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Abstract: Computed tomography (CT) introduced medicine to digital imaging. This occurred in the
early 1970s and it was the start of the digital medical imaging revolution. The resulting changes
and improvements in health care associated with digital imaging have been marked, are occurring
now, and are likely to continue into the future. Before CT, medical images were acquired, stored,
and displayed in analog form (i.e., on film). Now essentially all medical images are acquired and
stored digitally. When they are not viewed by computer, they are converted to an analog image to be
seen. The application of computer algorithms and the processing of digital medical images improves
the visualization of diagnostically important details and aids diagnosis by extracting significant
quantitative information. Examples of this can be seen with CAD and radiomics applications in the
diagnosis of lung and colorectal cancer, respectively. The objectives of this article are to point out
the key aspects of the digital medical imaging revolution, to review its current status, to discuss its
clinical translation in two major areas: lung and colorectal cancer, and to provide future directions
and challenges of these techniques.

Keywords: computer-aided diagnosis (CAD); artificial intelligence (AI); radiomics; radiogenomics;
machine learning; deep learning; colorectal cancer; lung cancer; tumor mutations

1. Introduction

Computed tomography (CT) introduced medicine to digital imaging. This occurred
in the early 1970s and was the start of the digital medical imaging revolution. The result-
ing changes and improvements in health care associated with digital imaging have been
marked, are occurring now, and are likely to continue in the future. Before CT, medical
images were acquired, stored, and displayed in analog form (i.e., on film). Now essen-
tially all medical images are acquired and stored digitally. When they are not viewed
by computer, they are converted to an analog image for the human eye to be seen. The
application of computer algorithms and the processing of digital medical images allows
for the enhancement of details of diagnostic importance and the extraction of significant
quantitative information for diagnosis. It also allows focusing on aspects of the image
that suggest pathology, i.e., computer-aided diagnosis (CAD), or extracting and analyzing
quantitative information which facilitates a predictive model (radiomics) but also generates
large databases with this information, from which hypotheses can be generated through
its analysis (“data mining”). This article will review the key aspects of the digitization of
medical imaging focused on CAD and deep learning-based computer-aided diagnosis (DL-
CAD), which are examples of computer vision applied to assist medical imaging diagnosis.
It will also discuss the clinical translation of CAD and radiomics in lung and colorectal
cancer, respectively, and will evaluate future trends in these technologies.
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2. Past
2.1. Digitization

In the 1960s, digital computers began to migrate slowly into medical imaging, but
the transforming event was the introduction of computed tomography (CT) into medical
imaging in the early 1970s. In CT, mathematical algorithms created images from many
X-ray measurements across multiple projections. Apart from imaging acquisition and
formation, digital imaging also opened the possibility for multiple advances including
image processing and improvement (i.e., noise suppression), multiplanar reconstruction,
three-dimensional (3D) imaging, and transmission to remote places accompanied by the
pertinent information of the patients [1]. Nowadays, there are three potentially transfor-
mative innovations. One is in the field of archiving and communications, where there will
be interesting developments related to storage in the picture archiving communication
systems (PACS) and also to the speed of transmission and recovery of images, as well as
technologies at lower costs. The second is the increasing interconnection of all types of
devices and objects through the network. Medical reports can be written in support (tablet,
telephone, etc.) that will not necessarily have to be located in a hospital or other health
center. A third group of innovations will be related to technologies that may improve
diagnosis and treatment, either by lowering the price of the medical services themselves,
helping people with disabilities, improving the quality of life of the elderly, or developing
algorithms for computer-aided diagnosis and quantitative extraction of imaging features
from medical scans (“radiomics”) (Figure 1). Digitization strategy in the health environ-
ment rests on two strengths: the logical integration of the image data (PACS) with the
patient’s clinical and demographic data and the transmission of data and images from one
location to another [2].
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2.2. From Analogic to Digital

Forty years ago, at the University of Alabama Birmingham, a team of medical physi-
cists and radiologists led by Gary Barnes and Robert Fraser worked on a prototype for
Digital Chest Radiology [4,5]. They subsequently published an article with other leaders in
the field which prophesized the “fully digital radiology department of the future” [6]. Since
then, these techniques have colonized much of the territory of medicine and represent key
tools in medical imaging. Now, as we have pointed out, the digital age is amplified by a
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phenomenon of a different nature: artificial intelligence. Its application in digital medicine
seeks that computers help doctors in several ways:

(1) Finding signs of disease on diagnostic images.
(2) Helping in the operating room, locally or remotely, without tiredness or tremors.
(3) Combining patient information in a way that is useful for diagnosis and research. In

other words: big data, for predictive analysis of large amounts of information.

These daring proposals were stated, among others, by Kunio Doi, from the University
of Chicago (USA) [7]. Moreover, they were, like almost all revolutionary ideas, received
with skepticism. Furthermore, its consequences were impossible to glimpse. However, at
the Annual Meeting of the Radiological Society of North America in Chicago, IL, USA, we
encountered careful staging by his group, it was easy to see that things were serious.

CAD has gone through several stages. There have also been “delays”, a large part of
which have had to do with the fact that the research drive of the first period has had no one
to articulate it from the business perspective. It is not just that there have been technical
implementation issues. It is difficult to combine two such different logics, neither of which
is in a position to replace the other. On the one hand, human creativity speculates, tries,
fails and succeeds. On the other, the cold logic of the machine that runs and does not get
tired. Nor does research and advances in technology, which should be aimed at improving
people’s quality of life, always express the interests of citizens. However, some of the recent
advances, due to their surprising development, arouse general interest and are sure to be
of some relevance.

2.3. Beyond Digital

The challenge is to reaffirm a technology to build the digital era. Either priorities
are set or a messy set of good wishes will lead to something that is not going to benefit
either the scientific community or the citizens and the societies. Therefore, among the
great objectives (robots that amaze us and machines that train themselves through the
called “deep learning”), it is worth highlighting some priorities. Today, companies and
research centers dispute the world hegemony in these techniques. Meanwhile, in our
countries it would be desirable to generate the following paradigm: innovative activity is
developed around specific problems. In terms of health, we can think of some proposals
that should illuminate the way to go towards more preventive medicine. For example,
in the early detection of diseases. Additionally, inclusive technological tools help people
with disabilities and improve the quality of life of the elderly. In conclusion, hospital
medicine has always been a favorable niche for colonization by machines, and physicians
are voracious consumers of technology. It is true that artificial intelligence (AI) frees us
from many repetitive tasks, but it is not going to replace professionals, at least not in the
foreseeable future. In that sense, he is in diapers. As the philosopher would say: “In all
cases the directing element must be the human person; it is about how to guide the human
use of these systems to solve problems”. Many of the innovations that appear frequently in
the media, such as the robot surgeon and the mini robot that will clean the plaques of the
arteries, are under investigation and have not passed the needed validation phases. AI will
have to be developed much more before robots replace doctors [1].

3. Present

CAD and radiomics represent state-of-the-art clinical uses of digital imaging. They
combine image processing, feature engineering, and statistical classification to produce
image analysis tools. Their applications on lung and colorectal cancer, respectively, can
illustrate the importance of these techniques in modern imaging.

3.1. CAD in Lung Cancer Diagnosis

When diagnosing lung cancer from nodules, firstly we need to detect the nodule in
the image and then decide whether its radiological features are suspicious of malignancy
or not. This process can determine whether a radiological follow-up or even an invasive
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surgery is needed for the patient, thus having a huge impact on the outcome, and making
it really important to obtain a good performance in the whole process. CAD systems try to
replicate this process in which the radiologist takes part by detecting nodules, classifying
them, or even both (Figure 2).
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3.1.1. Algorithms Proposed for Nodular Detection

We generally find two types of CAD systems for the detection of nodules in a CT
image: conventional methods and Deep Learning based methods. Conventional methods
rely heavily on hand-crafted features that are recognized in the image and thus can affect
the generalizability of the classifying algorithms used (which usually classify the finding
either as a nodule or a non-nodule finding). The conventional CAD models for nodular
detection collected in Table 1 are three: Amer HM et al. [8], Gu Y. et al. [9], and Wagner A-K
et al. [10]. Although they obtain good results, their performance could decrease sharply
when using larger databases, since all three use a small number of scanners, and two of
them make use of hospital databases that are not publicly available. The main reason why
these models may experience a decrease in performance would presumably be the high
variability of the nodules and the limitations of the human-established features, which are
both disadvantages inherent to this type of model.

