage segment and its surrounding
soil, and the rate of work was attributed to the gravity of the anchorage segment. The
calculations are discussed in detail in this section.
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(1) Rate of internal energy dissipation of the anchorage segment region

The rate of internal energy dissipation depended on the soil expansion deformation,
which could be computed as follows:

.
Wε = T

.
u tanϕ (15)

where T is the resultant force of the normal pressure acting on the side surface of the
anchorage segment;

.
u is the axial velocity along the cable; and ϕ is the internal friction

angle of the contact surface between the anchorage segment and its surrounding soil, which
could be taken as approximately equal to that of the surrounding soil.

As depicted in Figure 10, the resultant normal force T could be decomposed into
two parts: the resultant normal pressure generated by the vertical component of the soil
pressure, denoted as Q herein, and the force generated by the horizontal component of the
soil pressure, denoted as P herein.
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Thus, the vertical component of the soil pressure qv could be written as:

qv = γ[h− Rm cos θ cos α + Lm sin α] (16)

Then, the differential of Q, which denoted the resultant normal pressure corresponding
to an infinitesimal area dA, could be computed through the following equation:

dQ = qvRdθ cos θ cos θdL cos α cos α
= qvR cos2 θ cos2 αdθdL

(17)
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Finally, Q could be obtained through the integral of dQ over the side surface of the
anchorage segment:

Q =
s

Σ dQ

= 4
∫ π

2
0

∫ Lm
0 qvRm cos2 θ cos2 αdLdθ

= LmRmγ cos2 α(6πh−16Rm cos α+3πLm sin(α))
6

(18)

Similarly, the horizontal component of the soil pressure qh, dP, and P could be com-
puted as follows:

qh = K0γ[h− Rm cos θ cos α + Lm sin α] (19)

dP = qhRmdθ sin θ sin θdL = qvRm sin2 θdθdL (20)

P =
∫ 2π

0

∫ Lm
0 qhRm sin2 θdLdθ

=
∫ 2π

0

∫ Lm
0 K0γ[h− Rm cos θ cos α + L sin(α)]Rm sin2 θdLdθ

= K0LmRmγπ(2h+Lm sin α)
2

(21)

where K0 is the lateral pressure coefficient, which could be taken as K0 = 1− sin ϕ.
By summing Q and P, the total normal force T could be obtained. According to

Equations (18) and (21), T could be expressed as:

T = Q + P
= LmRmγ cos2 α

6 [6πh− 16Rm cos α + 3πLm sin(α)]
+K0LmRmγπ(2h+Lm sin α)

2

(22)

Hence, the internal energy dissipation caused by the soil expansion deformation could
be computed as:

.
Wε = T

.
u tanϕ

=
{

LmRmγ cos2 α
6 [6πh− 16Rm cos α + 3πLm sin(α)]

+ K0LmRmγπ(2h+Lm sin α)
2

} .
u tan ϕ

(23)

where γ is the unit weight of the soil. All the other variables in Equations (16)–(23) can be
easily identified from Figure 10.

The rate of internal energy dissipation was caused by the relative motion on the narrow
transition layer of the interface between the anchorage segment and its surrounding soil.
The velocity field on the narrow transition layer can be seen in Figure 7. In the transition
layer, the rate of the internal energy dissipation per unit volume could be written as follows:

.
D = (τ

.
γ− σ

.
ε)t = c

.
u (24)

where τ is the shearing stress; σ is the normal stress; t is the thickness of the narrow
transition layer; c is the cohesion of the soil; and

.
ε and

.
γ denote the normal strain rate and

shear strain rate, respectively. The latter could be written as:

.
ε =

.
u
t

tan ϕ (25)

.
γ =

.
u
t

(26)

The summation of the rate of internal energy dissipation over the anchorage side
surface was calculated by:

.
WD1 =

.
DπDmLm = πcDmLm

.
u (27)
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where Dm denotes the anchorage segment diameter, and Lm denotes the anchorage seg-
ment length.

The rate of the internal energy dissipation of the anchorage segment could be com-
puted as follows:

W1 =
.

Wε +
.

WD1

=
{

LmRmγ cos2 α
6 [6πh− 16Rm cos α + 3πLm sin(α)]

+ K0LmRmγπ(2h+Lm sin α)
2

} .
u tan ϕ + πcDmLm

.
u

(28)

(2) Rate of work of anchorage segment weight

WG1 = γmπ(
Dm

2
)

2
Lm

.
u sin α (29)

where γm is the unit weight of the anchorage segment.

