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Abstract: Stereophonic audio devices employ two loudspeakers and two microphones in order
to create a bidirectional sound effect. In this context, the stereophonic acoustic echo cancellation
(SAEC) setup requires the estimation of four echo paths, each one corresponding to a loudspeaker-
to-microphone pair. The widely linear (WL) model was proposed in recent literature in order to
simplify the handling of the SAEC mathematical model. Moreover, low complexity recursive least-
squares (RLS) adaptive algorithms were developed within the WL framework and successfully tested
for SAEC scenarios. This paper proposes to apply a data-reuse (DR) approach for the combination
between the RLS algorithm and the dichotomous coordinate descent (DCD) iterative method. The
resulting WL-DR-RLS-DCD algorithm inherits the convergence properties of the RLS family and
requires an amount of mathematical operations attractive for practical implementations. Simulation
results show that the DR approach improves the tracking capabilities of the RLS-DCD algorithm,
with an acceptable surplus in terms of computational workload.

Keywords: adaptive filters; data-reuse (DR); dichotomous coordinate descent (DCD); recursive
least-squares (RLS) algorithm; system identification; stereophonic acoustic echo cancellation (SAEC);
widely linear (WL)

1. Introduction

The standard acoustic echo cancellation (AEC) setup is used by communication ter-
minals comprised of one loudspeaker and one microphone. The AEC process employs
an adaptive filter to estimate an unknown impulse response, which generates undesired
replicas of the loudspeaker signal [1–3]. The goal is to eliminate the unknown system’s
output (or the echo) contribution from the mix of signals captured by the microphone,
which is situated in the same room [1,4–7]. The corresponding unknown system identifica-
tion configuration uses as input the loudspeaker signal, with the microphone’s input as
a reference. From the microphone contributions, an echo estimate is subtracted, and the
resulting signal is sent to the interlocutor, ideally without any unwanted acoustic replicas.

When the communication terminal consists of N loudspeakers with M microphones,
the number of possible echo paths is given by the value N ×M [4,8–10]. The stereophonic
communication terminal represents the minimal configuration which can provide the
impression of audio directionality, having N = M = 2. In order to perform the stereophonic
AEC (SAEC), we must take into consideration that each loudspeaker-to-microphone pair
can generate unwanted acoustic replicas. Correspondingly, two input (loudspeaker) signals
with two microphone signals, are used in four AEC-type system identification setups in
order to estimate four corresponding unknown impulse responses [4,8,11–13]. Additionally,
compared to the single channel scenarios, the SAEC process is also hindered by the existing
correlation between the two acoustic channels, which might not generate unique solutions
when using adaptive algorithms [8,9,14–17]. In the recent literature, the solution to the
problem represented by the coherence between the acoustic channels has been approached
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by employing a pre-distortion block, which mitigates the correlation with some cost in
terms of signal quality [4,5,9,18].

In [5,18], the widely linear (WL) model was introduced in order to improve the han-
dling of the SAEC framework when employing several types of adaptive filters. It groups
the four adaptive filters and multiple real valued variables into a single adaptive filter and
fewer complex valued variables (CRVs). Moreover, the WL approach also opened the way
for other various developments proposed for SAEC systems, such as improved behaviour
when working in low signal-to-noise ratio (SNR) conditions [19]. Although considerable
effort was invested in enhancing robustness features, the SAEC setup interpreted using
the WL framework leaves more room for applying developments which has proved to be
successful for other configurations employing adaptive systems.

Among the essential performance indicators for any adaptive algorithm in AEC/SAEC
scenarios (i.e., system identification setups) [1,4,20], the tracking speed represents the capac-
ity of following any changes that might occur in the unknown echo paths. The current
adaptive systems in the industry employ algorithms from the least-mean-square (LMS)
family for most practical applications [1]. The LMS methods have the advantage of deliv-
ering satisfactory performance with a relatively limited arithmetic effort with respect to
other potential solutions. However, they provide poor results when working with highly
correlated input signals (such as speech) in terms of tracking speed and accuracy at steady
state (i.e., when convergence is achieved).

Consequently, due to their capabilities of reducing the correlation of input signals
and generating superior tracking performances, the recursive least-squares (RLS) fam-
ily of algorithms is the subject to considerable research. They are also known for their
excessively costly arithmetic workloads, which make them prohibitive for practical ap-
plications. However, a successful attempt at mitigating this problem is the combination
between the exponentially weighted RLS and the dichotomous coordinate descent (DCD)
iterations [5,21,22]. The RLS-DCD algorithm generates performance similar to classical
RLS versions, such as the one employing the matrix inversion lemma [1]. The RLS-DCD
replaces the classical matrix inversion problem with an auxiliary system of equations and
exploits the time-shift nature of the input data in order to generate a solution using only
additions and bit shifts. The overall complexity corresponding to the RLS-DCD algorithm
is proportional to the adaptive filter’s length multiplied by a small factor (in terms of
multiplications and additions).

