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Abstract: Data-driven analysis and characterization of molecular phenotypes comprises an efficient
way to decipher complex disease mechanisms. Using emerging next generation sequencing tech-
nologies, important disease-relevant outcomes are extracted, offering the potential for precision
diagnosis and therapeutics in progressive disorders. Single-cell RNA sequencing (scRNA-seq) allows
the inherent heterogeneity between individual cellular environments to be exploited and provides
one of the most promising platforms for quantifying cell-to-cell gene expression variability. However,
the high-dimensional nature of scRNA-seq data poses a significant challenge for downstream anal-
ysis, particularly in identifying genes that are dominant across cell populations. Feature selection
is a crucial step in scRNA-seq data analysis, reducing the dimensionality of data and facilitating
the identification of genes most relevant to the biological question. Herein, we present a need
for an ensemble feature selection methodology for scRNA-seq data, specifically in the context of
Alzheimer’s disease (AD). We combined various feature selection strategies to obtain the most dom-
inant differentially expressed genes (DEGs) in an AD scRNA-seq dataset, providing a promising
approach to identify potential transcriptome biomarkers through scRNA-seq data analysis, which
can be applied to other diseases. We anticipate that feature selection techniques, such as our ensemble
methodology, will dominate analysis options for transcriptome data, especially as datasets increase
in volume and complexity, leading to more accurate classification and the generation of differentially
significant features.

Keywords: ensemble method; big data; dimensionality reduction; feature selection; Alzheimer’s disease

1. Introduction

High throughput molecular biology technologies, such as whole-genome sequencing,
have been used extensively in a research capacity to investigate disease mechanisms, al-
lowing a deeper analysis at the cellular level and more reliable results [1]. In the era of
personalized medicine there is a constant need to develop robust computational approaches
for big data analysis in order to explore molecular entities and hidden patterns in a more
realistic manner [2]. Towards overcoming these challenges, remarkable progress has been
observed through different generations of sequencing technology providing explosive
growth in omics data [3]. Single-cell sequencing, as an emerging technique, has revolution-
ized the way diseases are studied at the cellular level. This technology can accurately study
individual cells and explore pathological mechanisms at the single-cell level to indicate
diagnostic biomarkers or potent therapeutic targets [4]. The single-cell RNA sequencing
(scRNA-seq) technique allows detection and quantitative analysis of mRNA molecules
at a single cell resolution instead of bulk RNAseq studies which investigate global gene
expression. It is a complex process, which involves single cell isolation and capture, lysis of
cells, reverse transcription, amplification, and library preparation [5,6]. However, although
experimental approaches are rapidly increasing, in silico pipelines for handling raw data
files remain limited. A typical scRNA-seq dataset includes thousands of cells and their

Appl. Sci. 2023, 13, 2353. https://doi.org/10.3390/app13042353 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13042353
https://doi.org/10.3390/app13042353
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2691-2767
https://orcid.org/0000-0003-0053-7847
https://doi.org/10.3390/app13042353
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13042353?type=check_update&version=1


Appl. Sci. 2023, 13, 2353 2 of 11

corresponding transcripts, therefore, from a computational perspective, we have to deal
with a large amount of complex data (features) for each cell with ultra-high dimensionality
and huge volume [7].

To effectively analyze these complex data, feature selection is a critical aspect of
machine learning data preprocessing, which has gained significant importance in recent
years due to the exponential growth in the size of real-world datasets [8]. The feature
selection process aims to identify and select relevant features to improve model performance
and efficiency. By removing irrelevant features, it can also improve the efficiency of the
algorithm. In the context of scRNA-seq data, feature selection is particularly important as
it can help identify the most important genes and cellular pathways, leading to a better
understanding of the cellular functionality [9].

Machine learning (ML) processes are the first choice for mining information from such
datasets as they can tackle part of this data complexity. In terms of high dimensionality
due to the large number of feature spaces (genes), ML approaches to feature extraction can
address this challenge by removing as much noisy and redundant information from the
extracted features as possible [10]. In some cases, feature importance scores generated by
ML methods may be unreliable, which can lead to instability and make it challenging to
distinguish between important and unimportant features [11]. While filter and wrapper
feature selection methods are commonly used, they also have some limitations. One
common issue with filter approaches is that they tend to overlook how the classifier
interacts with each feature and evaluate each feature independently, neglecting feature
correlations. Additionally, it is difficult to determine the appropriate threshold for selecting
only relevant features and excluding noise [12]. Wrapper feature selection also has several
drawbacks, including a greater risk of overfitting, longer training times, reliance on a
specific classifier, and higher computational cost and discriminatory power [13].