On the other hand, we have the DL-based models which are the rest. The most impor-
tant difference between standard methods and these ones is that the latter, by supplying a
large amount of medical imaging data, automatically learns the features that differentiate
the relevant findings from what we would call normal. The nodule detection takes place
in a process that usually includes establishing a database with correctly labeled results
(according to the standard of reference) that the model is expected to obtain, choosing
the learning type that best suits our model based on the input and output we are able to
provide to the model, and dividing the database into subsets for training, validating and
testing the model. Regarding the DL models that appear in the table, Huang X. et al. [11]
propose a 2D convolutional neural network (CNN) model in contrast to most modern
models, which use 3D CNN. Huang W. et al. [12] propose the use of Amalgamated-CNN.
Li L et al. [13] use a DL-CNN model trained in a private database, using the results of the
double reading of radiologists combined with the CAD model as the Standard of Reference,
that is, a panel of expert radiologists that have the complementary information of the
model itself. This DL algorithm demonstrated superior sensitivity, and therefore, detected
more nodules than radiologists, as well as comparable performance in distinguishing solid
nodules from ground glass opacity nodules, with the disadvantage of a high false positive
rate. Tang H. et al. [14] use a U-Net-like 3D-Faster R CNN algorithm and a 3D classifier
to reduce false positives. Zheng S et al. [15] make use of MIP images (Maximum Intensity
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Projections) in their model and conclude that this achieves notable benefits when using
CNN to detect lung lesions, especially the smallest ones. Gong L et al. [16] affirm that the
success of their model comes from three key points: that the model is based on 3D-DCNN,
the use of a 3D-region proposal network (RPN) with a U-Net type structure and subsequent
reduction in FP, and the use of Residual Networks Squeeze and Excitation (SE) type to
accelerate the training process and the accuracy of nodular detection. Tan J. et al. [17] make
use of a DL-CNN model that takes into account features such as shape and texture and
propose to study the implementation of rather traditional CAD features such as curvature
or entropy in future works, as well as clinical ones (e.g., age, sex, race, tobacco, etc.). Finally,
the model by Tran GS. et al. [18] represents an exception compared to the rest of the studies
included in the table since they propose a 2D-DCNN model (named LdcNet) that classifies
the candidate findings into nodule and non-nodule but requires the prior detection of
these findings which they obtain from the LIDC database. Therefore, the model detects
nodules conditioned to have candidate findings but at the same time it cannot differenti-
ate malignant from benign, which is a reason why it is included in this section. In their
model, they use Focal Loss in order to improve the accuracy of the classification of the
candidate findings.

3.1.2. Algorithms Proposed for Nodular Classification

The classification process although similar to the one in detection presents two major
differences: the first one is that information about nodule location is supplied to the
algorithm (usually databases used for this purpose provide coordinates about interesting
findings in the image), and the second is that the model does not differentiate between
nodule and non-nodule findings, but rather differentiates between malignant and non-
malignant nodules.

Of all the models found in Table 1, only Tammemagi M et al. [19] propose the use
of conventional CAD for classification purposes, using two models: one volume based
and one diameter based with similar results, although slightly higher in the volume one.
The rest of the CAD models make use of DL, such as Xie Y. et al. [20], who propose a
semi-supervised model considering that the use of unlabeled data is not only effective
for the training of the DL models but also critical to carry out a hypothetical lung nodule
screening system. Zhao X. et al. [21] compare 11 different algorithms based on DL-CNN
and propose one based on Transfer Learning after showing that it showed promising
results. Da Silva et al. [22] study three different CNN architectures of which the third
one obtains the best results and encourages finding new applications of Deep Learning in
computer-assisted diagnosis. Kailasam SP et al. [23] tested 36 combinations of which the
algorithm that combines the Support Vector Machine (SVM) classifier with an Extended
Histogram of Oriented Gradients (ExHOG) and CNN achieves the highest accuracy when
classifying. Wu P et al. [24] test different methods from which a 50-layer Residual Network
based model obtains the best performance, and its main defect is that it requires a long
period of training when it has to deal with a large number of pulmonary CT images,
something they will try to solve in future works. Zhang S. et al. [25] propose two models,
a Multi-Channel Multi-Slice 2D CNN and a Voxel- Level 1D CNN, the latter is especially
useful in small and poorly balanced data sets. At the same time, they question the validity
of these openly used databases used to discern between malignant and benign nodules,
such as that of LIDC-IDRI, as the Standard of Reference in the latter is not a pathology
study but a consensus among four radiologists in which global consensus is not necessary,
and therefore, only 25% were classified as nodules by all four while the rest were not. As a
solution to improve this type of bias that may affect the design of the classification models,
it is proposed to use data sets whose reference standard is pathology study.
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Table 1. CAD on lung cancer diagnoses.

CAD Model Method Function Data Base Nº Scanners Nº Nodules Sensitivity Specificity FPs/Scan Accuracy AUC Year

Amer HM et al. [8] CAD conventional Detection ELCAP 40 NA 100% 99.20% NA 99.60% NA 2019

Gu Y. et al. [9] CAD Detection LIDC-IDRI 154 204 87.81% NA 1.057 NA NA 2019

Wagner A-K et al. [10] CAD conventional Detection Private 100 106 87.00% NA NA NA NA 2019

Huang X. et al. [11] CAD + DL + CNN Detection LUNA16 888 NA NA NA 1
4 94.60% NA 2019

Huang W. et al. [12] CAD + DL + CNN Detection LUNA16;
Ali Tianch NA 1795

81.70%
85.10%
88.30%
90.70%

NA

0.125
0.25

1
4

91.40% NA 2019

Li L et al. [13] CAD + DL + CNN Detection Private 346 812 86.20% NA 1.53 NA NA 2019

Tan H. et al. [14] CAD + DL + CNN Detection LUNA16 888 1186 86.4%
85.2% NA 4

1 NA 2019

Zheng S et al. [15] CAD + DL + CNN Detection LUNA16 888 1186 92.70%
94.20% NA 1

2 NA NA 2020

Gong L et al. [16] CAD + DL + CNN Detection LUNA16 888 1186 93.60%
95.70% NA 1

4 NA NA 2019

Tan J et al. [17] CAD + DL + CNN Detection LIDC-IDRI 208 NA 80.10%
94.0% NA 1.89

4.01 NA NA 2019

Tran G. et al. [18] CAD + DL + CNN Classification LUNA16 888 1186 96.00% 97.30% NA 97.20% 0.9820 2019

Tammemagi M
et al [19]

CAD conventional
(volume) Classification NSLT 3680 6009 75.00% 75.00% NA NA 0.8210 2019

Tammemagi M
et al [19]

CAD conventional
(diameter) Classification NSLT 3680 6009 75.00% 75.00% NA NA 0.810 2019

Xie Y. et al. [20] CAD + DL + CNN Classification LIDC-IDRI 1018 1945 84.94% 96.59% NA 92.53% 0.9581 2019

Zhao X. et al. [21] CAD + DL + CNN Classification LIDC-IDRI 1018 368 91.00% NA NA 88.00% 0.94 2019

Da Silva et al. [22] CAD + DL + CNN Classification LIDC-IDRI 833 1296 79.40% 83.80% NA 83.30% NA 2020

Kailasam SP
et al [23] CAD + DL + CNN Classification LIDC-IDRI NA 467 NA NA NA 95.32% NA 2019

Wu P et al. [24] CAD + DL + CNN Classification LIDC-IDRI 1018 NA 97.70% 98.35% NA 98.23% NA 2020

Zhang S. et al. [25] CAD + DL + CNN Classification LIDC-IDRI 1018 NA NA NA NA 97.04% NA 2019

Liu A et al. [26] Radiomics-CT Classification Private 263 263 NA NA NA NA 0.809 2020

Mao L et al. [27] Radiomics-LDCT Classification Private 98 98 NA NA NA 89.80% 0.97 2019
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Table 1. Cont.

CAD Model Method Function Data Base Nº Scanners Nº Nodules Sensitivity Specificity FPs/Scan Accuracy AUC Year

Xu Y [28] Radiomics-CT Classification Private 373 373 89.00% 74.00% NA 77.00% 0.84 2019

Zhou Z et al. [29] Radiomics-LDCT Classification LIDC-IDRI 1018 1226 85.80% 90.70% NA 88.90% 0.935 2019

Asuntha A et al. [30] CAD + DL + CNN Detection and
Classification LIDC-IDRI 1018 NA 97.93% 96.32% NA 95.62% NA 2020

Bhandary A et al. [31] CAD + DL + CNN Detection and
Classification LIDC-IDRI 1018 NA 98.09% 95.63% NA 97.27% 0.996 2020

Bansal G et al. [32] CAD + DL +
ResNet

Detection and
Classification LUNA16 888 NA 87.10% 89.66% NA 88.33% 0.88 2020

El-Bana S et al. [33] CAD + DL + TL Detection and
Classification

LUNA16;
KAGGLE 888; 1397 NA 96.40% 99.40% 0.6 97.00% NA 2020

Masood A et al. [34] CAD + DL + CNN Detection LUNA16 888 NA

81.20%
97.80%
98.53%
98.66%

NA

0.125
1
4
8

NA NA 2019

Masood A et al. [34] CAD + DL + CNN Detection LIDC-IDRI;
ANODE09 1190 NA 98.40% NA 2.1 NA NA 2019

Nasrullah N
et al [35] CAD + DL-CNN Detection and

Classification LIDC-IDRI 1200 3250 94.00% 90.00% NA 91.13% 0.99 2019

Nasrullah N
et al [35]