In this paper, we improve the tracking capabilities of the RLS-DCD algorithm working
within the WL framework by employing the recently introduced data-reuse (DR) approach
for adaptive algorithms from the RLS family [23,24]. The DR methodology is based on
performing multiple filter updates using the same input data (i.e., in the same adaptive filter
iteration). In the recent literature, it proved to generate superior performance for other RLS
versions, with the cost of some extra arithmetic effort when used for real valued adaptive
filters in system identification scenarios [23]. Simulation results will demonstrate that the
namely WL-DR-RLS-DCD has increased tracking capabilities even when identifying long
impulse responses and using highly correlated input signals, such as speech sequences. The
complexity analysis will also reveal that the proposed method requires acceptable hardware
resources, and it is a suitable candidate for practical applications in SAEC scenarios with
long acoustic paths.

The remainder of this paper is organized as follows. In Section 2, the SAEC system
configuration based on the WL model is introduced. Section 3 describes the complex valued
WL-RLS-DCD algorithm for SAEC scenarios, and Section 4 introduces a new version
of the presented adaptive method based on the DR approach with improved tracking
capabilities. Simulation results are discussed in Section 5. Several relevant aspects are
discussed in Section 6, and a few conclusions are drawn in Section 7 based on the theoretical
contributions in the presented simulations.
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2. System Model

For the SAEC configuration (see Figure 1), we refer to the acoustic channels as the
left (Lc) and the right one (Rc). We employ the discrete time index n to denote the input
(loudspeaker) signals as xLc(n) and xRc(n). They can be used to express two L× 1 vectors
comprising the most recent L input samples for each channel as [4]:

xLc(n) = [xLc(n) xLc(n− 1) · · · xLc(n− L + 1)]T , (1)

xRc(n) = [xRc(n) xRc(n− 1) · · · xRc(n− L + 1)]T . (2)

Figure 1. The WL model for SAEC systems.

Moreover, we combine the four loudspeaker-to-microphone echo path impulse re-
sponses of length L (denoted by the L× 1 vectors ht,LcLc , ht,LcRc , ht,RcLc , and ht,RcRc ) to write
the echo contributions corresponding to the stereophonic channels [4]:

yLc(n) = hT
t,LcLc

xLc(n) + hT
t,RcLc

xRc(n), (3)

yRc(n) = hT
t,LcRc

xLc(n) + hT
t,RcRc

xRc(n), (4)

where superscript T denotes the transpose operator. Consequently, the microphone signals
can be expressed as [4]:

dLc(n) = yLc(n) + wLc(n), (5)

dRc(n) = yRc(n) + wRc(n), (6)

where wLc(n) and wRc(n) represent environmental noise signals, which are uncorrelated
with yLc(n) and yRc(n).

The WL model combines the previously introduced real random variables into fewer
CRVs in order to improve the handling of the SAEC setup. The signals associated with
the inputs and the outputs of the unknown echo paths can be paired using the notation
j =
√
−1 into:

x(n) = xLc(n) + jxRc(n), (7)

y(n) = yLc(n) + jyRc(n). (8)

Moreover, the four unknown impulse responses can be combined into
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hα,1 =
ht,LcLc + ht,RcRc

2
, hα,2 =

ht,RcLc − ht,RcRc

2
, (9)

hβ,1 =
ht,LcLc − ht,RcRc

2
, hβ,2 = −ht,RcLc + ht,LcRc

2
, (10)

with the purpose of obtaining the complex valued forms [4]

hα = hα,1 + jhα,2, (11)

hβ = hβ,1 + jhβ,2, (12)

and express the output complex signal as

y(n) = hH
α x(n) + hH

β x∗(n), (13)

where the superscripts H and ∗ denote the transpose-conjugate and conjugate operators,
respectively, and

x(n) = [x(n) x(n− 1) · · · x(n− L + 1)]T (14)

= xLc(n) + jxRc(n). (15)

Consequently, the complex vectors from (11) and (12) can be concatenated to obtain the
2L× 1 complex valued vector comprising the information corresponding to the coefficients
of the four unknown impulse responses

h̃t =
[
hT

α hT
β

]T
, (16)

and a corresponding 2L× 1 input vector can be defined as

x̃(n) =
[
xT(n)xH(n)

]T
. (17)

Using (16) and (17), a more compact expression can be written for the complex echo
signal as

y(n) = h̃H
t x̃(n). (18)

Finally, by also expressing the complex valued noise w(n) as

w(n) = wLc(n) + jwRc(n), (19)

the microphone signals corresponding to the left and right channels can be written as:

d(n) = dLc(n) + jdRc(n) = y(n) + w(n). (20)

The error signal can now be expressed as

e(n) = d(n)− ỹ(n) = d(n)− h̃H(n)x̃(n), (21)

where ỹ(n) is the estimate of the complex valued system’s output computed using the
adaptive filter’s set of coefficients h̃(n) (which approximates h̃t).

