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Abstract: Cloud computing (CC) is becoming an essential technology worldwide. This approach
represents a revolution in data storage and collaborative services. Nevertheless, security issues have
grown with the move to CC, including intrusion detection systems (IDSs). Intruders have developed
advanced tools that trick the traditional IDS. This study attempts to contribute toward solving this
problem and reducing its harmful effects by boosting IDS performance and efficiency in a cloud
environment. We build two models based on deep neural networks (DNNs) for this study: the
first model is built on a multi-layer perceptron (MLP) with backpropagation (BP), and the other is
trained by MLP with particle swarm optimization (PSO). We use these models to deal with binary
and multi-class classification on the updated cybersecurity CSE-CIC-IDS2018 dataset. This study
aims to improve the accuracy of detecting intrusion attacks for IDSs in a cloud environment and to
enhance other performance metrics. In this study, we document all aspects of our experiments in
depth. The results show that the best accuracy obtained for binary classification was 98.97% and that
for multi-class classification was 98.41%. Furthermore, the results are compared with those from the
related literature.

Keywords: cloud computing; artificial neural networks; deep learning; intrusion detection system;
particle swarm optimization; backpropagation; multi-layer perceptron; CSE-CIC-IDS2018

1. Introduction

Over the last decade, we have seen considerable advances in CC. Today, CC services
have rich features, such as resource pooling and large networks. Cloud providers offer
a platform, services, applications, and infrastructure to the cloud’s users. The concept
of a decentralized cloud is changing the face of the internet and decreasing the need for
hardware and software. On the user side, the only requirement is being able to navigate
the user interface of the CC system.

Today, cloud technology is rapidly growing with a considerably increasing number
of users, cloud service providers, and threats that target users and providers. As a result,
the uploading of sensitive data to cloud storage by users poses many security issues
regarding accessibility, availability, confidentiality, and integrity. Moreover, without perfect
protection, cloud services’ uninterrupted provision leads to a risk of intrusion [1].

The cloud environment is vulnerable to intrusion attacks because of its distributed
nature. An IDS can be used to ensure the security of the CC by automatically checking
the logs, network flow, and configurations. Nevertheless, traditional IDSs that are host- or
network-based are not practical for CC since these IDSs are unable to detect hidden attack
paths. This makes traditional IDSs inconvenient for CC because they are not designed with
the specific context of CC to provide the necessary protection in such an environment. As a
result, using traditional IDS techniques in the cloud environment leads to problems that do
not exist in the conventional CC [2].

The two main methods of IDS based on detection are misuse (signature) and anomaly.
In anomaly, a profile is created by recording normal behaviors, and then anomalies are
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determined from the regular pattern that can be marked as intrusions. Signature (misuse)
detection is achieved with a pattern relating to known attacks or signatures of vulnerabili-
ties. When the IDS detects malicious code matching these signatures, it raises the alarm
and marks this code as an intrusion [2].

The vulnerabilities of IDS in the cloud environment can be solved using multiple
evolutionary computing and programming techniques. Therefore, current strategies are
geared toward the use of a combination of several methods together in one system to build
robust and efficient IDSs [3].

Currently, researchers in this field are experimenting with novel methods using meta-
heuristic algorithms, which attempt to combine the benefits of these algorithms and artificial
neural networks (ANNs) to mitigate any significant downside of IDSs [4].

Over the past few years, the applications of DNNs and metaheuristic optimization
algorithms have become quite effective. Furthermore, there are different methods for using
optimization algorithms in the IDSs. One of these methods uses the PSO algorithm, which
simulates self-learning and social organization in groups of animals, such as birds and fish
while finding food [5].

BP is a widely used algorithm for training MLP feedforward neural networks in order
to adjust the model’s weights and biases. Due to its capacity for learning and flexibility, it
has been effectively used in many applications [6]. Furthermore, the PSO algorithm has a
powerful capacity for exploitation as well as a quick speed of convergence [7]. Furthermore,
using the PSO with neural networks gives better outcomes for IDSs [1].

This study attempts to contribute the previous efforts of researchers in this field
using different strategies and an updated dataset to improve the performance of IDSs.
The contributions of this study are summarized as follows:

• We performed a comprehensive empirical study on IDSs using MLP-BP and MLP-PSO
techniques to enhance performance metric scores and determine which model is more
powerful in the cloud environment.

• We tried to provide a general analysis of the CSE-CIC-IDS-2018 dataset, and we used
it to validate the proposed models for both binary and multi-class classification.