CAD + DL-CNN +
Biomarkers

Detection and
Classification LIDC-IDRI 1018 2562 93.97% 89.93% NA 88.79% NA 2019

Shanid M et al. [36] CAD + DL + DBN Detection and
Classification LIDC-IDRI 1018 NA NA NA NA 96.00% NA 2019

Zhang C. et al. [37] CAD + DL + CNN Detection and
Classification

LUNA16;
KAGGLE 757 855 84.4% 83.00% NA 83.70% 0.803 2019
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Some authors defend that the radiological information obtained from CT may be the
key to the correct classification of nodules as benign or malignant. They argue that the
aforementioned classification models are based on the statistical study of various image
values without taking into account relevant clinical data, and without a detailed analysis
that could demonstrate correlations between phenotype and histology or genetics that
would provide valuable information about these pulmonary nodules. Liu A et al. [26]
investigate and develop a radiological nomogram to assist in the diagnosis of potentially
malignant pulmonary nodules. This would constitute a non-invasive diagnostic tool that
helps make clinical and surgical decisions. They bet on the use of a huge number of
radiological features as a determining factor in the best performance of the model. In this
study, the private database of a hospital is used, establishing as an inclusion criterion that
patients have or are going to have a definitive histological diagnosis. This brings reliability
to the data set studied as well as new biases, such as the possible fact that presumably
healthy patients do not choose to undergo a biopsy or surgery. Mao L. et al. [27] affirm
that despite the amount of available knowledge nowadays, there are almost no studies
that specifically focus on the usefulness of radiomics in predicting malignancy of small
and solid nodules in screening for lung cancer with LDCT. Small nodules have a much
lower number of specific features compared to large ones, and malignant solid nodules
progress much faster than subsolid nodules. For these reasons, the purpose of the study is
to develop a predictive radiological model to diagnose small solid lung nodules (6–15 mm),
since it is something that has not been exhaustively investigated. Xu Y. et al. [28] used the
scanners of 373 patients who would later undergo surgery or CT-guided percutaneous
biopsy, thus obtaining a pathological confirmation of the nodule. They propose a novel
non-invasive predictive method for diagnosing lung nodules based on the eighth edition
of the TNM system. After studying some 1160 possible radiological features to use in the
model, they concluded that depending on the size of the pulmonary nodule, some have
more weight than others in the classification as malignant or benign. Thus, in nodules of
2 cm or less, the textures are the main contributors to the correct classification, as are the
shapes between 2 and 3 cm. Zhou Z et al. [29] propose a Multi-Objective based Feature
Selection (MO-FS) algorithm to select the most important radiographic features for the
classification, demonstrating that the set developed by this algorithm achieves superior
performance compared to the rest of the algorithms commonly used with this function.

3.1.3. Algorithms Proposed for Detection and Nodular Classification

Asuntha A et al. [30] propose a novel Fuzzy Particle Swarm Optimization (FPSO)
algorithm used to choose the most specific nodular feature after extracting data from the
image so that the computational complexity of CNN is reduced. Bhandary A et al. [31] use
the LIDC-IDRI database to propose two models: one for CT and one for chest radiography.
With the CT model, they achieve a sensitivity of 98.09%, a specificity of 95.63% and an
accuracy of 97.27%. Bansal G et al. [32] propose a DL model using ResNet, for the detection
and classification of the pulmonary nodule. They consider the process of differentiating a
malignant nodule from a benign one difficult work due to the minuscule differences that
may exist between the two, and for this, they propose 18 morphological features to take
into account when classifying the nodule such as perimeter, orientation, area, eccentricity,
etc. El-Bana S et al. [33] use a Deep learning model combined with a Transfer Learning
method in order to save time when training their new model, taking another already
trained and whose obtained values are known and re-applying it to the new categories
concerned in the study. Masood A et al. [34] propose a 3D-DCNN model to detect and
classify nodules greater than or equal to 3 mm that achieves a higher sensitivity and
FP/scanner than the other models with which it is compared. This model classifies findings
into nodules (benign or malignant) and non-nodules. In micronodules of less than 3 mm,
the performance is lower, which is why they conclude that in future works it will be
an objective to achieve their detection while maintaining a good relationship between
sensitivity and FP by a scanner. Nasrullah N et al. [35] propose a three steps 3D Faster
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Region-CNN system in which they first detect lung nodules, second classify them as benign
or malignant, and thirdly the results obtained are combined with multiple clinical factors
such as family history, age, tobacco, biomarkers, size and location of the nodule. Shanid
M et al. [36] develop a CAD model of DL using the Deep Belief Network (DBN), another
type of Deep Neural Network. Zhang C. et al. [37] propose a DL algorithm that performs
the detection and classification processes in a unified way in contrast to most studies,
which apply a sequential algorithm since this reduces the possibility of accumulating
errors. From the databases of various centers, the model was validated and a subset of
50 patients was obtained where the model was tested, comparing it with 25 physicians
(including radiologists, thoracic surgeons, and pulmonologists) obtaining better detection
performance and classification of pulmonary nodules.

3.2. Radiomics and Personalized Medicine

Radiomics is a discipline of medicine that is based on the massive extraction of quanti-
tative data from medical images [38]. The fundamental idea is that images are more than
pictures and that there is an enormous amount of information that is not visible to the eyes of
radiologists which can reveal underlying pathophysiological processes. These quantitative
data obtained from medical images will vary depending on whether there is an alteration,
thus being able to obtain a “radiomic phenotype” of a certain underlying alteration.

The term radiomics was coined in 2012, and in its early days, its development focused
on the field of oncology [38]. It is possible to use it in any disease whose study uses imaging,
and in many different imaging modalities such as computed tomography (CT), magnetic
resonance imaging (MRI) or positron emission tomography (PET). It was designed to be
another tool to be used in daily clinical practice at different levels of the healthcare system.
Thanks to the information obtained through radiomics, together with the relevant clinical
data of a patient, it would be possible to assist in the detection of tumors, the diagnosis
of diseases, as well as to provide information on prognosis, response to treatments, or
evaluation of the state of a disease.

The ending “-omics” derives from the field of molecular biology, where it is used for
the detailed study of biomolecules (genomics, proteomics, etc.). This termination applies
to other fields where a large amount of data is handled, as in the case of the quantitative
data we obtain from radiological images (radiomics) [38]. The analysis of these data is
what allows us to generate hypotheses. In this way, radiological information offers new
advantages in the study of patients’ diseases but also presents numerous limitations such
as the handling of such large amounts of data.

As mentioned above, this technology may have a key role in the treatment of tumor
pathology. One of the great problems in treating cancer is the great heterogeneity that ma-
lignant lesions have at the genetic, physiological, and phenotypic levels. This heterogeneity
can develop both intratumorally and between metastases of the same cancer, and can even
develop over time, so an initially effective treatment can cease to be so in a matter of months
due to these alterations in pharmacological targets. In the current context of medicine, with
its evolution increasingly towards totally personalized medicine, knowing the mechanisms
of tumor resistance to therapy is mandatory to choose a focused and effective treatment [38].
This task requires an early detection method that is reproducible and minimally invasive,
in addition to the development of new drugs, to counteract these drawbacks. Radiomics
could offer a solution to this challenge, allowing the detection of relevant changes at the
genomic level in the tumor (radiogenomics), provided that these are expressed as changes
at the radiological level [39].

Radiomics definition workflow is independent of the disease under study and consists
of five consecutive steps (Figure 3):
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3.2.1. Obtaining Images

The first step is to obtain a biomedical image that must be integrated into a database
from which to extract hypotheses. However, in routine clinical image acquisition, there is a
wide variation in imaging parameters and reconstruction algorithms. These imaging issues
can create difficulty in comparing results obtained across institutions with different scanners
and patient populations. In order to avoid this, all image acquisition and reconstruction
must be standardized [38,39].

3.2.2. Pre-Processing

Pre-processing tools can improve image quality by reducing the noise of the image or
emphasizing different characteristics at different scales. However, their application must
be careful because these tools can also alter the radiomics signature. It is also important
to consider that the volumes under study can be single or multiple (metastases). These
volumes are usually heterogeneous and can be studied by dividing them into habitats,
which represent phenotypic differences within the same tumor.