Ensemble feature selection frameworks provide a dependable method to decrease the
dimensionality of high-dimensional data and pinpoint the most meaningful features in
a case study [14,15]. An ensemble method that combines the results of multiple feature
selection techniques can overcome the limitations of using single feature selection meth-
ods. This approach can lead to improved performance and robustness compared to any
individual method. Therefore, it is important to utilize specific feature selection methods
to minimize irrelevant and redundant features, which will decrease complexity in the
analysis and models and improve the overall modeling process efficiency [16]. In a recent
study, a gene selection pipeline combining filter, wrapper, and unsupervised methods was
developed to select the relevant features in causing Alzheimer’s disease (AD) [17]. An
ensemble method based on consensus-guided unsupervised feature selection was proposed
to identify Huntington’s disease-associated genes [18].

In this study, we present the scEFS (ensemble feature selection for single-cell RNA-seq
data) method, an ensemble framework that takes advantages of three different feature
selection methods for single-cell RNA-seq data. These methods are combined using a
ranking strategy to determine the best genes. We evaluate the effectiveness of various
feature selection strategies in a prediction task using single-cell RNA-sequencing data from
a mouse model with Alzheimer’s-like pathology and phenotypes (CK-p25 model). Our
goal is to demonstrate the complexity of scRNA-seq datasets and investigate the impact of
ensemble feature selection on the prediction accuracy using traditional classifiers.

2. Materials and Methods

Our scEFS approach is summarized in two main steps: (a) the application of three
main feature selection methods; (b) the genes prioritization through an ensemble voting
technique, called Borda.
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2.1. Feature Selection Techniques

DUBStepR (determining the underlying basis using stepwise regression) is a feature
selection algorithm that is used to identify important genes for a given phenotype [19].
It uses a novel measure called the density index (DI) to identify gene–gene correlations
and to evaluate the inhomogeneity in feature space. It leverages these correlations to
perform stepwise regression analysis to select the most informative genes. The algorithm is
designed to work with high-dimensional datasets and can be applied to a wide range of
biological and medical applications. This tool can be useful in identifying key genes and
pathways associated with a specific phenotype or disease and can aid the development
of new diagnostic or therapeutic strategies. One limitation of the DUBStepR algorithm
is that it is based on gene–gene correlations, which may not always accurately reflect the
underlying biology of a phenotype or disease. Additionally, the algorithm is based on
stepwise regression, which can be sensitive to the choice of initial genes and may not
always converge to the optimal solution.

Random forest is a popular machine learning algorithm that is commonly used for
classification and regression tasks. One of the key strengths of random forest is its ability
to provide insight into the relative importance of each feature (or variable) in the dataset.
Variable importance, as calculated by random forest, can be used as a feature selection
method. The idea is to rank the features based on their importance and select the top-
ranking features for further analysis or use in a predictive model. This method has several
advantages over traditional feature selection methods since random forest can handle
non-linear relationships and interactions between features, and it does not require the
assumption of independence between features. However, there are also some limitations to
using random forest for feature selection. One main limitation is that the feature importance
scores can be affected by the correlation between features. It should be used in combination
with other methods and domain knowledge to come to a more informed decision.

Furthermore, we applied the statistical strategy using the BPSC package [20]. BPSC
(Beta-Poisson model for single-cell RNA-seq data analyses) is an R tool for the analysis
of single-cell RNA-seq data. It uses a statistical model called the Beta-Poisson model to
analyze the expression of genes in individual cells. The Beta-Poisson model is a flexible
model that can handle over-dispersed count data, which are a common characteristic of
single-cell RNA-seq data. One of the major advantages of BPSC is that it is able to handle
high-dimensional single-cell data and it can be used to identify biologically meaningful
gene expression patterns. However, as with any computational method, it also has some
limitations. The performance of BPSC depends on the quality of the input data and the
specific characteristics of the sample.