4. Example Analysis and Solution Validation
4.1. Theoretical Solution

In order to compare the theoretical results with the subsequent numerical simulation
results, the three cases shown in Table 1 were considered herein. It should be emphasized
here that the inclination angle of the anchor cable represents the angle of the cable axis
relative to the horizontal ground surface (i.e., α shown in Figure 2). The material properties
of the soil used for this study were as follows: the density was 1770 kg/m3, the elastic
modulus was 13.5 MPa, the shear modulus was 5 MPa, the friction angle was 10.6◦, and
the cohesion was 8 kPa.

Table 1. Control parameters of expanded anchor cable.

Case
Anchorage
Segment

Length (m)

Free Segment
Length (m)

Anchorage
Segment

Diameter (m)

Inclination
Angle of Anchor

Cable (◦)

Stratum Friction
Angle (◦)

Buried Depth
(m)

M1 10 9 0.6 30 10.6 7
M2 12 9 0.6 30 10.6 7
M3 10 9 0.6 45 10.6 7

The particle swarm optimization algorithm was used to obtain the optimal solution,
which produced the optimal upper-bound solution for the end resistance (i.e., Equation (9)).
Table 2 presents the calculation results. In this table, the lateral resistance was obtained
by Equation (8), and the ultimate pullout capacity was computed by summing the end
resistance and lateral resistance.

Table 2. Theoretical solutions.

Case Lateral Resistance P1 (kN) End Resistance P2 (kN) Ultimate Pullout Force P (kN)

M1 610.1 217.4 861.7
M2 761.5 217.4 1019.3
M3 580.8 144.9 782.9

Only case M3 is presented here as an example, to limit the length of the manuscript.
In this case, the values of the calculation parameters in the particle swarm optimization
algorithm were as follows: w = 0.8, c1 = c2= 0.5, and r1 and r2 were random variables
between 0 and 1. Figure 11 presents the relationship between the optimal solutions (i.e.,
the ultimate end resistance) and the number of iterations calculated by the particle swarm
optimization algorithm in the case M3. It can be seen that when the population number was
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N = 50 and the number of iterations was G = 80, the calculation approached a convergence
state. Thus, the best solution value for the ultimate end resistance was about 144.9 kN.
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The critical failure model for the logarithmic spiral region obtained from the spatial
discretization technique is presented in Figure 12 for the case M3, with the help of MAT-
LAB software. The 3D velocity discontinuity surfaces all intersected with the potential
slip surface.
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4.2. Numerical Solution

In order to verify the accuracy of the theoretical solution, the finite difference software
FLAC3D was adopted to calculate the magnitude of the ultimate pullout capacity of
an expanded anchor cable, and the results were compared with the theoretical upper-
bound solution.

Corresponding to the theoretical analysis in the above sections, only the ultimate
pullout capacity of a single expanded anchor cable arranged in a homogeneous soil stratum
was analyzed in the numerical simulations. The three-dimensional numerical model was
established according to the conditions of the expanded anchor cable considered in this
paper (Figure 1), as shown in Figure 13. In this Figure, the parameters of the anchor cable
accorded with those of case M1 listed in Table 1. In addition, the two bearing bodies had
the same length of 0.5 m (Figure 14). In order to ensure the simulation accuracy, the length,



Appl. Sci. 2023, 13, 2357 15 of 22

width, and height of the numerical model were 22.4 m, 20 m, and 17.0 m, respectively (as
shown in Figure 13). The boundary conditions were set to normal constraints for all four
vertical model planes, and the displacements at the bottom of the model were fixed. On the
excavation side of the foundation pit, normal constraints were applied below the bottom of
the pit. In the model, 3D grids were used to model the soil, the steel strand, the bearing
body, and the grouting body of the anchorage segment. The steel strand and bearing body
adopted an elastic constitutive model, and the other 3D grids adopted the Mohr–Coulomb
constitutive model. The calculation parameters of the soil and anchor cable are shown in
Table 3.
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Table 3. Calculation parameter values.