3.2.3. Segmentation

In this phase, the parts of the image that were considered of interest (called “regions
of interest” or ROIs) are separated from the rest of the image and the data of these relevant
segments are obtained [40,41]. The delineation of this ROI can be conducted manually,
semi-automatically, or automatically, in 2D or 3D. This is a critical phase because many
tumors can have edges indistinguishable from normal tissues, and the data obtained in this
phase can experience variations [40]. Manual segmentation is more laborious and presents
greater interobserver variability, on the other hand, in tumor pathology it is often almost the
only alternative due to how poorly delimited the lesion usually is. Manual segmentation is
usually performed by the radiologist in a slice-by-slice manner, and the ideal is to include
the highest percentage of the lesion in the study [40,41]. It is considered the gold standard,
but it requires a considerable investment of time. Currently, there are very refined semi-
automatic 3D-segmentation tools (Figure 4), which allow segmentation through artificial
intelligence guided by the radiologist himself. In this way, in a few seconds, the entire
tumor volume in the segmented region can be included in a supervised way. Automatic
segmentation in oncology has a limited application because the heterogeneity and the
poorly differentiated borders of many tumors mean that the segmentation usually includes
areas in the de ROI where there is no tumor, with the consequences that this would entail
in the extraction of features [41].
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3.2.4. Feature Extraction and Classification

There is a multitude of characteristics from which quantitative data can be extracted
(morphological characteristics, intensity, texture, etc.). The data obtained from the extrac-
tion of characteristics can be processed later to increase the capacity of discrimination,
establish the most identifying feature and reduce possible interference (for example, redun-
dancy). The effort made in search of the standardization of feature extraction has led to
the creation of initiatives such as the Imaging Biomarker Standardization Initiative (IBSI),
which standardized the extraction of a set of 169 radiomics features [42]. The data obtained
from the images can be added to clinical or genomic data from the patient which would be
useful, so the integration of this information would offer the possibility of obtaining more
specific conclusions and of greater value, provided that all the data added to the database
are reliable.

3.2.5. Analysis of Data

The power of radiological information to offer hypotheses and possible correlations
lies in the amount of data available. The more data, the greater the analysis that can be
performed and its power to infer correct correlations (for example, to determine if a tumor
has a specific mutation or not). Data analysis consists of two phases: the first phase uses
a series of data to create a classification and/or regression model with them. The second
phase uses the data of the patients under study, in which it will use the model created to
make predictions about them. In the creation of the classification model, in addition to the
input data, typically the output data that the model aims to predict (benign or malignant,
presence or absence of a mutation, etc.) must also be entered [41]. Ideally, the data to create
the model should be from another institution or at least different from what will later be
used to apply the created model.

3.3. Radiomics and Radiogenomics in Colorectal Cancer

Currently, in the process of diagnosing and treating colorectal cancer (CRC), genomic
analysis has a fundamental role. Radiogenomics uses radiomics data to develop a pre-
dictive model of tumor genomics [41]. In the future, radiogenomics may represent a
complementary model to biopsy, the so-called “virtual biopsy”. Genomic diagnosis by
biopsy may lose key tumor features given the intratumoral heterogeneity. In this scenario,
radiogenomics may define and locate tumor habitats susceptible to being biopsied be-
cause they present a greater probability of mutation of certain genes. In patients with
CRC, the presence of mutations in the RAS-RAF-MEK-ERK signaling pathway causes
these tumors to present resistance to anti-EGFR monoclonal treatments (cetuximab and
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panitumumab) [38]. However, the articles about radiomics in CRC do not only focus on
the genetic determination. As can be seen in the literature, there are numerous studies
about the therapy response, prognostic predictions, survival determination, microsatellite
status, prediction of metastatic disease, etc. The majority of radiomics studies in CRC used
a CT-based radiomics model because CT is the imaging technique of choice for staging in
CRC patients (Figure 5).
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Figure 5. (a) Number of CRC-Radiomics articles that used manual (M), semi-automatic (SA) and
automatic (A) segmentation. (NA: Not Available). (b) Timeline of the CRC-Radiomics articles
published since 2016 included in this manuscript. (c) Number of CRC-Radiomics articles according
to their target.

CT-Based Radiomics/Radiogenomics in Colorectal Cancer

Regarding radiomics and radiogenomics models that use CT images (Table 2), most
articles are focused on the prediction of treatment response and the development of liver
metastasis. Manual segmentation (M) is usually the type of segmentation used in the
radiomics assessment of CRC with only a few papers based on a semi-automatic segmenta-
tion (SA). The main studies in the literature on this topic are retrospective (R), reflecting
a need for prospective studies (P). There is also a wide variation in both the number of
patients (N) and features extracted (RF) included in the studies. Many of the studies only
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reflect the features that they considered significant. Other studies reflect all the features
extracted and the posterior features which were considered. In the results and conclusion,
radiomics features show good results, but it can be seen in many studies that the results
improve when the radiomics information and other clinical characteristics (such as CEA, T
staging, etc.) are incorporated.

Concerning the prognostic value of radiomics features in CRC, in the survival predic-
tion, Xue et al. concluded that a combined nomogram with a radiomics signature based on
CT images and clinical predictors improves the predicted accuracy of the overall survival
(OS) in CRC patients [43]. Similar results were reported by Huang et al. which achieved a
hazard ratio (HR) of 6.670, 2.866 and 3.342 in the training and two external validation co-
horts in the association between radiomic features and OS [44]. Dercle et al. obtained an HR
between 3.93 and 21.04 in the prediction of OS using three different radiomics features [45].
In a different study, Badic et al. compared the correlation between texture features obtained
from contrast-enhanced (CE) and noncontrast enhanced (NCE) CT images and OS and
concluded that some of the second and third-order features were associated with patient’s
survival [46]. Finally, Mühlberg et al. evaluated the prediction of 1-year survival in patients
with metastatic CRC with a comparative analysis of quantitative imaging biomarkers based
on the geometric analysis (GMS) of the whole liver tumor burden (WLTB), in comparison to
predictions based on the tumor burden score (TBS), WLTB alone, and a clinical model [47].

The combination of radiomics features and clinical information for prognostic predic-
tion may represent a useful tool in the assessment of CRC patients. Li et al. found that
this combination can predict the presence of distance metastasis and 3-year OS in these
patients [48]. Zhao et al. also developed a combined model (radiomics-clinical) for 3-year
OS in CRC patients treated with targeted therapy [49]. Ye et al. evaluated radiomics features
combined with clinical characteristics in patients with CRC liver metastases before and
after chemotherapy (called Delta radiomics). They reported an AUC of 0.871 for the train-
ing cohort and 0.745 for the validation cohort in the prediction of 1-year progression-free
survival (PFS) [50].

Radiomics have also been used to predict tumor therapy response. Rabe et al. found
eight radiomic features using a 3D semi-automatic segmentation model which were as-
sociated with chemotherapy response in non-necrotic liver metastasis of CRC [51]. Cai
et al. also concluded that radiomics scores based on five radiomics features selected using
the LASSO algorithm are an independent prognostic factor of tumor response [52]. Dif-
ferent studies have found similar results. Defeudis et al. had promising results for the
prediction of the response of liver metastases from CRC to first-line chemotherapy [53].
Lutsyk et al. studied the association between radiomics features and complete response
after neoadjuvant chemoradiation [54]. Bibault et al. using deep learning-based radiomics,
had an accuracy of 0.80 in predicting complete neoadjuvant chemotherapy response [55].
Zhang et al. were able to predict tumor resistance to therapy with a radiomics model [56].
In a different study using Delta-radiomics, Giannini et al. obtained sensitivity, specificity,
and positive and negative predictive values (PPV and NPV) between 0.85 and 0.99 in the
prediction of non-response first-line chemotherapy in CRC patients with liver metastases
(LmCRC) [57]. Vandendorpe et al. obtained an ACU of 0.70 for the prediction of downstag-
ing after chemotherapy [58]. Zhuang et al. obtained an AUC of 0.997 using a combined
model with clinicopathological information and radiomics features [59]. Wang et al. with a
combined model for the prediction of locoregional failure free survival (FS), obtained an
AUC of 0.68, and 0.64 OS [60]. Dercle et al. obtained an AUC of 0.80 and 0.72 for predicting
the response to anti-EGFR [61]. Yuan et al. obtained an accuracy of 0.839 in the prediction
of pathological complete response (TRG 0) vs. moderate, partial and poor response (TRG
1, 2 and 3, respectively) [62]. Bonomo et al. obtained an AUC of 0.65 in the prediction of
good response after neoadjuvant chemotherapy [63]. Finally, Fan et al. obtained significant
results in predicting postoperative recurrence risk [64], and Badic et al. also studied the
prediction of recurrence after surgery. The best balanced accuracy (BAcc) was 0.78 [65].
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Table 2. CT-based Radiomics/Radiogenomics on CCR.

Author Year Type N Target ROI RF Results Conclusions

Xue [43] 2022 R 121 Prognostic
prediction NA NA C-Index 0.782, 0.721 and 0.677 Combined nomogram (radiomic-clinical) improves the

accuracy of survival prognostic.