2.2. Important Genes Prioritization

The three main FS methods are combined, creating a consensus score regarding the
importance of genes under the perspective of predicting process accuracy. Our aim here
is to export the optimal list of genes which offer a capable separation among the cell
classes in our single-cell RNA-seq experimental dataset. We employed the Borda count,
a single-winner election technique in which voters rank candidates or choices according
to preference [21]. By awarding each candidate a certain number of points for each ballot
depending on the number of lowest-rated contestants, the Borda count determines the
outcome of a debate or the winner of an election. The choice or candidate with the most
points after all votes have been tallied is declared the winner. A ranking list was constructed
for each FS method, and using Borda count, we received a list of ranked genes that include
all the values from the variable importance scores from the three main FS methods. As a
result, the genes with the highest score are the key players for the better separability of our
cell samples regarding their classes.
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3. Results and Discussion

We evaluated the classification performance of our scEFS with the three main fea-
ture selection methods using expression profiles from a single-cell RNA-seq analysis. All
methods were applied to the GSE103334 dataset from Gene Expression Omnibus [22]. This
study tracks the microglia activation in neurodegeneration, examining their phenotypic
heterogeneity and transcriptional dynamic. The experimental approach utilized a neu-
rodegeneration mouse model with Alzheimer’s-like pathology and phenotypes (CK-p25
model), discovering novel microglia cell states and uncovering the underlying transcrip-
tional programs. In our analysis, this case is considered a classification task for the accurate
prediction of selected datasets derived from two different timepoints (0 weeks and 2 weeks)
to assess microglia activation during the progression of neurodegeneration between CK-p25
animals and controls.

The implementation process involved calculating the p-value of each feature using
the BSPC package and retaining only the top 200 features with the lowest p-values. Addi-
tionally, the varImp function from the random forest classifier was used to determine the
significance of each variable in predicting the class attribute of the dataset. Only the top
200 most important variables were kept. Similarly, the DUBStepR algorithm was executed
by isolating the same number of the most dominant genes.

A Venn diagram was used as a visual approach to organize and compare differentially
expressed genes obtained from the various applied feature selection methods. It comprises
a useful tool for illustrating the relationship and overlap between different datasets as
well as highlighting the percentage of genes selected by each method. As depicted in
Figure 1, the results of each technique yielded a set of characteristics that exhibited a
maximum of 31% unique representation. There was minimal overlap between the feature
selection methods, with a total of 2% overlap observed among all the different methods,
and even the overlap between pairs of methods did not exceed 8%. Given this limited
overlap, an ensemble method was proposed to identify potential gene markers by utilizing
a ranking of all of these distinct gene groups. This limited overlap can be attributed to the
dissimilar perspectives of each technique, since each feature selection method utilizes a
distinct strategy to find the most dominant genes.
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The kNN classifier was used to provide a comparison between the three different
techniques and the initial data. The k-nearest neighbor (kNN) method is a well-known
classification approach in the fields of data mining and statistics due to the ease with which
it can be implemented and the high classification performance it offers [23]. In each case
study, we initially trained each classification algorithm by providing it with the set of
200 informative genes selected using each gene selection method. The goal was to assess
how well the aforementioned groups can predict the class feature and compare them based
on metrics such as accuracy, sensitivity, specificity, and F1 score, as Table 1 shows. In
Figure 2, the receiver operating characteristics (ROC) curve is provided and the area under
the curve (AUC) is used as a measure of performance between all groups.

Table 1. Prediction accuracy with kNN classifier prediction accuracy based on 200 informative genes
by each gene selection method and initial data.