Material Density (kg/m3)
Elastic Modulus

(MPa)
Shear Modulus

(MPa) Friction Angle (◦) Cohesion
(kPa)

Steel strand 7800 200,000 77,000 - -
Soil 1770 13.5 5 10.6 8.0

Bearing body 7000 22,000 9361.70 - -
Grouting body 2200 21,897 9317.87 50.2 1960

Contact interfaces were established between the grouting body and the soil, the steel
strand and the grouting body, and the steel strand and the bearing body to model the
mechanical characteristics of the interfaces between the different structures. The normal
stiffness and tangential stiffness of these interfaces were 10 times the equivalent stiffness of
the soil element, and the cohesion and friction angle of the interface between the grouting
body and its surrounding soil were taken as those of the adjacent soil [30]. In addition, the
values of the cohesion and friction angle of the contact surface between the steel strand
and the bearing body were set large enough to ensure that they were firmly connected,
while those between the steel strand and the grouting body were set to zero to simulate
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the effect of isolating pipes outside the steel strand. The pullout capacity provided by the
free segment of the anchor cable was much smaller than that of the anchorage segment;
hence, it was neglected in the model. Thus, the cohesion and friction angle of the contact
surface between the grouting body and the surrounding soil were also taken as 0 in the
free segment.

In the numerical simulation, the pullout process of the expanded anchor cable was
simulated by applying the pullout force gradually from a small magnitude to a large mag-
nitude that was uniformly taken on by the four steel strands. The ultimate pullout capacity
was determined according to the following computation convergence characteristics: the
pullout stage at which the computation stopped converging was first determined, and
then the pullout force in the previous pullout stage could be considered as the ultimate
pullout capacity.

Figure 15 depicts the relationship between the pullout force P and the slipping dis-
placement S of the anchorage segment in case M1. As can be seen in Figure 15, when the
pullout force applied to the steel strands was small, the displacement of the anchorage seg-
ment was small; when the applied pullout force was close to the ultimate pullout capacity,
the anchorage segment presented significant slip; indeed, when the pullout force exceeded
the ultimate pullout capacity, the slipping displacement of the anchorage segment could
not achieve a convergence state. To be specific, when the pullout force was less than 750 kN,
the slipping displacement was small; when reaching 750 kN, the slipping displacement of
the anchorage segment was only 42.9 mm; when the pulling force continued to increase
and reached the ultimate pullout capacity of 800 kN, a large slip with a magnitude of
570 mm occurred in the anchorage segment, but the anchor-cable–soil system could still
approach an equilibrium state; when the pullout force reached 850 kN, the computation
could not approach a convergence state. Thus, it could be concluded that the ultimate
pullout capacity of the expanded anchor cable was 800 kN.
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4.3. Solution Validation

The theoretical calculation and numerical simulation results of the three considered
cases are summarized in Table 4. It should be noted that in the numerical simulation, the
lateral resistance P1 and end resistance P2 were all obtained through the Fish programming
language embedded in FLAC3D. The results showed that the error between the numerical
solution and the theoretical solution for the lateral resistance in the three cases was only
6.0%, whereas that for the end resistance was relatively large; however, it was still within
30%, and so the maximum error of the ultimate pullout capacity was 7.7%. This indicated
that the proposed theoretical model demonstrated high reliability in the analysis of the
ultimate pullout capacity of the expanded anchor cable.
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Table 4. Comparison between ultimate pullout capacity according to numerical and theoretical solutions.

Case
Lateral Resistance P1 (kN) End Resistance P2 (kN) Ultimate Pullout Capacity P (kN)

Numerical Theoretical Error (%) Numerical Theoretical Error (%) Numerical Theoretical Error (%)

M1 575.5 610.1 6.0 176.5 217.4 23.2 800 861.7 7.71
M2 724.6 761.5 5.1 170.8 217.4 27.3 950 1019.3 7.29
M3 608.9 580.8 4.6 146.7 144.9 1.2 830 782.9 5.67

In order to further illustrate the reliability and superiority of the present calcula-
tion method, the theoretical formula for the ultimate pullout capacity of an expanded
anchor cable described in [18] was used for calculation, and the results were compared
and discussed.