Huang [44] 2022 R 512 Prognostic
prediction M 45 HR 6.670, 2.866 and 3.342 Radiomic features could be used for predicting OS

Dercle [45] 2022 R 1584 Prognostic
prediction NA NA HR incremented from 3.93 to 21.04 using RF Combined model with radiomic features can provide

information and improve decisions

Badic [46] 2019 R 61 Prognostic
prediction SA 21 rs max = 0.49 for first order features

rs max = 0.770 for some second and third order features
Some radiomics features with moderate correlations

between NCE-CT and CE-CT images

Mühlberg [47] 2021 R 103 Prognostic
prediction A >1500 AUC 0.73 and 0.76 for 1-year survival prediction Geometric distribution and RF yield

prognostic information

Li [48] 2020 R 148 Prognostic
prediction M 17 AUC of 0.842 and 0.802 for the combined model

The combined model showed better prediction of OS
Combined model can help to predict

distant metastasis

Zhao [49] 2021 R 80 Treatment
response M 48 C-index of 0.8335 and 0.9182 RF are prognostic factors and predictive markers of OS

Ye [50] 2022 R 139 Treatment
response M 1316 AUC 0.871 and 0.745 for PFS Combined model had better prediction results

Rabe [51] 2022 R 29 Treatment
response SA 175 AUC 0.80; S 0.73; Spec 0.79 8 RF had a significant association with

treatment response

Cai [52] 2020 R 381 Treatment
response M 85 AUC of 0.74 and 0.82 Radiomics score is an independent prognostic factor

Defeudis [53] 2021 R 92 Treatment
response M 75 S 0.61; Spec 0.60; PPV 0.57; NPV 0.64 Promising results for determining the

chemotherapy response

Lutsyk [54] 2021 R 140 Treatment
response M 850 Acc 0.63

405 RF were different (p < 0.001) between groups
Imagine features can help to determine complete and

non-complete response

Bibault [55] 2018 R 95 Treatment
response M 1683 Acc of 0.80 DL with clinical and RF can predict complete

neoadjuvant chemotherapy response

Zhang [56] 2022 R 215 Treatment
response M 275 AUC of 0.92 and 0.89 CT-based radiomics could be helpful in the

treatment planning

Giannini [57] 2022 R 301 Treatment
response M 107 S 99–94%, Spec 95–99%, PPV 85–92%, NPV 90–87% Delta radiomics signature was able to predict

non-response

Vandendorpe
[58] 2019 R 121 Treatment

response M 36 AUC of 0.70 predicting downstaging
OR 13.25 for Radscore as independent factor

This prognostic score may lead to improve
the treatment

Zhuang [59] 2021 R 177 Treatment
response M 1218 AUC 0.997 and 0.822 for prediction of CR CT-based radiomics can help in the prediction of

complete chemotherapy response
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Table 2. Cont.

Author Year Type N Target ROI RF Results Conclusions

Wang [60] 2022 R 191 Treatment
response M 1130 AUC of 0.68 for locoregional failure FS.

AUC of 0.64 for OS
CT-based radiomics can predict the NAR punctuation

and the survival outcomes

Dercle [61] 2020 R 667 Treatment
response M 3499 AUC 0.80 and 0.72 for sensitivity to anti-EGFR

AUC of 0.59 and 0.55 for chemotherapy response
RF can help in the early prediction of the success of

treatment with Cetuximab

Yuan [62] 2020 R 91 Treatment
response NA 8 Acc of 83.9% differentiating TRG 0 vs. TRG 1–3 Promising results for predicting pathologic

complete response.

Bonomo [63] 2022 R 201 Treatment
response M 1150 AUC of 0.65 on prediction of GR CT-base radiomics has potential predictive ability for

identifying patients with GR

Fan [64] 2021 R 299 Treatment
response SA 1561 OR de 239,993 (p < 0.001) for recurrence risk

AUC of 0.954 and 0.906
Radiomic signature is an independent risk predictor

and a non-invasive biomarker

Badic [65] 2022 R 193 Treatment
response SA 88 BAcc was 0.78 for recurrence prediction CT-based radiomics had a good predictive

performance of recurrence

Hong [66] 2022 R 292 Risk factors
prediction NA NA AUC 0.799 for combined model

AUC of 0.679 for CT staging only
Combined model can improve the detection of

high-risk colon cancer

Ge [67] 2020 R 225 Risk factors
prediction M 396 AUC 0.93 for the differentiation between mucinous and

non-mucinous CRC
CT RF could be utilized as a noninvasive biomarker to

identify MA from NMA patients

Hu [68] 2016 p 40 Risk factors
prediction M 775

496 RF showed high reproducibility
225 shoed median reproducibility

54 showed low reproducibility

Some RF showed stability and could be used for
treatment monitoring

Dou [69] 2022 R 32 Risk factors
prediction M 125 3 parameters are associated with high and low risk group

of metastases Some RF could be used to help the T staging

Liu [70] 2021 R 134 Risk factors
prediction M 854 (16) AUC 0.945 and 0.754 for radiomic signature

AUC 0.981 and 0.822 with multiscale nomogram

The multiscale nomogram could be used to facilitate
the individualized preoperatively assessing metastasis

in CRC patients

Huang [71] 2018 R 366 Risk factors
prediction M 10959 AUC of 0.8122 and 0.735 in discrimination between high and

low CRC grade.
This radiomics signature can help with

personal treatment

Liang [72] 2016 R 494 Risk factors
prediction M 16 AUC 0.792 and 0.708 Radiomics signature can discriminate between stages

I-II and III-IV

Badic [73] 2019 R 64 Gene
expression SA 27 ABCC2, CD166, CDKNV1 and INHBB genes has significant

correlation with RF
Combined RF with genetic and pathological
information can help to patient management

Chu [74] 2020 R 163
141

Prognostic
prediction

Gene
expression

M 12 AUC 0.641 for prognostic prediction
AUC 0.829 and 0.727 for CXCL8

Combined model had better results.
There are associations between RF and CXCL8
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Table 2. Cont.

Author Year Type N Target ROI RF Results Conclusions

Huang [75] 2022 R 71
Prognostic
prediction

Gene expression
M 1037 10 RF with AUC 0.46–0.56 for recurrence prediction. Association RF-recurrence prediction.

Association with some gene expression.

Hoshino [76] 2022 R 24 Gene expression M 1037 AUC of 0.732 and 0.812 for predicting TBM status. S of
0.857, Spec of 0.600 and Acc of 0.682

The accurate inference of the TBM status is possible
using radiogenomics

Yang [77] 2018 R 117 Gene expression M 346 AUC 0.869–0.829; S 0.757–0.686; Spec 0.833–0.857 Radiomic signature based on CT is associated with
KRAS/NRAS/BRAF mutations

Shi [78] 2020 R 159 Gene expression SA 851 AUC of 0.95 and 0.79 for the combined model for
distinguishing between wild type and mutant

Radiomics together with semantic features can
improve non-invasive assessment of KRAS status

of LmCRC

González-Castro
[79] 2020 R 47 Gene expression M 30 Acc of 0.83; Kappa index of 0.647; S of 0.889 and Spec of

0.75 for the prediction of KRAS mutation
RF based on CT images can predict the KRAS

mutation status

Wu [80] 2020 R 279 Gene expression M 50
C index of 0.719 for Radiomics; 0.754 for DL-radiomics;

0.815 and 0.932 for combined model (1st and 2nd
cohorts) in the prediction of KRAS mutation

This is a model that incorporates standard radiomics
with deep learning-based radiomics.

He [81] 2020 R 157 Gene expression M 1025 AUC of 0.818 CT-based radiomics can predict KRAS mutation.

Hu [82] 2022 R 231 Gene expression M 1316 AUC was 0.8826 for arterial and venous phase model CT-based radiomics has potential to predict
KRAS mutation

Jang [83] 2021 R 110 Gene expression NA 378 AUC of 0.73 radiogenomics model
AUC of 0.63 DL model

Radiomics model obtained better results than
deep learning

Xue [84] 2022 R 172 Gene expression NA 1018
AUC of 0.75 and 0.84 (2D and 3D radiomics models) for

the 8 selected RF; AUC of 0.92 for the combined
nomogram

CT-Radiomics can predict KRAS mutations.
Combined nomogram improves the results

Xue [85] 2022 R 140 Gene expression NA NA AUC of 0.93 and 0.87 for the 5 best RF; AUC of 0.95 and
0.88 for a combined nomogram

CT-based radiomics is associated with
BRAF mutation

Negreros-Osuna
[86] 2020 R 145 Gene expression M 24

Some RF were significantly different between BRAF
mutant and wild-type (p < 0.05)

Some RF were associated with better 5-year OS (HR 0.40)

RF can serve as potential biomarkers for
determining BRAF mutation status and as

predictors of 5-year OS

Fan [87] 2019 R 119 MSI status SA 398

Radiomics: AUC 0.688; Acc 0.713; S 0.517; Spec 0.858.
Clinical: AUC 0.598; Acc 0.632; S 0.371; Spec 0.825.
Combined model: AUC 0.752; Acc 0.765; S 0.663;

Spec 0.842

CT-based radiomics are associated with MSI status

Li [88] 2021 R 368 MSI status M 1628 AUC 0.79 and 0.73 Combined model can predict MSI status

Ying [89] 2022 R 276 MSI status M 1037 AUC 0.87 and 0.90 Combined nomogram can predict MSI status
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Table 2. Cont.

Author Year Type N Target ROI RF Results Conclusions

Chen [90] 2022 R 837 MSI status NA 10
AUC of 0.788 and 0.775 (radiomics)

AUC of 0.777 and 0.767 (combined model)
AUC of 0.768 and 0.623 (clinical model)

The radiomics signature showed a robust model for
identifying the MSI status

Pei [91] 2022 R 762 MSI status M 340 AUC of 0.74 and 0.77 for the combined nomogram The radiomics combined nomogram could be used
to predict MSI status.