Filter Data Accuracy Kappa Precision Recall F1 Elapsed Time
(m)

Initial Data 0.77 0.55 0.73 0.86 0.79 4.25
Variable Data 0.69 0.39 0.72 0.63 0.67 1.03

Importance Data 0.81 0.63 0.83 0.78 0.81 1.3
Statistical Data 0.60 0.21 0.72 0.34 0.46 1.01

EFSM 0.82 0.65 0.83 0.81 0.82 1

In order to understand the high-level functions and utilities of the biological system
according to the isolated genes, we conducted an enrichment analysis using Enrichr https:
//maayanlab.cloud/Enrichr/ (accessed on 6 November 2022) [24,25]. GO function and
Reactome https://reactome.org/ (accessed on 6 November 2022) [26] pathway enrichment
analyses were performed for the twelve DEGs, as Figure 1 shows. Following enrichment
analysis, we concluded that AD is proven. The enriched GO terms were divided into
biological process (BP), molecular function (MF), and cellular component (CC) ontologies
(Tables S1–S4). The results of the GO analysis indicated that DEGs were mainly enriched in
BP, including mRNA metabolic process, oxidative RNA demethylation, regulation of core
promoter binding, and glandular epithelial cell development (Figure S1A). MF analysis
revealed that the DEGs were significantly enriched endoribonuclease activity, producing
3′-phosphomoesters, guanylate kinase activity, cAMP binding, and microtubule plus-end
binding (Figure S1B). For CC, the DEGs were enriched in a collage-containing extracellular
matrix, a basement membrane and endosome lumen (Figure S1C). The results of the
Reactome pathway analysis showed that DEGs were mainly enriched in pathways such
as in assembly of collagen fibrils extracellular matrix organization, collagen formation,
and cell–cell communication (Figure S1D). More precisely, a Dst (dystonin) gene encodes
a member of the plakin protein family of adhesion junction plaque proteins acting as
an integrator of intermediate filaments and microtubule cytoskeleton networks. A Dst
regulates the organization and stability of the microtubule network of sensory neurons
to allow axonal transport and mediates docking of the dynein/dynactin motor complex
to vesicle cargos for retrograde axonal transport through its interaction with TMEM108
and DCTN1, while loss of function can cause hereditary sensory, autonomic neuropathy
type 6, and epidermolysis bullosa simplex [27]. Biological process analysis indicated
that a Dst was significantly enriched in hemidesmosome assembly and retrograde axonal
transport (Figure S2A, Table S6). Deficits in the latter are associated with the pathogenesis of
multiple neurodegenerative diseases, including amyotrophic lateral sclerosis [28]. Pathway
enrichment analysis showed that a Dst was mainly enriched in the RHO family of GTPases
(Figure S2D, Table S8) which are involved in the regulation of cell migration and cell
adhesion and play important roles in neuronal development [29].