The described framework improves the handling of SAEC scenarios using adaptive
algorithms. Moreover, it favors the development of corresponding new features by re-
casting four unknown system identification problems into a single one. The two-input/two-
output system with real random variables is viewed as a single-input/single-output system
with CRVs.
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3. WL-RLS-DCD

For the RLS family of adaptive algorithms employed in SAEC scenarios with the WL
framework, the vectors from (16) and (17) are interleaved instead of concatenated (as it
was presented in the previous section). However, the new formulations do not affect the
definition of the complex reference signal d(n) [4,5].

Firstly, the vector comprising the input samples from (14) and (17) is redefined to
reflect the new positioning of the complex valued samples and their transpose-conjugate
counterparts. Consequently, we write:

x̃(n) = [x(n) x∗(n) . . . x(n− L + 1) x∗(n− L + 1)]T . (22)

In a similar manner, the elements of (11) and (12) are also interleaved in order to
express the new complex valued impulse response to be estimated [4,5]:

h̃t =
[
hα,0 hβ,0 . . . hα,L−1 hβ,L−1

]T , (23)

where hα,l and hβ,l , with l = 0, 1, . . . , L − 1 , are the elements of the vectors hα and hβ,
respectively.

When employing the least-squares approach to generate the complex valued 2L× 1
estimate vector h̃(n) of h̃t, the corresponding cost function is written using (22), (23), and
the complex observation d(n) as:

J
[
h̃(n)

]
=

n

∑
i=1

λn−i
[
d(i)− h̃H(n)x̃(i)

]2
, (24)

where 0 < λ ≤ 1 denotes the forgetting factor, which controls the memory of the algorithm
(i.e., values closer to one increase the adaptive filter’s performance in steady state, while
low values for λ improve the tracking capabilities of the system) [1,4]. When performing
the minimization of the error criterion, two new notations are introduced, i.e., the 2L× 2L
estimate of the correlation matrix

R(n) =
n

∑
i=1

λn−i x̃(i)x̃H(i) = λR(n− 1) + x̃(n)x̃H(n), (25)

and the 2L× 1 cross-correlation vector between the complex input signal and the desired
signal

p(n) =
n

∑
i=1

λn−i x̃(i)d(i) = λp(n− 1) + x̃(n)d(n). (26)

Thus, the solution for the normal set of equations

R(n)h̃(n) = p(n), (27)

leads to the straight-forward expression for the adaptive filter’s coefficients:

h̃(n) = R−1(n)p(n). (28)

The direct approach for computing h̃(n) has a complexity of O(8L3), which is too
costly for practical implementations, such as the ones for SAEC configurations. In acoustic
applications, the number of filter coefficients 2L can easily be in the range of hundreds
or even thousands. Other classical solutions, such as the one based on Woodburry’s
identity (also known as the matrix inversion lemma [1,4]), provide an alternative to (28)
with a complexity O(4L2). However, the required amount of arithmetic operations is still
prohibitive for most computer chips and would considerably increase device prices, power
consumption, etc.
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In this context, the combination between the exponentially weighted RLS adaptive
algorithm and the DCD iterations was proposed as a computationally efficient method,
with a complexity proportional to the adaptive filter’s length multiplied by a small number
(the actual details will be discussed in the next paragraphs). The WL-RLS-DCD is accepted
as a reliable algorithm in multiple types of configurations for acoustic echo cancellation,
including for stereophonic communication setups [5,18,21].

The steps of the WL-RLS-DCD are described in Table 1, where we denoted by R(1)(n)
the first column of the matrix R(n) and by ε a small positive constant employed to initialize
the correlation matrix in a non-singular form. The updates in Steps 1 and 2 can be performed
by relying on the time-shift property of the input vector x̃(n), which is also translated to
R(n). The upper-left (2L− 2)× (2L− 2) sub-matrix of R(n) can be copied to the lower-
right (2L− 2)× (2L− 2) sub-matrix, and only the first two columns and first two rows
must be computed. If we take into consideration that the matrix is Hermitian, the first two
rows can be obtained from the first two columns. Moreover, for every pair of consecutive
columns, starting with an odd position (e.g., column 1, column 3, etc.), the sets of values
comprising one of the columns can also be found in the other column in a conjugate
form, at a distance of ±1 row. Consequently, the only arithmetic operations necessary for
updating R(n) can be employed for a single column (i.e., a set of 2L values). The described
methodology shows how the arithmetic complexity corresponding to Steps 1 and 2 from
Table 1, which is apparentlyO(4L2), can be kept to value proportional to 2L (i.e., the filter’s
length). Further possible optimizations, such as the option of storing only a part of the
matrix, are up to the developers performing the hardware implementations and deciding
on the associated compromises. The latter depend considerably on the value of L (i.e., the
associated memory requirements versus the necessary extra logic elements required to
exploit the time-shift properties).