• We tried to address the shortcomings in the literature and avoid them in our experi-
ments, as well as comparing our results against them.

• We used several evaluation metrics to provide more detailed analysis and a full view
of the proposed models’ performance.

• In the final analysis, our results show an improvement in performance metric scores,
as shown in Section 5.

The rest of this paper is organized as follows: Section 2 discusses related works.
Section 3 presents the necessary background information. In Section 4, we show the
proposed methods and experimental design. Section 5 presents the results. Section 6
discusses our experimental results and compares them with those in the related literature.
Finally, Section 7 concludes this study, followed by future research directions.

2. Related Works

In this section, we will discuss the literary works related to this study, especially those
based on DNNs for IDSs, which use the CSE-CIC-IDS2018 dataset. Several researchers have
used this approach, with one goal: making the IDSs in the CC more efficient and robust by
increasing the model scores (accuracy, precision, etc.).

Tables 1 and 2 show a list of these studies’ aims, methodologies, environments, and best
performance scores. Although all these studies used the CSE-CIC-IDS2018 dataset, each
has its own implementation strategy for the proposed IDSs; the features selection pro-
cess may differ from study to study, in addition to the number of features and samples,
and approaches to data preprocessing and splitting. Furthermore, on the level of the DNN
architecture, the tuning of the hyperparameters, the number of layers and neurons, and the
activation and optimization functions may vary.
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Table 1. Summary of related works.

Author Year Aim Method Environment

[8] 2020 To understand the nature of an attack DNN Autoencoder Python, Keras, Tensorflow
[9] 2020 To tackle the class imbalance problem DNN Scikit-learn, Tensorflow, Google Colab
[10] 2020 To identify the capability of IDS models DNN Several PCs (using GPU on some PCs)
[11] 2021 To improve detection performance DNN Autoencoder Python, Keras, Tensorflow-GPU
[12] 2021 To increase classification accuracy TCN + LSTM Python, Tensorflow
[13] 2022 To increase security and performance DNN Python, Numpy

Table 2. Best performance scores on the CSE-CIC-IDS2018 dataset.

Author Accuracy Precision Recall F1-Score

[8] 97.90% 98.00% 98.00% 98.00%
[9] 96.99% 97.46% 96.97% 97.04%
[10] 98.38% 97.79% 97.74% 97.76%
[11] 95.79% 95.38% 95.79% 95.11%
[12] 97.77% 97.94% 97.53% 97.73%
[13] 97.93% 99.97% 97.42% 98.68%

2.1. A Semi-Self-Taught Network Intrusion Detection System [8]

The authors used the denoising autoencoder (DAE) and the fuzzy c-means algorithm
to build their IDS. This strategy was chosen to address missing values and duplicate data
because the different class labels for duplicate or misclassified instances cause class noise.
The ratio for training–validation–testing was 70%-15%-15%. The performance scores were
97.90% for accuracy and 98.00% for precision and recall. The limitations of this study
include the lack of detail about the experiment and the use of only one classifier.

2.2. Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and
Deep Learning [9]

The authors used a classical classification algorithm comprising machine learning
(ML) and deep learning (DL), including random forest (RF), support vector machine (SVM),
XGBoost, long short-term memory (LSTM), AlexNet, and Mini-VGGNet. The network was
trained on the NSL-KDD and CSE-CIC-IDS2018 datasets. Data preprocessing involved the
removal of the timestamp, destination address, source address, source port, etc., from the
CSE-CIC-IDS2018. The training–testing ratio was 80%-20%. The highest accuracy was
96.99%, with a precision of 97.46% and 96.97% for recall. The shortcoming of this research
is the absence of specific essential details about the experiments.

2.3. Deep Learning Methods in Network Intrusion Detection: A Survey and an
Objective Comparison [10]

The authors used four models based on DNN, AE, deep belief network (DBN),
and LSTM. These models were trained on KDD99, NSL-KDD, CIC-IDS2017, and CSE-
CIC-IDS2018. The outcomes demonstrate the DNN model’s efficacy on all four datasets.
Concerning CSE-CIC-IDS2018, the highest accuracy for the DNN was 98.38%, correspond-
ing to a precision of 97.79% and a recall of 97.74%. Some of the PCs involved in the
experiments utilized GPU acceleration. The absence of performance scores for multi-class
classification was a limitation of this study.