https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
https://reactome.org/
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A Rapgef4 (Rap guanine nucleotide exchange factor 4) gene is involved in the regulation
of neuronal action potential and the development of the nervous system and plays a role
in postsynaptic density and glutamatergic synapse. For BF, Rapgef4 was enriched in the
regulation of peptide hormone secretion, the regulation of insulin and protein secretion,
respectively (Figure S3A, Table S9). Peptide hormones are also the hypothalamic peptide
hormones such as CRH, GHIGH, and TRH and their function is implicated in the regulation
of peptide-containing secretory neurons [30]. The results of MF analysis revealed that
Rapgef4 was mainly enriched cyclic adenosine monophosphate (cAMP) binding, cyclic
nucleotide binding, and guanyl-nucleotide exchange factor activity (Figure S3B, Table S10).
It should be noticed that cAMP is involved in neuronal functionality and is known to
activate and integrate a variety of downstream pathways. cAMP-dependent signaling takes
place in neuronal metabolism, growth cone motility, and neuroprotection in the central
nervous system [31]. Reactome pathway analysis indicated that Rapgef4 was significantly
enriched in Rap1 and the integrin signaling R-HAS pathway, platelet aggregation, and
glycagon-like peptide (Figure S3C, Table S11). Neuronal Rap1 regulates energy balance,
glucose homeostasis, and leptin actions [32]. Moreover, the results of GO analysis indicated
that Pax6, a gene which the encoded highly conserved transcription factor is essential in the
formation of tissues and organs during embryonic development, was significantly enriched
in BP, including regulation of core promoter binding, glandular epithelial cell development,
and neuron fate commitment (Figure 3A). Pax6 plays a critical role for neural stem cell
proliferation and neurogenesis in many regions of the central nervous system, including the
cerebral cortex [33]. It also controls neuronal development and targets a large number of
promoters in neural progenitor cells [34]. Furthermore, the results of the Reactome pathway
analysis showed that Cask was mainly enriched in dopamine neurotransmitter release cycle
R-HAS and assembly and cell surface presentation of NMDA receptors R-HAS (Figure 3B).
The encoded multidomain scaffolding protein is highly expressed in the mammalian
nervous system and participates in brain development [35]. It was originally identified
as a binding partner of neurexins, transmembrane proteins expressed in neurons, and
neuroendocrine cells, while loss of its action affects synaptic function in cortical excitatory
neurons [36]. Recent studies indicated that CASK is localized to the nucleus in both mouse
neuronal cultures and brain tissues [37].
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Cathepsin B (CTSB), another high-scored gene in our analysis, plays a neuroprotective
role in AD and elevated levels have been associated with targeting intervention against the
disease. It is considered as a candidate protease for the generation of N-terminally truncated
Aβ in astroglial cell cultures [38]. Enhanced hippocampal and cortical amyloid depositions
were also observed in the cathepsin B-deficient mouse model of AD overexpressing human
amyloid protein precursors (hAPP) [39]. According to our GO analysis, MF showed that
Ctsb was enriched in cysteine-type peptidase activity (Figure S6B, Table S20). New insights
into the role of cysteine protease inhibitor, such as cysteine cathepsins and calpain 1, in
neuroinflammation have been recently reported [40,41]. For CC, Ctsb was mainly enriched
in endolysosome lumen, endolysosome, and endosome lumen (Figure 3C). Alterations in
endolysosomal trafficking can induce neurodevelopmental progression [42]. In particular,
the accumulation of protease-deficient LAMP1-positive organelles has been observed
in axonal distensions near extracellular Aβ plaques in AD modes, indicating defects in
lysosome maturation with AD pathogenesis [43]. Lastly, the GO analysis showed that Zfhx3
in BF was significantly enriched in the regulation of neuronal differentiation, adhesion, and
brain development (Figure 3D). ZFHX3 (zinc finger homeobox 3) encodes a transcription
factor with multiple homeodomains and zinc finger motifs which regulates myogenic and
neuronal differentiation. The survival of neurons by inducing platelet-derived growth
factor receptor β expression is promoted through the signaling pathway involving cAMP-
responsive element-binding protein (CREB) and ZFHX3 [44]. The KEGG pathway map
(Figure S8) shows significant expressed genes identified in the discrimination of the cell
classes [45].

Given a dataset with ultra-high dimensionality we have two main pillars to deal with
its complexity: dimensionality reduction and feature selection methods. The first pillar
transforms features into a lower dimension trying to keep the pairwise sample distances
as efficiently as possible based on the original feature space. The latter pillar includes
a simpler method that isolates a list of features that are the most dominant features in
the entire dataset. In this study, we focus on the second way since we are also interested
in identifying dominant genes in scRNA-seq data that can improve the performance of
various supervised learning tasks such as the classification process. An indicative feature
selection categorization includes three main strategies: filter-based, wrapper-based, and
ensemble-based strategies [46]. More specifically, filter methods select features based on a
performance measure independent of the data modeling algorithm used, while they can
classify individual features or evaluate entire subsets of features. Indicative measures for
selecting the best features through such methods are information, distance, consistency,
similarity, and statistical measures. The reason is that it is computationally more feasible
and is performed by selecting the variables that have a higher value in a predefined
numerical function that estimates the weight of the variable for the classification task.
Functions incorporate various criteria such as information gain, mutual information, chi-
square, odds ratio, relevance score, and correlation coefficient [47]. Wrappers are feature
selection algorithms that assess a subset of features based on the accuracy of a predictive
model developed with them. The evaluation is carried out with the assistance of a classifier
that provides an estimate of the importance of a certain group of attributes [48]. This class
of approaches has proven effective; however, their high computational cost limits their use.
In terms of ensemble methods, we refer to a compilation of subsets of features derived from
a variety of different base classifiers.