Zeng et al. [18] proposed an algorithm for the ultimate pullout capacity of an expanded
anchor cable that could be divided into three parts, as follows:

T = T1 + T2 + T3 (30)

where T denotes the ultimate pullout capacity (i.e., P); T1 denotes the ultimate lateral
resistance of the free segment, which was neglected in the present paper; T2 denotes the
ultimate lateral resistance of the anchorage segment (i.e., P1); and T3 denotes the ultimate
end resistance (i.e., P2). T2 and T3 are given by:

T2= πD2L2τf d (31)

T3 =
π

4
(D2

2 − D2
1)PD (32)

All the variables in Equations (31) and (32) are identified in [18]. The values of the
variables were as follows: D1 = 0.2m, τf d = 31kPa, ξ = 0.5Ka, and the values for the
other variables are provided in Section 4.1. The results of the three considered cases are
summarized in Table 5.

Table 5. Comparison between numerical solutions and theoretical solutions based on [18].

Case
Lateral Resistance P1 (kN) End Resistance P2 (kN) Ultimate Pullout Capacity P (kN)

Numerical Zeng [18] Error (%) Numerical Zeng [18] Error (%) Numerical Zeng [18] Error (%)

M1 575.5 587.9 2.15 176.5 54.8 68.95 800 642.7 19.67
M2 724.6 705.4 2.64 170.8 54.8 67.92 950 760.2 19.97
M3 608.9 587.9 3.45 146.7 54.8 62.65 830 642.7 22.57

According to this table, the results showed that the error between the numerical
solution and the theoretical solution based on [18] for the lateral resistance in the three cases
was only 3.45%. However, the error for the end resistance was relatively large, resulting
in a maximum error of 68.95%, which was mainly due to the high value of ξ, in the range
of (0.5 ∼ 0.95)Ka. Combined, the maximum error of the ultimate pullout capacity was
22.57%, which was significantly higher than the error between the numerical simulation
and the theoretical solution proposed in this paper. Compared with the technique presented
in [18], the calculation method for the ultimate pullout capacity of the expanded anchor
cable proposed in this paper was more accurate and reasonable, and has high applicability
in practical engineering.

5. Model Application

In this section, the proposed model was adopted to analyze the influence of the key
parameters on the ultimate pullout capacity of the expanded anchor cable. The influence of
each variable on the ultimate lateral resistance, end resistance, and pullout capacity was
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investigated, and the values of the other parameters were based on those of case M1. When
the anchorage segment diameter changed from 0.4 m to 0.8 m with a spacing of 0.1 m,
the anchorage segment length changed from 6 m to 14 m with a spacing of 2 m, the free
segment length changed from 6 m to 14 m with a spacing of 2 m, the inclination angle of
the anchor cable change from 10◦ to 50◦ with a spacing of 10◦, and the buried depth of the
anchor cable changed from 6 m to 10 m with a spacing of 1 m.

5.1. Effect of Anchorage Segment Diameter

Figure 16 presents the ultimate pullout capacity, lateral resistance, and end resistance
variation curves according to changes in the anchorage segment diameter. From this figure,
it can be seen that the lateral resistance, end resistance, and ultimate pullout capacity
all increased linearly with the increase in the anchorage segment diameter. When the
diameter increased from 0.4 m to 0.8 m, the lateral resistance increased from 407.9 kN to
811.2 kN by about 99%, the end resistance increased from 184.9 kN to 251.4 kN by about
40%, and the ultimate pullout capacity increased from 592.8 kN to 1062.6 kN by about 79%.
This indicated that the change in the anchorage segment diameter had a greater influence
on the lateral resistance than on the end resistance. This was because the change in the
anchorage segment diameter had a greater influence on the side surface area than on the
three-dimensional velocity discontinuity surfaces in the logarithmic spiral region.
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5.2. Effect of Anchorage Segment Length

Figure 17 presents the ultimate pullout capacity, lateral resistance, and end resistance
variation curves according to an increase in the anchorage segment length. As can be seen,
the anchorage segment length had a great influence on the lateral resistance, while it had
nearly no influence on the end resistance. To be specific, when the anchorage segment
length increased from 6 m to 14 m, i.e., the anchorage segment length increased by 133%,
the lateral resistance increased from 336.7 kN to 922.6 kN by about 174%. This was because
the increase in the anchorage segment length brought about a sharp increase in the lateral
surface and the average buried depth of the anchorage segment. This led to a sharp increase
in the normal soil pressure acting on the anchorage segment, but did not have any influence
on the three-dimensional velocity discontinuity surfaces in the logarithmic spiral region.
Therefore, the change in the anchorage segment length only affected the lateral resistance
of the expanded anchor cable.
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5.3. Effect of the Inclination Angle of the Anchor Cable