Steps 3 and 4 of the WL-RLS-DCD represent the standard filtering operation and the
trivial computation of the error signal. In Step 5, the residual component p0(n) is updated
for the current time index by applying the forgetting factor to the so-called residual vector
r(n− 1). The residual component is then employed in Step 6 as part of an auxiliary system
of equations, which can be solved by exploiting the properties of the correlation matrix
R(n) with the DCD iterations. Step 6 produces two sets of results. Firstly, the solution
vector, denoted by ∆h̃(n), is used in Step 7 by adding it to the filter coefficients h̃(n− 1)
determined at the previous time index, thus generating the updated estimate h̃(n) of the
unknown complex valued system. Secondly, the residual vector r(n) is computed to reflect
the changes performed in the filter update process through ∆h̃(n). As can be noticed in
Steps 5 and 6, the vector r(n) will be relevant at the next time index as part of the next
DCD operation.

Table 2 shows a description of the DCD iterations with a leading element. It can be
noted that ∆h̃(n) is initialized with 2L× 1 zeros values, and at the end of the entire DCD
procedure, it represents the solution vector to a system which also comprises the matrix
R(n) and the 2L× 1 residual component p0(n).

The DCD algorithm works under the presumption that R(n) is comprised of complex
values on all positions except the main diagonal, where all values are real positive numbers.
Moreover, on the main diagonal, all values are statistically considerably higher than all
other real or imaginary values in the rest of the matrix (in terms of absolute values). By
exploiting this property, Step 1 of the algorithm chooses the position with the greatest
absolute value in raux (all real and imaginary parts) and performs a comparison with its
counterpart (i.e., same position) on the main diagonal of R(n) in order to determine if
an update should be made in the solution vector. This approach is considered a greedy
behaviour because it searches for the most probable position where an update could be
triggered for ∆h̃.

The parameters of the DCD iterations are the maximum expected amplitude H, the
step size α, the number of bits Mb used for the numerical representation of the real and
imaginary values comprising ∆h̃, and the maximum number of allowed updates Nu. The value
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of H is usually chosen as a power of two (e.g., H = 1), and it is used to initialize the value
of the step size. Considering how the latter is updated in Step 2 of Table 2, this choice
ensures that the multiplication operations performed with α are equivalent to bit shifts.

In Step 1 of the DCD iterations, a search is performed amongst all real and imaginary
parts comprising the vector raux in order to determine the maximum absolute value and
its corresponding position. The target value rtemp is employed in Step 4 to decide if an
update is triggered, by comparing it to the (real and positive) value Rp,p situated on the
corresponding position of the main diagonal of R(n), which is scaled using the step size. If
an update is decided, then the same position in the solution vector (i.e., ∆h̃p) is updated
using α and the sign of rtemp. The operation is equivalent to setting a bit in the binary
representation of one of the real and imaginary values comprising the solution vector ∆h̃.
Moreover, the coefficient update is always followed by another change in the vector raux on
the same position p (Step 6). It is important to note that raux is initialized at the beginning of
the DCD with the values comprising the residual component p0(n), and after the changes
performed by the algorithm, it will represent the residual vector r(n).

If the condition in Step 4 does not trigger an update, then a jump is made to Step 2, and
the value of the step size is halved, making α point to the next lesser significant bit possible.
Such an operation can be performed until the algorithm reaches the least significant bit it
can process (i.e., until m = Mb). Consequently, the algorithm can perform a total number
of updates upper limited by Nu (see the f or loop), or it can exit when it would need to
perform updates in the solution vector equivalent to binary values smaller than the least
significant bit used to represent the real and imaginary values comprising ∆h̃(n) (Step 3).
Due to the nature of the auxiliary system of equations, it is expected the WL-RLS-DCD will
generate satisfactory performance with a small value of Nu (less than 10, or comparable to
it, for larger systems, with thousands of coefficients). In addition, it is natural to assume at
this point that the value Mb also denotes the number of bits used to represent the real and
imaginary parts of the coefficients comprising the adaptive filter h̃(n).

The overall complexity of the employed DCD algorithm (at any time index n) takes
into account that bit shifts replace all potential multiplications, and only additions are
employed. Moreover, a maximum number of Nu update operations can be performed
on the solution vector. The final number of modified ∆h̃(n) coefficients (which are all
initialized with 0) is expected to be much smaller than the filter’s length (i.e., Nu � 2L).
In [5,21], it was demonstrated that the DCD iterations can generate performance similar
to other classical RLS methods for values of Nu smaller than 10. Consequently, the upper
limit for the amount of additions is noted in Table 2.