The list of ranked genes obtained by the present approach includes all values from
the variable importance scores derived from the three feature selection methods. Using
Borda count, the aim of this score is to identify genes that have high scores across all feature
selection methods, so as to obtain robust and remarkable gene markers that drive the
structure of the given transcriptomics dataset [49]. A gene will rank low, for example, if it
presents the best value in one feature selection method and is somewhere in the middle of
the ranking list for the other methods. On the other hand, a gene will earn a high Borda
score if it ranks third in all scores (even it is not in the top positions) because its function
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was significant in all feature selection methods. According to this process, we ensure that
we obtain a fairer genes hierarchy and we do not miss any important gene due to the
limitations and weaknesses of each individual method. Population heterogeneity, spatial
heterogeneity, and temporal heterogeneity are three distinct groups of biologically relevant
heterogeneity. Cellular heterogeneity provides insights into the network connectivity and
plays an important role in regulating intrinsic cell fate decisions. Data distribution derives
the selection of the optimal visualization tool such as methods for classification and pathway
modeling [50]. Dimensionality is the typical problem of maintaining several features in a
heterogeneous dataset with a number of instances from an analytics perspective, such as
in scRNA-seq [51]. The main purpose of this research is to develop an ensemble feature
selection approach for transcriptome data using established feature selection techniques.
The evaluation of the results is based on both how effectively the classification models
respond and how adequately the enrichment analysis works.

4. Conclusions

Rapid advances in next-generation sequencing technologies are providing important
insights into complex biological systems. scRNA-seq is a particularly promising transcrip-
tomics technology; however, the high-dimensional nature of its data poses a significant
challenge for downstream analysis. In this study, we proposed an ensemble feature selec-
tion methodology for scRNA-seq data, specifically in the context of Alzheimer’s disease.
Our ensemble approach combines various feature selection strategies to obtain the most
dominant genes in an AD scRNA-seq dataset, which can be considered as potential regula-
tors in cellular mechanisms. An enrichment analysis was performed on the highest-scoring
genes, which showed profound alterations in biological process, molecular function, and
cellular component (CC) ontologies related to the disorder. We anticipate that this approach
is promising for identifying potential transcriptome biomarkers through AD scRNA-seq
data analysis and can be applied to other disease contexts. The encouraging results pro-
vided by this study justify the significance and suggest further implementation on datasets
with high dimensionality.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/app13042353/s1, Figure S1: GO term and Reactome path-
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40. Pišlar, A.; Bolčina, L.; Kos, J. New insights into the role of cysteine cathepsins in neuroinflammation. Biomolecules 2021, 11, 1796.
[CrossRef]

41. Siklos, M.; BenAissa, M.; Thatcher, G.R. Cysteine proteases as therapeutic targets: Does selectivity matter? A systematic review of
calpain and cathepsin inhibitors. Acta Pharm. Sin. B 2015, 5, 506–519. [CrossRef] [PubMed]

42. Kulkarni, V.V.; Maday, S. Neuronal endosomes to lysosomes: A journey to the soma. J. Cell Biol. 2018, 217, 2977. [CrossRef] [PubMed]
43. Gowrishankar, S.; Yuan, P.; Wu, Y.; Schrag, M.; Paradise, S.; Grutzendler, J.; De Camilli, P.; Ferguson, S.M. Massive accumulation

of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques. Proc. Natl. Acad. Sci. USA 2015, 112,
E3699–E3708. [CrossRef] [PubMed]

44. Kim, T.S.; Kawaguchi, M.; Suzuki, M.; Jung, C.G.; Asai, K.; Shibamoto, Y.; Lavin, M.F.; Khanna, K.K.; Miura, Y. The ZFHX3
(ATBF1) transcription factor induces PDGFRB, which activates ATM in the cytoplasm to protect cerebellar neurons from oxidative
stress. Dis. Model. Mech. 2010, 3, 752–762. [CrossRef]

45. Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways
and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [CrossRef]

46. Santana, L.E.A.D.S.; de Paula Canuto, A.M. Filter-based optimization techniques for selection of feature subsets in ensemble
systems. Expert Syst. Appl. 2014, 41, 1622–1631. [CrossRef]

47. Tadist, K.; Najah, S.; Nikolov, N.S.; Mrabti, F.; Zahi, A. Feature selection methods and genomic big data: A systematic review.
J. Big Data 2019, 6, 79. [CrossRef]
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