2.4. Attack Classification of an Intrusion Detection System Using Deep Learning and
Hyperparameter Optimization [11]

The authors developed a hybrid deep-structured model using DAE for training and
DNN for attack classification. They used an autoencoder as an input and a DNN as an
output classifier. The raining–testing ratio was 10%-2.5%. Despite the contribution of this
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helpful study, the accuracy (95.79%) was the lowest among other related works, and the
training–testing ratio was very small.

2.5. Network Anomaly Detection with Temporal Convolutional Network and U-Net Model [12]

The authors proposed three models to make the classification of network threats more
accurate and to compare the datasets used in their study. The first model used a U-shaped
network (U-Net), one of the convolutional neural networks (CNNs). The second model
was based on a temporal convolutional network (TCN). The last model was based on
a combination of TCN and LSTM. Furthermore, they trained the proposed models on
the KDD99 and CSE-CIC-IDS2018 datasets. The ratio for training–validation–testing was
72%-18%-10%. The highest accuracy score was 97.77% based on the TCN-LSTM model,
with a precision of 97.94% and 97.53% for recall. The lack of performance scores for binary
classification was a limitation of this research.

2.6. Cyber Threat Intelligence Using PCA-DNN Model to Detect Abnormal Network Behavior [13]

The authors used two models based on DNN and DNN with principal component
analysis (PCA). Furthermore, they used one-hot encoding and min–max scaling in the data
preprocessing phase. They reduced the training time by half while maintaining the accuracy
rate using DNN-PCA with only 12 features from the dataset. The training–testing ratio
was 80%-20%. From the confusion matrix in the results, we can quickly achieve the highest
accuracy of 97.93%, with a precision of 99.97% and a recall of 97.42%. A disadvantage was
the absence of performance scores covering the multi-class classification.

3. Background

This section briefly presents a background of the IDS, DNN, PSO, and CSE-CIC-
IDS2018 dataset, as shown in the following subsections.

3.1. Intrusion Detection System

An IDS is a piece of software, piece of hardware, or system that can detect harmful
activity or protect the system from insider and outsider attacks on the installed device or
network. Today, IDSs are an essential tool that network administrators use to protect their
systems from cyber and intrusion attacks. The following Figure 1 shows the classification
of cloud-based IDSs.

Figure 1. Classification of cloud-based IDSs.

3.1.1. Cloud-Based IDS Types

IDSs in the cloud can be classified into four main types, as follows:

1. Host IDS (HIDS): The HIDS operates by wiping and evaluating the records gathered
from an individual computer system. The HIDS monitors system activities, such as
system logs and CPU usage, to detect if the system has been attacked, and sends an
alarm to the administrators [14].

2. Network IDS (NIDS): The NIDS observes and analyzes network flow and examines
packet flow to detect suspicious activities, such as port scanning. NIDS efficiently
detects network attacks, such as denial of service (DoS) [15].
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3. Distributed IDS (DIDS): The DIDS contains various IDSs, for instance, HIDS and
NIDS, that may communicate between themselves or with a centralized server for
network monitoring. It may contain two main types of IDS methods. DIDS has the
advantage of detecting known and unknown attacks [15].

4. Hypervisor IDS: The hypervisor IDS was created to run a virtual machine (VM),
which observes communication between the VM and hypervisors. This type has the
advantage of providing state information and event monitoring [16].

3.1.2. Cloud-Based IDS Methods

IDS in the cloud can be classified into two main methods, with a third possibility
available, as follows:

1. Signature-based detection: This approach is indicated as misuse- or rule-based. It is
based on documented signatures of previous attacks and aims to identify applicable
intrusions by analyzing data in opposition to these predefined guidelines. Data
compliance with the predefined guidelines could be identified as attacks and invoke
an alarm. This system is not capable of detecting unknown attacks [17].

2. Anomaly-based detection: This system requires modern network users to be compared
with a baseline of historically learned ordinary community behavior. The baseline is
built using observations of the community and hosts for a prolonged period of profile
creation. Any enormous perversion from this baseline is identified as an anomaly and
invokes an alert. This system is capable of detecting unknown attacks [17].

3. Specification-based detection: This system is a hybrid of signature and anomaly, using
the signature approach to detect known attacks and the anomaly approach to detect
unknown attacks [18].

3.2. Deep Neural Network

ANNs are computer programs that are biologically inspired and are intended to
imitate how the human brain processes information and obtains knowledge by identifying
the patterns and correlations included within the data through experience [19]. ANNs
comprise several individual units called neurons, which are coupled with weights to create
the neural structure of the network, arranged in layers [20].