Information regarding the arithmetic complexity of the WL-RLS-DCD is also displayed
in Table 1, in terms of real valued multiplications and additions. For the DCD stage of
the adaptive algorithm, we evaluated the most complex scenarios when the maximum
number of allowed updates Nu is employed. It can be noted that the amount of necessary
multiplications is a small multiple of the complex valued adaptive filter’s length. The same
conclusion can be drawn for the number of additions, which are combined with bit shifts
in order to solve the auxiliary system of the equation in Step 6.
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Table 1. WL-RLS-DCD Algorithm.

Step Actions × +

Initialization :
0 Set: h̃(0) = 02L×1; r(0) = 02L×1

R(0) = εI2L, ε > 0
For n = 1, 2, . . . , number of iterations :

1 Update x̃(n) using (22)
2 Update R(n) using time-shift

R(1)(n) = λR(1)(n− 1) + x∗(n)x̃(n) 12L 8L
3 ỹ(n) = h̃H(n− 1)x̃(n) 8L 6L− 2
4 e(n) = d(n)− ỹ(n) 2
5 p0(n) = λr(n− 1) + e∗(n)x̃(n) 12L 6L

6 R(n)∆h(n) = p0(n)
DCD−−→ ∆h̃(n), r(n) ≤ (8L + 1)Nu + Mb

7 h̃(n) = h̃(n− 1) + ∆h̃(n) ≤ Nu

Table 2. Complex valued DCD iterations with a leading element at time index n.

Step Actions +

Initialization :
Set: ∆h̃ = 02L×1; raux = p0(n)
α = H, m = 0
For k = 1, 2, . . . , Nu :

1 (val1; pos1) = max{|Re{raux}|} 2L− 1
(val2; pos2) = max{|Im{raux}|} 2L− 1
(p; η) = (val1 > val2) ? (pos1; 1) : (pos2; j) 1
Jump to Step 4

2 α = α/2; m = m + 1
3 If m > Mb

return−−−→
{

∆h̃; raux

}
as
{

∆h̃(n); r(n)
}

4 rtemp = (η == 1) ? Re
{

raux,p
}

: Im
{

raux,p
}

If
∣∣rtemp

∣∣ ≤ α
2 Rp,p

jump−−−→ Step 2 1
5 ∆h̃p = ∆h̃p + sign{rtemp}ηα 1
6 raux = raux − sign{rtemp}ηαRp 4L

Return
{

∆h̃; raux

}
as
{

∆h̃(n); r(n)
}

≤ (8L + 1)Nu + Mb

4. WL-DR-RLS-DCD

In the recent literature, for the process of determining h̃(n) from h̃(n − 1) when
employing RLS adaptive algorithms, the DR approach was introduced in order to improve
their corresponding tracking speeds [23,24]. Correspondingly, in order to update the filter’s
coefficients multiple times at the same time index n (i.e., for the same input data), Steps 3–7
from Table 1 will be run in a loop for a number of Nit iterations (including the DCD
method). We call the proposed algorithm the WL-DR-RLS-DCD, which is equivalent to the
WL-RLS-DCD for Nit = 1.

For each of the Nit DR iterations, the algorithm will determine a new solution vector
∆h̃q(n), q = 0, . . . , Nit − 1 based on the same input data [i.e., x̃(n) and R(n)] and add its
contribution to the filter estimate h̃(n− 1) accumulated with all previous DR iterations
from time index n. The complex reference d(n) will remain the same for all the Nit steps,
as no updated value will be made available from outside the adaptive system. However,
the error signal and the residual contribution will be updated accordingly and will go
through Nit stages. We will distinguish them using the notations eq(n) and p0,q(n), with
q = 0, . . . , Nit − 1.
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At the beginning of the DR process (i.e., for q = 0), the form of the complex output
signal remains the same as (18), corresponding to the estimate h̃(n− 1). For the next itera-
tions (q = 1, . . . , Nit − 1), the output is adjusted according to the new updates performed
by the DCD, which leads to the analytical expression:

ỹq(n) =

h̃H(n− 1)x̃(n), q = 0,[
h̃(n− 1) + ∑

q−1
k=0 ∆h̃k(n)

]H
x(n), q = 1, . . . , Nit − 1.

(29)

We denote the first complex output sample for time index n as

ỹ0(n) = h̃H(n− 1)x̃(n), (30)

and we can recursively express the output for iterations q > 0 as

ỹq(n) = ỹ0(n) +
q−1

∑
k=0

∆h̃H
k (n)x̃(n) = ỹq−1(n) + ∆h̃H

q−1(n)x̃(n). (31)

Consequently, by using (21) and (31), the form of the complex valued error can also be
recursively written as

eq(n) =

{
d(n)− h̃H(n− 1)x̃(n) ∆

= e0(n), q = 0
eq−1(n) + ∆h̃H

q−1(n)x̃(n), q = 1, . . . , Nit − 1.
(32)

The expression in (32) is relevant from an implementation point of view because when
dealing with values of L specific to acoustic environments, most of the arithmetic costs
for updating the complex error correspond to the computation of e0(n) (the workload
associated with the classical WL-RLS-DCD method). For the iterations corresponding to
q = 1, . . . , Nit, we must take into account in (32) that a maximum amount of Nu values are
non-zero at each iteration in the corresponding solution vector ∆h̃q−1(n). Therefore, all the
rest of Nit − 1 iterations require no more than (Nit − 1)Nu complex multiplications, and
the same number of complex additions, in order to accumulate them to the error signal.