Cao [92] 2021 R 502 MSI status M 1037
32 RF showed correlation with MSI status.

AUC of 0.898–0.964; ACC of 0.837–0.918; S of 0.821–1 for
the combined nomogram

CT-based radiomics can predict MSI status

Wu [93] 2019 R 102 MSI status M 606 AUC 0.961 and 0.875 for predicting MSI status Radiomics analysis of iodine-based MD images with
DECT can predict MSI status

Golia Pernicka [94] 2019 R 198 MSI status M 254
AUC of 0.80 and 0.79 (combined model)

AUC 0.74 and 0.76 (clinical and radiomics
model, respectively)

Preoperative prediction of MSI status via radiomics
can improve the treatment selection

Liu [95] 2020 R 15 LN metastasis M 107 73 RF were significant AUC 0.88 Some RF showed significance in differentiating
nonmetastatic LN from metastatic LN.

Cheng [96] 2022 R 191 LN metastasis NA NA AUC 0.830 and 0.712 9 radiomic features had significant results for LN
metastasis prediction

Huang [97] 2016 R 526 LN metastasis M 150 C index 0.718 and 0.773 for radiomics signature.
C index 0.763 for the prediction nomogram.

The radiomics signature combined with clinical risk
factors helps in preoperative prediction of

LN metastasis.

Eresen [98] 2020 R 390 LN metastasis M 146

ACC of 0.6538–0.6282, S of 0.8387–0.8462 and Spec of
0.4713–0.4103 for the clinical model

ACC of 0.8109–0.7949, S of 0.8387–0.7436 and Spec of
0.7834–0.8462 for combined model

The texture of LN provided information about the
histological status of the LN

Li [99] 2022 R 351 Prediction LVI M 3095 AUC of the combined model was 0.843 RF combined with clinical factors had good
performance in prediction of LVI

Ge [100] 2021 R 169 Prediction LVI M 396 AUC of 0.90 for the peri-tumoral features
AUC of 0.82 for the tumor features

CT-radiomics model based on the peritumoral zone
improves prediction of LVI

Liu [101] 2021 R 57 Lung metastasis M 1724 90 RF remained unchanged in metastatic nodules RF could be useful for investigating
pulmonary nodules

Markich [102] 2021 R 48 Lung metastasis NA 64 C-index of 0.74 for the combined model with 4 RF RF can help to discriminate nodules at risk of
local progression

Giannini [103] 2020 R 95 Liver metastasis M 22 Acc 0.61; S 0.73; Spec 0.47 Radiomics model can predict the likelihood of
response of liver metastasis in CRC
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Table 2. Cont.

Author Year Type N Target ROI RF Results Conclusions

Taghavi [104] 2021 p 94 Liver metastasis NA NA AUC 0.60 Radiomics models cannot predict new liver
metastases of CRC

Staal [105] 2021 R 82 Liver metastasis M 56 C-index of 0.78 RF from the ablation zone could help in the
prediction of local tumor progression

Liu [106] 2022 R 63 Liver metastasis M 851

C-index 0.758 and 0.743 for OS
AUC for the 1-y survival 0.850 and 0.694
AUC for the 2-y survival 0.845 and 0.909
AUC for the 3-y survival 0.819 and 0.835

Radiomics signature based on CT images can
predict the outcome of hepatic arterial

infusion chemotherapy

Giannini [107] 2020 R 38 Liver metastasis M 24 S 0.89 and 0.90; Spec 0.85 and 0.42 for HER2
therapy response

This method is effective in predicting behavior of
metastasis to HER2 treatment

Creasy [108] 2021 R 120 Liver metastasis SA 254 44 RF with p < 0.05 There are RF that showed different distributions
between patients with liver recurrence

Taghavi [109] 2021 R 90 Liver metastasis M 1593 C Index of 0.79 in the combined model; 0.78 for the
radiomics model; 0.56 for the clinical model

CT-based radiomics pre-ablation could help to
predict local progression

Starmans [110] 2021 R 76 Liver metastasis M 564 AUC 0.69 for predicting dHPG This model has potential for automatically
distinguishing dHGP from rHGP

Cheng [111] 2019 R 126 Liver metastasis M 20 AUC of 0.926 and 0.939
C-index of 0.941 and 0.833

A radiomics model can predict the HGPs of liver
metastasis of CRC

Tharmaseelan
[112] 2022 R 47 Liver metastasis SA 4 Differentiate the images into 5 groups in function of the

heterogeneity
RF could characterize the heterogeneity in liver

metastasis of CRC

Devoto [113] 2022 R 24 Liver metastasis A NA The metastatic liver was more heterogeneous (p < 0.05) RF can differentiate a normal appearing metastatic
liver from a non-metastatic liver

Dohan [114] 2020 R 110 Liver metastasis M 20 3 RF with p < 0.005 for predicting OS RF was able to predict OS and identify good
responders better than RECIST 1.1 criteria.

Taghavi [115] 2021 R 91 Liver metastasis A/M 1767 AUC of 0.71; 0.86 and 0.86 RF can provide valuable biomarkers to identify
patients with a high risk for liver metastasis

Li [116] 2022 R 323 Liver metastasis M 1288 AUC 0.79 and 0.72 Combined model can provide biomarkers to
identify patients with high risk of LmCRC

Li [117] 2020 R 100 Liver metastasis M 841 AUC 0.90; 0.86; 0.906 and 0.899 Nomogram with RF and clinical risk allows a better
classification of liver metastasis
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Table 2. Cont.

Author Year Type N Target ROI RF Results Conclusions

Rocca [118] 2021 R 30 Liver metastasis M 22 General Acc of 0.933 CT-based radiomics can detect LmCRC

Lee [119] 2020 R 2019 Liver metastasis M 4096 AUC of 0.747 in prediction 5-year liver metastasis Combined model improved the performance

Huang [120] 2018 R 346 Perineural
invasion M 29 C index 0.817 for combined nomogram Combined nomogram was easy and effective

Li [121] 2020 R 207
Perineural
invasion

Gene expression
M 306 AUC of 0.793 (PNI prediction)

AUC of 0.862 (KRAS prediction)
Machine learning models can predict PNI and

KRAS mutation in CRC patients

Li [122] 2021 R 303 Perineural
invasion M 3095 AUC of 0.828 and 0.801 for the combined model for

predicting PNI status
The combined model can help to evaluate the PNI

status

Li [123] 2020 R 779 Peritoneal
metastasis SA 8900 AUC of 0.855 for combined model

AUC of 0.764 and 0.771 for radiomics and clinical
Combined model, with CT-based radiomics, can be

applied in the prediction of PM
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Radiomics features can also be used for the prediction of some risk factors. Hong
et al. obtained an AUC of 0.799 for the combined model (radiomics-CT staging) for the
prediction of high-risk colon cancer [66]. Ge et al. try to use the radiomics features for
the differentiation between mucinous (MA) and non-mucinous (NMA) rectal cancer. MA
rectal cancer has a poorer prognosis than NMA. They obtained an AUC of 0.93 in both
training and validation cohorts [67]. Hu et al. concluded that some radiomics features are
stable enough to be used for treatment monitoring and prognosis prediction [68]. Dou
et al. concluded that radiomics features could help T staging [69]. Liu et al. obtained an
AUC of 0.945 and 0.754 (primary and validation cohorts) in the prediction of metastatic
CRC. [70]. Huang et al. obtained an AUC of 0.812 and 0.735 (training and validation cohorts)
in the differentiation between low-grade and high-grade CRC [71]. Finally, Liang et al.
obtained an AUC of 0.792 and 0.798 (training and validation cohorts) in the preoperative
differentiation between stages I-II and III-IV in patients with CRC [72].