Nowadays, the term DNN is used to refer to a neural network with multiple hidden
layers [21], and DNNs are categorized as a subset of ML [22,23]. Figure 2 shows the
relationship between artificial intelligence (AI), ML, and DL.

Figure 2. Relationship between AI, ML, and DL.

In a DNN, when the weights of hidden layers are fully connected, this is called
MLP [24]. In MLP, each neuron of the network has an activation function (such as softsign,
tanh, relu, etc.). MLPs are categorized under feedforward algorithms in which the data
flow from the input, through the hidden layers, to the output in one direction [25].

If the algorithm just calculates the weighted sum in each neuron and moves to the
next layer, it cannot learn the weights used to minimize the cost function. Unless the
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algorithm iterates, there is no effective learning. To do this, we need to use the BP as a
learning algorithm, which allows the MLP to adjust the network’s weights iteratively by
using gradient descent to make the cost function as low as possible [26,27].

To summarize, DNN refers to an ANN with multiple hidden layers [28], and feed-
forward refers to the ANN’s data flow in one direction from the input to the output [29].
MLP refers to an ANN with fully connected neurons and the use of a kind of activation
function [30]. Using gradient descent, BP allows the MLP to adjust the weights to iteratively
minimize the cost function [31]. Figure 3 describes the architecture of MLP.

Figure 3. MLP: feedforward DNN with BP and two hidden layers.

3.3. Particle Swarm Optimization

In 1995, Kennedy and Eberhart proposed the PSO algorithm [32], the goal of which
was to solve optimization problems. It is a metaheuristic algorithm categorized under
swarm intelligence algorithms [33]. The concept of PSO is to imitate the behavior of birds
to acquire food [34]. Each bird modifies its position in the search space to achieve the
best solution. Any time a bird finds a food source, it will head toward it [35]. Over the
generations (iterations), every particle searches for its own optimal solution and the optimal
solution in the swarm. Then, it updates the particle’s position (p) and the rate of change
associated with the position (velocity). These updates will affect the personal best (pbest),
and global best (gbest) values [36].

The following Equation (1) shows how the velocity is dynamically adjusted for
each particle:

vt+1
k = vt

k + c1r1

(
pbestt

k − pt
k

)
+ c2r2(gbestt − pt

k) (1)

The velocity in the (t + 1)th iteration is affected by the three variables listed in Table 3
below [37].

Table 3. Velocity components.

Notation Component

vt
k physical component

c1r1

(
pbestt

k − pt
k

)
cognitive component

c2r2(gbestt − pt
k) social component

The position equation, Equation (2), can be written as follows:

pt+1
k = pt

k + vt+1
k (2)

Table 4 shows the main parameters used in Equations (1) and (2).
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Table 4. Parameters of PSO.

Parameter Description

pk the position of a particle
vk the velocity of a particle

pbestk the best solution for the particle
gbestk the best solution for the swarm

c1 cognitive factor
c2 social factor

r1, r2 random numbers between 0 and 1
t the iteration number

Figure 4 shows how the moving particle looks in the search space, and Figure 5 shows
the steps of the PSO algorithm.

Figure 4. Moving particle in PSO.

Figure 5. Steps of the PSO algorithm.

3.4. CSE-CIC-IDS2018 Dataset

The CSE-CIC-IDS2018 dataset is a collaboration project proposed in 2018 by CSE [38]
and CIC [39]. The dataset is available to download on Amazon Web Services (AWS) [40,41].

The dataset contains ten CSV files representing ten days from the captured network
flow, with more than 16.2 million samples. Furthermore, more than 80 features were
extracted by the CICFlowMeter tool.

This dataset includes six primary intrusion attack types: distributed DoS (DDoS), DoS,
brute force, bot, infiltration, and web attacks, as shown in Tables 5 and 6 and Figure 6.
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Table 5. The network traffic of CSE-CIC-IDS2018.