For the residual elements associated with the DCD method, at each iteration of the
DR process we consider that a residual component p0,q(n) is used as input for each DCD
run, and an associated residual vector rq(n) is generated [besides ∆h̃(n)]. The DR approach
creates a cycle, which comprises, for each iteration, updates performed for the error signal
eq(n), then for the residual component p0,q(n), in order to prepare for the DCD run. The
latter generates a solution vector ∆h̃q(n) and a residual vector rq(n), which will be used
for updating the filter coefficients, and also in the next DR iteration, in order to repeat the
same steps.

In a manner similar to eq(n), the update of p0,q(n) must be split into two possible
types of operations. Firstly, for q = 0 (i.e., the first DR iteration at time index n), the update
will employ the forgetting factor in order to perform the transition from n− 1. Secondly,
for q = 1, . . . , Nit − 1, p0,q(n) is changed in order to reflect the error updates from (32) and
the latest residual vector generated by the DCD algorithm. Consequently, we can write:

p0,q(n) =

{
λrNit−1(n− 1) + e∗0(n)x̃(n), q = 0
rq−1(n) + e∗0(n)x̃(n), q = 1, . . . , Nit − 1.

(33)

where rNit−1(n− 1) is the residual vector determined by the last run of the DCD at time
index n− 1.
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Furthermore, we can also express the update process for the filter estimate as

h̃q(n) =

{
h̃Nit−1(n− 1) + ∆h̃0(n), q = 0
h̃q−1(n) + ∆h̃q(n), q = 1, . . . , Nit − 1,

(34)

where h̃Nit−1(n− 1) represents the last set of filter coefficients computed at the previous
iteration of the adaptive algorithm. It can be noted that for a number of iterations Nit = 1,
the updates described in (32)–(34) are each performed only for the first branch, which
makes the WL-DR-RLS-DCD behave exactly as the WL-RLS-DCD algorithm.

The proposed adaptive algorithm is summarized in Table 3. It also comprises the
corresponding information related to arithmetic workloads (in terms of real valued mul-
tiplications and additions). Just as in the case of the WL-RLS-DCD, we considered that
counters with small values can be implemented as delay lines (i.e., bit shifts performed for
binary arrays). The extra arithmetic effort determined by the DR approach (with respect
to Table 1) is directly influenced by the number of iterations Nit, which is expected to be a
number lower than 10. As was already discussed in [23,24], the expected gain in terms of
tracking speed becomes limited when Nit increases beyond a certain value. Consequently,
the overall complexity of the WL-DR-RLS-DCD remains proportional to the length of the
complex valued filter multiplied by a small integer.

Table 3. WL-DR-RLS-DCD algorithm.

Step Actions × +

Initialization :
0 Set: h̃(0) = 02L×1; r(0) = 02L×1

R(0) = εI2L, ε > 0, q = 0
For n = 1, 2, . . . , number of iterations :

1 Update x̃(n) using (22)
2 Update R(n) using time-shift

R(1)(n) = λR(1)(n− 1) + x∗(n)x̃(n) 12L 8L
3 q = q + 1
4 Determine eq(n) using (32) ≤ 8L + 4(Nit − 1)Nu ≤ 6L− 2 + 2Nit

+4Nu(Nit − 1)

5 Determine p0,q(n) using (33) 4L(2Nit + 1) 4LNit

6 R(n)∆hq(n) = p0,q(n)
DCD−−−→ ∆h̃q(n), rq(n) ≤ Mb+

+Nit[(8L + 1)Nu]

7 Determine h̃q(n) using (34) ≤ Nit Nu

If q < Nit
jump−−−→ Step 3

5. Simulation Results

Simulations were performed in the context of SAEC using the WL framework. The
input signal was filtered through two distinct real acoustic impulse responses in order to
simulate the effect of the left and right channels and generate the samples xLc(n) and xRc(n).
The input signal source was chosen as a Gaussian noise filtered through an auto-regressive
(AR) system with a single pole and a speech sequence [25].