In terms of the use of radiomics features for predicting gene expression, Badic et al.
concluded that there are genes (ABCC2, CD166, CDKNV1 and INHBB) whose expression
changes are significantly associated with radiomics features [73]. Chu et al. conclude that
there is an association between radiomics signature and the expression of CXCL8 [74].
Huang et al. also studied gene expression in addition to recurrence prediction. They
found 10 between 1037 RF which had a significant association with recurrence prediction
and with the gene expression of PECAM11, PRDM1, AIF1, IL10, ISG20 and TLR8 [75].
Hoshino et al. tried to predict the differences in tumor mutation burden (TMB) between
primary and metastatic lesions using radiogenomics. They concluded that radiogenomics
can infer the TMB status [76]. On the other hand, Yang et al. had significant results for
the prediction of the mutations in KRAS/NRAS/BRAF genes of patients with CRC [77].
Shi et al. also studied the prediction of KRAS/NRAS/BRAF mutations in patients with
CRC and liver metastasis. The AUC for the combined model (radiomics-clinical) was
0.995 and 0.79 for the primary and validation cohorts [78]. Other studies predicted KRAS
status with similar results. González-Castro et al. studied the detection of KRAS mutation
using radiomics based on CT images. Their highest accuracy was 0.83 [79]. Wu et al.
had a very interesting study. They compared hand-crafted (HC) radiomics with deep
learning (DL) based radiomics in predicting KRAS mutation. The combined model with
HC-radiomics + DL-Radiomics, obtained better results [80]. He et al. used radiomics
features from CT images to predict the KRAS mutation in CRC. They also used a model
based on the deep learning method with a residual neural network (ResNet) for predicting
KRAS status [81]. Hu et al. made a prediction of the KRAS mutation by comparing the
three different phases of a CT study (non-contrast, arterial-phase, and venous-phase). They
achieved the best results with radiomics features from the arterial and venous phases
(AUC 0.826). The results for the combination of the three phases showed the worst AUC
but the sensitivity, specificity and accuracy were higher [82]. Jang et al. compared a deep
learning model and a radiogenomics model for predicting the KRAS mutation. They
obtained better results with the radiomics model [83]. Xue et al. also studied the KRAS
prediction. They obtained an AUC of 0.75 and 0.84 for the 2D and 3D radiomics models,
respectively. They obtained better results with a combined model using clinical information
(AUC of 0.92) [84]. In the prediction of BRAF status, Xue et al. obtained remarkable results.
The AUC of the score with the five selected radiomics features was 0.93 and 0.87 for the
training and validation cohorts. They also conducted a nomogram with clinical information
and radiomics features (AUC of 0.95 and 0.88) [85]. Negreros-Osuna et al. also studied the
radiomics features associated with 5-year OS. They found that some radiomics features
were significantly different between BRAF mutation and BRAF wild-type [86].

In recent years, studies about the application of radiomics in the prediction of mi-
crosatellite instability have become more frequent. Fan et al. studied the association
between radiomics features and microsatellite instability (MSI). They found that a ra-
diomics model had better results than a clinical model to predict the MSI, but the combined
model (clinical and radiomic) had the best results [87]. Other studies achieved similar
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results. Li et al. concluded that their combined model could predict the MSI status in
CRC [88]. Ying et al. established a clinical-radiomics nomogram for the preoperative
prediction of MSI status in CRC patients. They achieved an AUC of 0.87 and 0.90 in the
training and validation set for predicting MSI status [89]. Chen et al. studied the prediction
of microsatellite instability using RF and clinical information. In their results, the radiomics
signature obtained better results than the combined model [90]. Pei et al. used a radiomics
nomogram with RF, clinical information, and pathological information for predicting MSI
status. The radiomics nomogram with clinical information and RF obtained an AUC of 0.74
and 0.77 for the training and validation cohorts in the discrimination between high MSI
(MSI-H) and no MSI-H [91]. Cao et al. found 32 radiomics features that are associated with
the MSI status [92]. Wu et al. studied the application of radiomics analysis of iodine-based
material decomposition images with dual-energy CT (DECT) for predicting MSI status in
CRC. They obtained an AUC of 0.961 and 0.875 (training and test cohorts) predicting MSI
status [93]. Finally, Golia Pernicka et al. concluded that radiomics features could help to
the determination of MSI status in CRC [94].

Another application of radiomics in CRC is the determination of lymph node (LN)
metastasis. Liu et al. concluded that 73 radiomics features were significant for differen-
tiating nonmetastatic LN from metastatic LN in patients with colorectal mucinous ade-
nocarcinoma [95]. Cheng et al. used multiphase CT for metastatic LN prediction. They
obtained nine significant RF [96]. Huang et al. concluded that the radiomics signature
combined with clinical risk factors facilitates the preoperative individualized prediction
of LN metastasis [97]. Eresen et al. compared a clinical prediction model (based on LN
size) and a combined model. The results were better for the combined model [98]. Li et al.
compared a combined model with an RF-only model for the prediction of lymphovascular
invasion (LVI). Their best results were with the combined model. One interesting thing
in this study was that they used radiomics features from the intra-tumoral area (1490 RF)
and peri-tumoral area (1605 RF) [99]. Finally, Ge et al. also concluded that the peri-tumor
features can improve the prediction performance of LVI in patients with rectal cancer [100].

There are very few articles that used radiomics to investigate the metastatic pulmonary
nodules in CRC. Liu et al. found that some RF remain unchanged from small to large
malignant nodules, while they do not remain stable in benign nodules [101]. Markich et al.
tried to assess local control of CRC lung metastases treated with radiofrequency ablation.
They concluded that RF could help to discriminate nodules with a risk of local progression
that could benefit from complementary treatment [102].

Radiomics have also been used in CRC patients with liver metastases. In the field of
treatment response and progression prediction of liver metastasis, Giannini et al. demon-
strate that the radiomics model can predict the response to chemotherapy of metastatic
liver lesions [103]. Taghavi et al. in their prospective study had non-significant results
for predicting new liver metastases in patients who will undergo ablation for liver metas-
tases of CRC [104]. Staal et al. studied the prediction of local tumor progression after
ablation of colorectal liver metastasis. The best results were obtained with the combined
model [105]. Liu et al. studied the survival of hepatic arterial infusion chemotherapy. They
also studied the 1-year, 2-year and 3-year survival [106]. There are other studies with
similar results. Giannini et al. tried to predict the response of targeted HER2 treatment in
liver metastasis [107]. Creasy et al. tried to predict liver recurrence, extrahepatic recurrence,
or no evidence of disease after the resection of liver metastases from CRC [108]. Finally,
Taghavi et al. had significant results for the progress prediction of liver metastases [109].

There are few studies that investigate the histopathological growth patterns of liver
metastasis and liver heterogeneity in CRC patients. Starmans et al. had significant re-
sults for predicting a pure histopathological growth pattern (100% desmoplastic or dHGP)
from a replacement histopathological pattern (rHGP) [110]. Cheng et al. also tried to
predict the histopathologic growth pattern (HGP) of colorectal liver metastasis [111]. Thar-
maseelan et al. studied the tumor heterogeneity in liver metastasis of CRC [112]. Finally,
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Devoto et al. demonstrated with a radiomics analysis that a normal apparently metastatic
liver was significantly more heterogeneous than a non-metastatic liver (p < 0.05) [113].

In the field of survival prediction in CRC patients with liver metastasis, Dohan et al.
tried to predict OS. They found three significant RF which predict OS [114].

Finally, in the prediction of liver metastasis in CRC patients, Taghavi et al. studied the
value of the RF for predicting the high risk of liver metastases in patients with CRC [115].
Li et al. had an AUC of 0.79–0.72 (in the internal and external validation cohort, respectively)
in the prediction of liver metastasis in patients with CRC [116]. Li et al. also studied the
performance of a nomogram for predicting liver metastasis [117]. Rocca et al. obtained a
global accuracy of 0.933 for predicting liver metastasis in patients with CRC [118]. Finally,
Lee et al. tried to improve the performance of a clinical model for the prediction of
5-year liver metastasis using a combined model. The AUC for the combined model was
better [119].

In the evaluation of perineural invasion, there are a few studies with radiomics.
Huang et al. developed a radiomics prediction model based on radiomics and CEA levels,
and they obtained better results than the radiomics-only model [120]. Li et al. tried
to predict the perineural invasion (PNI) and the KRAS mutation. They concluded that
machine learning can predict PNI and KRAS mutation [121]. Finally, Li et al. obtained an
AUC of 0.828 and 0.801 (training and validation) for the prediction of PNI [122].

The application of radiomics in the prediction of peritoneal metastasis (PM) in CRC
patients has been sparsely explored. Li et al. obtained an AUC of 0.855 for the com-
bined model. They concluded that the combined model can potentially be applied in the
individual preoperative prediction of PM in CRC patients [123].

4. Future
The Radiology Department of the Future

Improving the diagnostic performance of all these models will undoubtedly be one
of the main objectives of the researchers in the next years. Although major progress
had been made in the last decades, there are still notable limitations: malignant lung
nodules have high variability among themselves and can be located in any area of the
lung; therefore, they can be hidden by the rest of the thoracic structures, such as the
ribs or the diaphragm. Something common in most studies is that they report problems
when detecting especially small (<3 mm) nodules or subsolid, in ground glass, and in
differentiating them from some structures, such as yuxtapleural blood vessels, for example.
If these systems are to be implemented, criteria should be established for how and when
to use them, always considering that the scientific evidence shows some improvement
in prognosis or reduction in mortality in such situations, something that we have lacked
until now. At the workload level, it would be convenient to use them with caution since
they could produce a paradoxical effect by increasing it. A CT image provides a wealth of
information for the radiologist, and CAD, in turn, as well. The CAD could detail the most
relevant aspects of the image in a complementary way, but it could also increase the time for
the analysis of the images since the radiologist would have to analyze the information from
both sources, especially if the lack of performance in the system could affect irreversible
decisions. Most of the current diagnostic algorithms make use of advanced techniques,
rather than more conventional CAD models that are being relegated. This may be a clear
sign that the way forward in the future is through more complex as well as promising
variants, such as Deep Learning and CNN. Their high diagnostic performance and their
constant improvement through periodic reviews make it probable that, in the future, they
will obtain sufficient performance to start doing larger multicenter studies that clarify
whether it is a good idea to take them to hospitals. As for AI, although it tries to emulate
natural intelligence, some experts believe that in the field of radiology, it will always be
used as a complement to the radiologist’s work, and therefore, it will never replace their
work. Among the reasons for this, the inability of AI to emulate other capabilities of
natural intelligence is highlighted, such as abstraction or generalization, and, above all,
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that diseases sometimes have atypical presentations, something that an algorithm trained
in a base with eminently typical injuries could misdiagnose [1]. Although this technology
used as a complement to the radiologist’s work has the ability to reduce the workload, it
does not have to entail a reduction in the demand for these in hospitals. It is more feasible
that this earned time is used in the rest of their duties, highlighting communication with
the patient. During the healthcare process, patients demand qualities that even the most
punctual technology still cannot offer today, such as empathy or communication skills. This
fact is especially relevant given the path towards a more technological medicine, which
should not be a step towards colder and more systematic medicine. All the work that
machines and computers save us should be dedicated to patients, paradoxically making us
more humane.