Day File Name Features Type of Attack Count Total

1 Wednesday-14-02-2018 80
Benign 667,626

1,048,575FTP-BruteForce 193,360
SSH-Bruteforce 187,589

2 Thursday-15-02-2018 80
Benign 996,077

1,048,575DoS attacks-GoldenEye 41,508
DoS attacks-Slowloris 10,990

3 Friday-16-02-2018 80
Benign 446,772

1,048,574DoS attacks-Hulk 461,912
DoS attacks-SlowHTTPTest 139,890

4 Thursday-20-02-2018 84 Benign 7,372,557 7,948,748DDoS attacks-LOIC-HTTP 576,191

5 Wednesday-21-02-2018 80
Benign 360,833

1,048,575DDoS attack-HOIC 686,012
DDoS attack-LOIC-UDP 1730

6 Thursday-22-02-2018 80

Benign 1,048,213

1,048,575Brute Force -Web 249
Brute Force -XSS 79

SQL Injection 34

7 Friday-23-02-2018 80

Benign 1,048,009

1,048,575Brute Force -Web 362
Brute Force -XSS 151

SQL Injection 53

8 Wednesday-28-02-2018 80 Benign 544,200 613,071Infilteration 68,871

9 Thursday-01-03-2018 80 Benign 238,037 331,100Infilteration 93,063

10 Friday-02-03-2018 80 Benign 762,384 1,048,575Botnet 286,191
Total of rows (Samples) = 16,232,943; Total of columns (Features) = 84.

Table 6. Primary attack classes of CSE-CIC-IDS2018.

Class Benign DDoS DoS Brute Force Bot Infilteration Web

Type Benign

HOIC Hulk FTP
Botnet Infiltration

Web
LOIC-UDP GoldenEye XSS

LOIC-HTTP Slowloris SSH SQL InjectionSlowHTTPTest

Count 13,484,708 1,263,933 654,300 380,949 286,191 161,934 928
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Figure 6. Distribution of attack classes in CSE-CIC-IDS2018.

4. Methodology

According to the study’s goals, we aimed to build robust and efficient IDSs in the
cloud environment. We proposed two models, the first using MLP-BP and the other using
MLP-PSO, and used the CSE-CIC-IDS-2018 dataset to train them. The following subsections
describe the research design and experimental setup.

4.1. Research Framework and Proposed Methods

This project comprises three phases, and the output from each phase will come as
input to the next, as shown in the following Figure 7.

Figure 7. The framework of research.

• Phase 1: Data preprocessing and cleaning are performed in this phase, including
missing, duplicate, infinity, and NaN values. Furthermore, it includes processes such
as dropping unnecessary features, feature importance, feature selection, data encoding,
and data standardization.

• Phase 2: In this phase, we will use four scenarios for the training based on DNNs. We
will build two models, the first using MLP-BP and the other using MLP-PSO for both
binary and multi-class classification.
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• Phase 3: We will use the confusion matrix and equations of performance metrics to
evaluate the outcomes of our models.

The flowchart of the proposed methodology is illustrated in Figure 8, and Figure 9
describes the frameworks of our models.

Figure 8. General methodology workflow.

Figure 9. The proposed models’ frameworks: (a) binary classification; (b) multi-class classification.

4.2. Data Preparation and Preprocessing

Firstly, we combined the CSV files into one using JupyterLab and Python with the
Pandas and Numpy libraries. Furthermore, we cleaned the dataset by removing positive
and negative infinity and NaN values. After that, we dropped unnecessary features
(“Timestamp”, “Flow ID”, “Src IP”, “Src Port”, and “Dst IP”). In the next step, from the
Scikit-learn library, we used the random forest classifier to compute the feature importance,
as illustrated in Figure 10.

Figure 10. Feature importance ranking of CSE-CIC-IDS2018.
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In contrast, from the Scikit-learn library, we used the SelectFromModel class for feature
selection. The outcome of this process was that 24 features were selected, as displayed in
Table 7.

Table 7. List of selected features.

Rank Feature Rank Feature Rank Feature

1 Dst Port 9 Flow Duration 17 Fwd IAT Min
2 Fwd Seg Size Min 10 Fwd IAT Mean 18 Flow Pkts/s
3 Init Fwd Win Byts 11 Fwd IAT Max 19 Fwd Header Len
4 Fwd Pkt Len Max 12 Flow IAT Max 20 Init Bwd Win Byts
5 TotLen Fwd Pkts 13 Fwd Seg Size Avg 21 Bwd Pkts/s
6 Subflow Fwd Byts 14 Flow IAT Min 22 Pkt Len Max
7 Fwd Pkt Len Mean 15 Fwd Pkts/s 23 Tot Fwd Pkts
8 Fwd IAT Tot 16 Flow IAT Mean 24 Subflow Fwd Pkts

Afterward, we made two copies of the dataset. The first copy was for binary classifi-
cation, and the second was for multi-class classification, containing the following classes:
Benign, DDoS, DoS, BruteForce, Bot, Infilteration, and Web.