In order to overcome the problem of the correlation between the sequences xLc(n)
and xRc(n), we employed the nonlinear pre-distortion approach presented in [4,18]. The
method implies the addition of a specific level of distortion to the input signals, xLc(n) and
xRc(n), respectively, in order to obtain a unique solution. The namely half-wave rectifier
generates two new signals using the expressions [4,9,18]

x′Lc
(n) = xLc(n) + αr

xLc(n) + |xLc(n)|
2

(35)



Appl. Sci. 2023, 13, 2227 11 of 16

x′Rc
(n) = xRc(n) + αr

xRc(n)− |xRc(n)|
2

, (36)

where the parameter αr < 1 controls the amount of nonlinearity. In practice, the stereo
effect is considered not to be drastically affected for the range 0 < αr ≤ 0.5.

The performance of the proposed WL-DR-RLS-DCD algorithm has been validated in
the context of the identification of the interleaved impulse response h̃(n), with respect to
the results provided by the version with Nit = 1 DR iterations (i.e., the WL-RLS-DCD). The
performance has been measured using the normalized misalignment, having the following
expression in the WL context:

Mis(n) = 20 log10

∥∥∥h̃t − h̃(n)
∥∥∥

2∥∥∥h̃t

∥∥∥
2

[dB], (37)

where ‖·‖2 denotes the `2 norm [4].
The forgetting factor was chosen with the form λ = 1− 1/(KL), and the parameters

specific to the DCD iterations were set to H = 1, Nu = 4, and Mb = 16. For the simulations
using an AR(1) sequence as input, the pole was set to 0.95. The four unknown echo paths
are real measured acoustic impulse responses, which have been decimated in order to
have the desired lengths (indicated in the caption of each figure). Finally, the SNR was
experimentally set to 25 dB for all scenarios [4,5].

In Figure 2, we studied the performance of the proposed algorithm for different values
of the DR parameter Nit and for two values of the pre-distortion parameter: (A) αr = 0
(no pre-distortion is applied) and (B) αr = 0.33 ( pre-distortion used for the complex
input signal). It can be noted that for every value of Nit the performances corresponding
to (B) are considerably superior to their counterparts from case (A). The mitigation of
correlation between the real valued input signals associated with the two channels leads
to better performance for the adaptive filter. For every value of Nit > 1, the gain in terms
of normalized misalignment is at least 5 dB at steady state. Moreover, as the value of the
parameter Nit increases, so does the initial convergence speed of the WL-DR-RLS-DCD.
The corresponding compromise is made with the associated extra arithmetic workload and
a reduction in accuracy of the adaptive algorithm when steady state is reached. Finally, it
can also be observed that with higher values of Nit, the progress in terms of convergence
speed becomes smaller, such that the corresponding gain tends to become capped.

In Figure 3, we compare the performance of the WL-RLS-DCD for different values of
αr with the WL-DR-RLS-DCD having Nit > 1. We increased the pre-distortion parameter
above the recommended limit in order to analyze the possibility of compensating a high
number of DR iterations and save extra costs in terms of arithmetic operations required by
the WL-DR-RLS-DCD with higher values for Nit. It can be noted that even the convergence
speeds associated with values αr > 0.5 (i.e., when the stereo effect is altered) cannot match
the misalignment performance of using αr = 0.33 and Nit > 1. All normalized misalign-
ment curves corresponding to Nit = 1 require more than 106 iterations to reach steady state
(i.e., around −25 dB), which exceeds the boundaries of the presented simulation interval.
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Figure 2. Misalignment of the WL-DR-RLS-DCD algorithm for different values of Nit. The input
signal is an AR(1) sequence with the pole 0.95, and it is pre-distorted (αr = 0.33) or not pre-distorted
at all (αr = 0). The length of the four unknown impulse responses is L = 128 and λ = 1− 1/(64L).
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Figure 3. Misalignment of the WL-DR-RLS-DCD algorithm for different values of Nit and different
values of the pre-distortion parameter αr. The input signal is an AR(1) sequence with the pole 0.95,
and the length of the four unknown impulse responses is L = 128 and λ = 1− 1/(64L).
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The last experiment is presented in Figure 4. The input signal is a speech sequence. The
unknown impulse responses are longer than the ones employed in the previous scenarios
and are changed after half of the simulation is completed by shifting them 25 positions to
the right (tracking scenario). We compared the performances of the WL-DR-RLS-DCD for
the same value of αr and different number Nit of DR iterations. As a reference, we also
added the corresponding results for the lowest and highest value of Nit when the input
signal is not pre-distorted. It can be noted that as the number of DR iterations increases, the
tracking capabilities of the WL-DR-RLS-DCD improve, and the corresponding steady-state
accuracy is diminished. Moreover, the versions of WL-DR-RLS-DCD which work without
a pre-distorted input signal cannot match the performance of the algorithm employed with
pre-processed input data. The curves corresponding to αr = 0 do not have normalized
misalignment values lower than−10 dB, while the least accurate WL-DR-RLS-DCD version
having αr = 0.33 generates performance levels with more than 5 dB better values. Similar
to the previous cases, we can note the compromise between tracking speeds on one side,
respectively performance at steady state and arithmetic complexity, on the other side. In
addition, values of the parameter Nit situated above a certain threshold might generate
limited progress with respect to the tracking capabilities, which would not justify some
of the corresponding additional arithmetic costs. For example, the curve corresponding
to Nit = 2, αr = 0.33 has similar tracking speed when compared to Nit = 3, αr = 0.33 and
more than 3 dB better accuracy at steady state.