Figure 18 presents the ultimate pullout capacity, lateral resistance, and end resistance
variation curves according to an increase in the inclination angle of the anchor cable. It
can be seen from this figure that initially, the lateral resistance gradually increased, before
gradually decreasing with the increase in the inclination angle of the anchor cable, reaching
a maximum of about 610.1 kN when the inclination angle was 30 degrees. However, in
general, the change in the inclination angle had a relatively small impact on the ultimate
lateral resistance. With the increase in the inclination angle of the anchor cable, the end
resistance and ultimate pullout capacity decreased. Specifically, when the inclination angle
increased from 10◦ to 50◦, the end resistance and ultimate pullout capacity decreased
from 290.6 kN to 120.1 kN by about 58.7% and from 872.5 kN to 684.4 kN by about
21.6%, respectively.
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anchor cable.

5.4. Effect of the Buried Depth of the Anchor Cable

Figure 19 presents the ultimate pullout capacity, lateral resistance, and end resistance
variation curves according to the change in the buried depth of the anchor cable. The
figure clearly shows that the lateral resistance, end resistance, and ultimate pullout capacity
increased with the increase in the buried depth of the anchor cable. When the buried depth
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increased from 6 m to 10 m, the lateral resistance increased from 561.2 kN to 756.8 kN by
about 35%, the end resistance increased from 167.5 kN to 412.2 kN by about 146%, and the
ultimate pullout capacity increased from 728.7 kN to 1169.0 kN by about 60%.
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6. Conclusions

A failure model based on the upper-bound theorem of limit analysis was presented in
this paper. The expressions of the upper-bound solution for the ultimate lateral resistance
and the ultimate end resistance were derived according to the principle of virtual power,
and the final solution for the ultimate end resistance was determined by the particle swarm
optimization algorithm. The upper-bound solution for the ultimate pullout capacity was
obtained by summing the ultimate lateral resistance and ultimate end resistance. The
accuracy of the proposed analytical solution was verified through a comparison with
three-dimensional numerical simulations, which were calculated by the finite difference
software FLAC3D. In addition, the superiority of the proposed analytical solution was well
demonstrated through a comparison with an existing theoretical method. Regarding the
application of the failure model, the influence of the anchor cable’s key parameters on the
ultimate lateral resistance, end resistance, and ultimate pullout capacity was discussed in
detail. The following conclusions could be drawn:

(1) A failure model of an expanded anchor cable located in a homogeneous stratum was
constructed. The logarithmic spiral failure model was used as the failure model of the
soil region at the front surface of the anchorage segment, representing the first time
that this model has been implemented to calculate the end resistance of an expanded
anchor cable. The failure mechanism of the anchorage side surface was assumed
to satisfy the slippage model. The expressions of the ultimate lateral resistance and
ultimate end resistance could be derived, respectively, from the power calculations
for the two models and several algebraic operations. Due to the particularity of the
boundary conditions in this paper, the rotation center points of the logarithmic spiral
lines were uncertain. Therefore, the particle swarm optimization algorithm was used
to determine the optimal solution of the end resistance.

(2) The theoretical calculation results were compared with the numerical simulation in
three cases. The results showed that the error between the numerical solution and
the theoretical solution for the lateral resistance in the three cases was only 6.0%;
however, the error for the end resistance was relatively large, though still within
30%, and so the maximum error for the ultimate pullout capacity was 7.7%. These
errors were much smaller than the errors between the numerical simulation and the
theoretical calculation method proposed in [18] for the same cases. This indicated that
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the proposed theoretical model had high reliability and superiority in the analysis of
the ultimate pullout capacity of the expanded anchor cable.

(3) The ultimate lateral resistance and total ultimate pullout capacity increased signif-
icantly with the increase in the anchorage segment diameter, anchorage segment
length, and buried depth of the expanded anchor cable. The ultimate end resistance
increased significantly with the buried depth, increased slightly with the anchorage
segment diameter, and was almost unaffected by the anchorage segment length.

(4) With the increase in the inclination angle of the anchor cable, the end resistance
and the ultimate pullout capacity gradually decreased, while the lateral resistance
increased first and then decreased. However, in general, the change in the inclination
angle of the anchor cable had a relatively small effect on the ultimate lateral resistance.
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