In the final step, we applied OneHotEncoder to the label column (Y) to convert the
categorical data into numerical data, differentiating each class from the others. This process
is essential because the neural network requires the data to be numeric. Finally, we applied
StandardScaler to the other columns (X); the data had a mean value of 0 and a standard
deviation of 1. In other words, after applying StandardScaler, the original distribution
of the data remains the same, with the range restricted to [0, 1]. This process is helpful
in classification.

4.3. Experimental Setup

Our experiments were applied on AWS, which provides many services, such as the
elastic compute cloud (EC2). From EC2, we used an instance size of p3.8xlarge to train our
models with GPUs. Accordingly, we used TensorFlow to distribute training across multiple
GPUs using the tf.distribute.Strategy API [42]. Furthermore, we used the Pyswarms toolkit
package [43] in our proposed MLP-PSO model.

In this subsection, we will summarize our DNN structure and all of the main tools
used in this study, as given in the following tables and figures. Figure 11 describes our
DNN architecture.

Figure 11. The architecture of our DNN.

Our DNN parameters are shown in Table 8. Furthermore, Table 9 lists the hardware
resources and software environments used in this study. The most important libraries,
classes, modules, functions, and algorithms used in our experiments are shown in Table 10.
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Table 8. Our DNN parameters.

Parameter Value

Hidden layers (h) 2
n Number of neurons

n f eatures 24

n classes 2 neurons in binary classification
7 neurons in multi-class classification

Loss function “BinaryCrossentropy” for binary classification
“CategoricalCrossentropy” for

multi-class classification
Optimization algorithm Adam

Learning rate Using ExponentialDecay
Batch size 2048

Epochs 100

Training-testing ratio 70% (11,363,060 samples)–30% (4,869,883
samples)

Cross-validation 5 folds
PSO iterations 50

PSO swarm 25
PSO c1 1.5
PSO c2 1.5
PSO w 0.9

Table 9. List of hardware resources and software environments.

Hardware/Software Detail

Computing platform

Platform: Amazon Web Services (AWS)
Instance size: p3.8xlarge

OS: Ubuntu 20.04.4 LTS x86_64
CPU: Intel Xeon E5-2686 v4 3.00GHz

GPUs: 4x (NVIDIA Tesla V100 SXM2 16GB)
vCPUs: 32

RAM: 244 (GiB)
Programming language Python

Web-based IDE JupyterLab
ML framework Scikit-learn
DL framework TensorFlow-GPU

DL API Keras

Table 10. List of programming tools.

List 1 List 2 List 3

math keras.layers PyCM
keras keras.models KFold

numpy keras.callbacks EarlyStopping
pandas sklearn.metrics GlobalBestPSO
sklearn keras.optimizers StandardScaler
seaborn sklearn.ensemble train_test_split
datetime sklearn.preprocessing OneHotEncoder

matplotlib sklearn.neural_network classification_report
pyswarms sklearn.model_selection LearningRateScheduler
Tensorflow sklearn.feature_selection RandomForestClassifier

5. Results

We will use the following equations in Table 11 to evaluate the performance metrics
for binary classification, and those in Table 12 to evaluate the performance metrics for
multi-class classification [44–46].
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Table 11. Equations of the performance metrics for binary classification.

Measure Formula

Accuracy Acc = (TP + TN)/Total
Misclassification Rate (Error Rate) ERR = 1-Acc

Precision (Positive Predictive Value) PPV = TP/(TP + FP)
Recall (Sensitivity or True Positive Rate) TPR = TP/(TP + FN)

Specificity (True Negative Rate) TNR = TN/(TN + FP)
F1-score F1 = 2(PPV * TPR)/(PPV + TPR)

False Positive Rate (Type I Error) FPR = FP/(TN + FP) or FPR = 1-Specificity
False Negative Rate (Type II Error) FNR = FN/(TP + FN) or FNR = 1-Sensitivity

Table 12. Equations of the performance metrics for multi-class classification.

Measure Formula

Accuracy Acc =
∑ TP
Total

Precision PPV = ∑
TP

(TP + FP)

Recall TPR = ∑
TP

(TP + FN)

5.1. MLP-BP (Binary Classification)

Table 13 describes the average accuracy of the proposed models for binary classification
using five-fold cross-validation.