0 1 2 3 4 5

Iterations 106

-25

-20

-15

-10

-5

0

5

N
o
rm

a
liz

e
d
 m

is
a
lig

n
m

e
n
t 
[d

B
]

WL-DR-RLS-DCD; N
it
=1; 

r
=0

WL-DR-RLS-DCD; N
it
=3; 

r
=0

WL-DR-RLS-DCD; N
it
=1; 

r
=0.33

WL-DR-RLS-DCD; N
it
=2; 

r
=0.33

WL-DR-RLS-DCD; N
it
=3; 

r
=0.33

Figure 4. Misalignment of the WL-DR-RLS-DCD algorithm for different values of Nit and αr. The
input signal is a speech sequence, and the length of the four unknown impulse responses is L = 256
and λ = 1− 1/(64L). The four echo paths change in the middle of the simulation.

6. Discussion

The proposed WL-DR-RLS-DCD algorithm has several advantages compared to pre-
vious work. First, as compared to the DR-RLS method presented in [23], the proposed
solution has two specific features: (i) it can be applied in the framework of SAEC thanks to
the WL model, as shown in Section 2, and (ii) it achieves a lower computational complexity
due to the DCD iterations, as presented in Sections 3 and 4. Second, as compared with the
WL-RLS-DCD from [5], the proposed version leads to better tracking capabilities due to the
DR approach, as also supported by the simulation results presented in Section 5.
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As mentioned in Sections 4 and 5, the WL-DR-RLS-DCD algorithm also comes with
some compromises. When increasing the number of DR iterations (i.e., the value of Nit),
the algorithm runs the DCD iterations for a number of Nit times. The arithmetic complexity
needed for solving the associated auxiliary systems of equations becomes proportional
to the parameter Nit (besides the length of the complex valued adaptive filter and Nu).
However, in practice, the values of Nit and Nu, are small, and the overall costs associated
with the WL-DR-RLS-DCD, in terms of necessary chip areas, remain attractive for practical
implementations on hardware devices.

Another part of the compromise corresponding to the DR approach is the loss of
some accuracy at steady state for the WL-DR-RLS-DCD with respect to the WL-RLS-DCD.
In order to mitigate this downside, we can employ several adjustments to the WL-DR-
RLS-DCD, which add minimal extra arithmetic costs. Based on past experience with
implementation of variable parameters for adaptive algorithms, a new version of the
WL-DR-RLS-DCD with a variable number of DR iterations for SAEC scenarios can be
developed. The new algorithm will adjust the value of Nit with respect to the convergence
state of the algorithm by gradually increasing it when approaching steady state and by
decreasing it when tracking situations occur.

Furthermore, we will explore the option of mitigating the DR accuracy reduction at
steady state by employing a variable forgetting factor approach, which was studied by
our team in [26,27]. The goal is to implement a system with variable memory features in
order to counteract the negative aspects of the compromise between convergence speed
and accuracy.

A third option is to apply decomposition techniques based on the nearest Kronecker
product (NKP), in conjunction with the DR version [28–30]. The DR-NKP approach applied
on the WL-RLS-DCD would replace a single long adaptive filter with a combination of two
shorter filters. Consequently, the advantage of such decomposition is twofold. Gains can
be obtained in terms of both performance and complexity.

7. Conclusions

The paper proposed a low-complexity RLS algorithm for SAEC scenarios with en-
hanced tracking capabilities. The new WL-DR-RLS-DCD is derived from the already
established WL-RLS-DCD method, and it employs an acceptable arithmetic workload
in order to adapt faster to changes in the environment. The information presented in
Tables 1 and 3, respectively, shows that the overall arithmetic complexity remains propor-
tional to the length of the complex valued filter multiplied by a small value, making the
WL-DR-RLS-DCD an attractive choice for hardware implementations. Furthermore, simu-
lation results demonstrated that the DR approach can improve the tracking performance of
the RLS-DCD-type algorithms when working with highly correlated input signals, such as
AR sequences and speech.

The simulations also revealed that increasing the number of DR iterations (i.e., the
value of Nit) leads to a reduction in accuracy at steady state. Consequently, as explained in
Section 6, our future efforts will be concentrated on developing low-complexity versions of
the RLS algorithm for SAEC scenarios based on the DCD method, with variable parameters,
such as the number of DR iterations or the forgetting factor λ. Moreover, we will invest
research effort into applying decomposition techniques of impulse responses by exploiting
associated low-rank approximations.
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