Table 13. The average accuracy of proposed models for binary classification.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average Accuracy

MLP-BP 98.95% 98.97% 98.99% 98.98% 98.97% 98.97%
MLP-PSO 96.23% 96.24% 96.25% 96.26% 96.25% 96.25%

Figures 12 and 13 show the training and testing accuracy and the confusion matrix of
MLP-BP for binary classification. Table 14 provides the performance metric scores.

Figure 12. Accuracy of MLP-BP for binary classification.
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Figure 13. Confusion matrix of MLP-BP for binary classification.

Table 14. Performance scores for each class of MLP-BP for binary classification.

Class Precision Recall F1-Score Samples

Benign 0.99 1.00 0.99 4,046,458
Intrusion 1.00 0.94 0.97 823,425

5.2. MLP-PSO (Binary Classification)

Figures 14 and 15 show the training and testing accuracy and the confusion matrix of
MLP-PSO for binary classification. Table 15 provides the performance metric scores.

Figure 14. Accuracy of MLP-PSO for binary classification.
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Figure 15. Confusion matrix of MLP-PSO for binary classification.

Table 15. Performance scores for each class of MLP-PSO for binary classification.

Class Precision Recall F1-Score Samples

Benign 0.97 0.99 0.98 4,046,458
Intrusion 0.93 0.84 0.88 823,425

5.3. MLP-BP (Multi-Class Classification)

In addition to the binary classification, we show the multi-class classification results
with the MLP-BP and MLP-PSO models. Table 16 shows the average accuracy of the
proposed models for multi-class classification using five-fold cross-validation.

Table 16. The average accuracy of proposed models for multi-class classification.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average Accuracy

MLP-BP 98.40% 98.39% 98.41% 98.42% 98.41% 98.41%
MLP-PSO 95.31% 95.32% 95.32% 95.31% 95.32% 95.32%

Table 17 describes the scores of performance metrics for each class of MLP-BP for
multi-class classification.

Table 17. Performance scores for each class of MLP-BP for multi-class classification.

Class Precision Recall F1-Score Samples

Benign 0.99 1.00 0.99 4,046,458
DDoS 1.00 1.00 1.00 378,558
DoS 0.96 0.90 0.93 196,350

BruteForce 0.84 0.94 0.89 113,902
Bot 1.00 1.00 1.00 85,680

Infilteration 0.44 0.01 0.01 48,649
Web 0.95 0.24 0.38 286

Figures 16 and 17 show the training and testing accuracy and the confusion matrix of
MLP-BP for multi-class classification.
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Figure 16. Accuracy of MLP-BP for multi-class classification.

Figure 17. Confusion matrix of MLP-BP for multi-class classification.

5.4. MLP-PSO (Multi-Class Classification)

Table 18 describes the performance metric scores for each class of MLP-PSO for multi-
class classification. Figures 18 and 19 show the training and testing accuracy and the
confusion matrix of MLP-PSO for multi-class classification.
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Table 18. Performance scores for each class of MLP-PSO for multi-class classification.

Class Precision Recall F1-Score Samples

Benign 0.97 0.99 0.98 4,046,458
DDoS 0.98 0.77 0.86 378,558
DoS 0.76 0.86 0.80 196,350

BruteForce 0.72 0.65 0.68 113,902
Bot 0.98 0.98 0.98 85,680

Infilteration 0.00 0.00 0.00 48,649
Web 0.00 0.00 0.00 286

Figure 18. Accuracy of MLP-PSO for multi-class classification.

Figure 19. Confusion matrix of MLP-PSO for multi-class classification.
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6. Discussion

The previous results show that the MLP-PSO model performs worse for binary and
multi-class classification, with accuracy scores of 96.25% and 95.32%. Conversely, the MLP-
BP obtains better accuracy scores (98.97% and 98.41%) for binary and multi-class classi-
fication. Furthermore, the MLP-BP obtains better results for FPR, with a value of 0.13%
for binary classification and 0.45% for multi-class classification. Furthermore, FNR scores
1.20% and 1.15% for binary and multi-class classification, respectively. Although both types
of errors are detrimental to IDSs, FNR (type II error) is more damaging and dangerous since
it incorrectly classifies the intrusion attacks as benign. Table 19 summarizes the overall
performance scores of the proposed models.

We point out that these results may differ according to the dataset or the strategy.
Through our experiments in this study, we find that TensorFlow and Keras have sufficient
tools to achieve perfect results without needing an external optimization algorithm. In other
situations, it may be helpful to use an optimization algorithm to achieve the best results.

Furthermore, the PSO does not achieve better scores and requires a great deal of train-
ing time and hardware resources. Therefore, we suggest building a DNN with TensorFlow
and Keras and evaluating the performance before using an external optimization algorithm.
After that, according to the outcomes, it can be determined if an optimization algorithm
is required.

Additionally, we advise adjusting the learning rate and trying several times to achieve
excellent scores and converge toward the minimum in a less noisy manner. TensorFlow
and Keras provide several methods to achieve this, such as LearningRateScheduler and Ex-
ponentialDecay.

The best performance scores of the proposed MLP-BP and MLP-PSO models compared
with those in related works are given in Table 20.

Table 19. Overall performance scores of the proposed models.

Model Accuracy ERR Precision Recall F1-Score FPR FNR

MLP-BP (Binary Classification) 98.97% 1.03% 99.98% 98.80% 99.38% 0.13% 1.20%
MLP-PSO (Binary Classification) 96.25% 3.75% 98.75% 96.80% 97.76% 6.48% 3.20%

MLP-BP (Multi-class Classification) 98.41% 1.59% 99.55% 98.85% 99.20% 0.45% 1.15%
MLP-PSO (Multi-class Classification) 95.32% 4.68% 98.97% 96.27% 97.60% 1.03% 3.73%

Table 20. The best performance scores of the proposed models compared with related works.

Model Accuracy Precision Recall F1-Score

[8] 97.90% 98.00% 98.00% 98.00%
[9] 96.99% 97.46% 96.97% 97.04%
[10] 98.38% 97.79% 97.74% 97.76%
[11] 95.79% 95.38% 95.79% 95.11%
[12] 97.77% 97.94% 97.53% 97.73%
[13] 97.93% 99.97% 97.42% 98.68%

Proposed MLP-PSO 96.25% 98.75% 96.80% 97.76%
Proposed MLP-BP 98.97% 99.98% 98.80% 99.38%

7. Conclusions and Outlooks

In this study, we conducted four experiments based on the MLP-BP and MLP-PSO
models for binary and multi-class classification on the CSE-CIC-IDS-2018 dataset. We
presented a list of related works and discussed them. Furthermore, we provided an analysis
of the CSE-CIC-IDS-2018 dataset and details of our DNN architecture, data preparation,
data preprocessing, feature importance, feature selection, and proposed models.

Additionally, we described the details of the hardware resources and software envi-
ronments used in this study, in addition to the most important libraries, classes, modules,
functions, and algorithms used in our experiments.
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Finally, we provided and discussed the results. The best accuracy for binary classi-
fication was 98.97% and that for multi-class classification was 98.41% based on MLP-BP.
Furthermore, we tried to provide some essential tips that we think are useful to researchers
in this field. Furthermore, our proposed models showed an improvement in performance
metrics scores, which we compared with those in related works.

In the future, we plan to run our IDSs in a cloud computing environment and evaluate
the detection efficiency in real time. Furthermore, we propose using another approach or a
different metaheuristic optimization algorithm to improve the results.
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Abbreviations

CC Cloud Computing
AI Artificial Intelligence
ML Machine Learning
DL Deep Learning
BP Backpropagation
RF Random Forest
VM Virtual Machine
AE Autoencoder
DAE Denoising Autoencoder
IDS Intrusion Detection System
ANN Artificial Neural Network
DNN Deep Neural Network
DBN Deep Belief Network
CNN Convolutional Neural Network
TCN Temporal Convolutional Network
U-Net U-shaped Network
MLP Multi-Layer Perceptron
PSO Particle Swarm Optimization
SVM Support Vector Machine
PCA Principal Component Analysis
CSE Communications Security Establishment
CIC Canadian Institute for Cybersecurity
AWS Amazon Web Services
EC2 Elastic Compute Cloud
IDE Interactive Development Environment
Acc Accuracy
ERR Error Rate
PPV Positive Predictive Value
TPR True Positive Rate
TNR True Negative Rate
FPR False Positive Rate
FNR False Negative Rate
DoS Denial of Service
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DDoS Distributed Denial of Service
LSTM Long Short-Term Memory
HIDS Host Intrusion Detection System
NIDS Network Intrusion Detection System
DIDS Distributed Intrusion Detection System
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