5. Discussion

When we compare the models of CAD on lung disease diagnoses, we can observe
certain limitations. To begin with, some studies establish different parameters regarding
the study of the nodules, so that a positive result for one could be a negative one for
another. Differences in terms of the size limit, protocols in the use of obtained data,
lung segmentation methods, evaluation methods, etc., represent a significant bias when
comparing them. In terms of establishing actual contrasts, the current comparison between
different diagnostic algorithms is complicated due to the differences in the databases and the
methodology used. The availability of databases with quality information, correctly labeled,
and representative of the population, is scarce. Usually, the databases with correctly labeled
information are small and from isolated hospitals; therefore, they are not representative.
Furthermore, the public and larger databases such as the LIDC-IDRI have data from
multiple centers, but they do not have label information according to the reference standard
for the diagnosis of the disease. Another important bias is related to databases since
after training the model in open-access data sets, they provide results after validating or
testing the model in private databases. Although this provides more reliable results, using
hospital cohorts of patients who are going to have histopathological confirmation reduces
the possibility of comparison between studies since the cohorts can be very different from
each other. On the other hand, the use of public databases, although providing more
comparable results is not without bias since the LIDC-IDRI database and its derivative
LUNA16 (the most widely used) do not contain histopathological confirmation of their
findings, for which the reference standard used in the studies does not correspond to that of
the clinical practice (pathological anatomy), this being an obstacle to verify the real utility
of these methods.

In the field of radiomics in CRC, the classic problems are still latent. There are not
enough prospective studies and the methodology is also not standardized. We can see that
the number of features extracted varied greatly from article to article, even if they have the
same target. Many of the studies describe the features they extract, but many others simply
reflect the number of them that were taken into account. Regarding these problems, we
saw that there are hints of trying to change things. Initiatives such as IBSI, or studies that
already include cohorts from different hospitals, are becoming more and more frequent in
the scientific literature. Besides this, we cannot forget that the application of radiomics to a
normal clinical way of decision-making has to be conducted in a way that the radiologist
could perform it quickly and easily. All the new advances have to be for the improvement
of patient management, and the improvement of the radiologist’s work.

The application of CAD and radiomics to dual-energy X-ray imaging has not been
adequately studied. Dual-energy chest radiography and more recently dual-energy or
spectral CT have become commercially available and are routinely employed at many
large medical centers. Advances in spectral CT are anticipated with the recent commercial
introduction of photon counting CT. As illustrated in Figures 6 and 7 dual energy chest
radiography permits one to obtain a conventional digital chest radiographic image as well
as additional subtraction images with the bones removed (soft tissue image) and with
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the soft tissue structures removed (bone image). With this capability, the radiologists’
ability to detect subtle pulmonary nodules improved as well as their ability to discriminate
between benign and malignant lesions [124,125]. It is anticipated that spectral imaging will
also improve the power of CAD and Radiomics when applied to three or more distinctly
different images of the same anatomical structures rather than to a single image. Dual-
energy or spectral imaging compared to conventional single-energy X-ray imaging also
provides reliable quantitative information that could be used to reduce false positives. It
is likely that Radiomics will also benefit from the accurate and reproducible quantitative
input that spectral x-ray imaging provides.
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Figure 6. Images obtained on a prototype dual energy digital chest radiographic unit at the University
of Alabama Birmingham circa 1985 with a single exposure: the conventional digital image was
obtained by adding the low and high energy images (left); soft tissue image (center) and bone image
(right) [124,125].
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Figure 7. Images obtained on a prototype dual energy digital chest radiographic unit at the University
of Alabama Birmingham circa 1985 with a single exposure of a patient with lesions present in both
sides of the lung in the conventional digital image (left); Soft tissue (center) and bone (right) images
of the patient. The nodule in the lung left side is calcified and benign. The nodule on right side is
present in the soft tissue image and not in the bone image, was not calcified and was cancer [124,125].

6. Conclusions

Radiology is one of the medical specialties that has experienced great changes in
the last 50 years. The discovery of CT and MRI, and the digitization at the end of the
twentieth century, made radiology go hand in hand with the technological evolution of
society. The high technological developments experienced in recent decades brought AI
systems. These systems were quickly applied to the health field as well as to other economic
sectors. In the beginning, AI (CAD) applied to medicine emerged as a possible substitute for
radiologists. The possibilities for AI that experts glimpsed were endless. The initial efforts
were mainly focused on the diagnostic capacity of AI systems. With the development of the
first applications of AI, it was discovered that replacing the work of the clinician was not
easy. Some of the AI systems developed were able to answer a specific question. However,
many of the medical decisions made day-to-day require reflection and reasoning that is not
capable of being imitated even with the most sophisticated AI techniques.
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In the field of medical imaging, this initial outburst gave way to first-generation
CAD systems, which attempted to replace radiologists. This initial trivialization of the
radiological profession made little headway. It was seen that many of the AI applications
developed were not cost-effective due to the complexity and high specialization required to
make decisions based on medical images. The radiologist faces a wide range of pathologies
in their routine. Therefore, the development of AI in the radiological field should provide
more than the ability to give a specific diagnosis.

Gradually, with increased cooperation between developers and clinical staff, AI fo-
cused on improving the diagnostic process itself, rather than providing a final diagnosis. In
this sense, in the field of radiology, great advances were made in CT and MRI. It was along
these lines that second-generation CAD systems emerged. These systems no longer aspire
to replace radiologists. They provide a second opinion in complex situations or when AI
presents a significant advantage. In this sense, these systems seek to liberate the radiologist
from the most repetitive tasks, as well as improve other phases of the diagnostic process
(acquisition, processing and post-processing of images).

In recent years, there has been a new boom in certain AI applications. In the congresses
of the different radiology societies, the main topic is the use of AI to improve the day-
to-day practice of radiologists. This renewed enthusiasm is due to the development of
applications, such as radiomics. Radiomics has exploded with force because of the desire
to provide increasingly personalized medicine. The reality is that today radiomics is far
from being applied in a simple and intuitive way to the daily diagnostic course as we
know it. The complexity of the algorithms and the aspects of the process remain unknown
even to experts in the field, meaning that the use we will probably see in the coming years
continues to be that of a “support tool”. Although the idea of being able to replace a biopsy
with a simple click is very tempting, for the moment caution should reign. Radiomics
should be a guide tool for the reference techniques already proven. In this sense, what
should be sought in the coming years is not to replace other techniques but to think about
how to complement them to be more precise and efficient.

It has been more than 30 years since the first CAD researchers predicted the end of
many of the medical professions as we know them. Being an eminently technological
specialty, radiology was the focus of these prophecies. However, we could see in these
years that radiologists were not affected by technological advances. They were at the
forefront of this evolution and demonstrated increased levels of patient care.

Thanks to the collaboration established between developers and radiologists, the
future is bright. As seen in the history of AI, this path will continue with ups and downs in
the coming years. At present we are again in a time of change. However, unlike 30 years
ago, we see that the goal of AI applications has changed. Before it was sought to replace the
radiologist, currently it is attempting to provide the radiological profession with a greater
level of precision and patient care. News about the end of the radiologist profession is also
becoming less frequent, reflecting researchers’ growing knowledge of the complexity of
radiology practice.

In short, it seems that in the future AI will change medical practice as we know it. In
the field of radiology, we will see fundamental improvements in diagnostic capabilities
thanks to the increasingly sophisticated tools that will become available. However, AI will
not replace the intuition, consensus and decision-making capacity of human reasoning.
While it is true that decision algorithms will continue to be developed in certain tasks, there
will continue to be an important limitation when it comes to resolving conflicts derived
from different points of view. In an increasingly multidisciplinary medical practice, this
handicap is an important limitation to the initial idea researchers had of replacing the
human component in medical decision-making.



Appl. Sci. 2023, 13, 2218 26 of 31

Author Contributions: Conceptualization, J.P.-Á., G.T.B., A.V. and M.S.-B.; methodology, J.P.-Á.,
G.T.B., A.V. and M.S.-B.; writing-original draft preparation, J.P.-Á., G.T.B., A.V., R.G.-F. and M.S.-B.;
writing-review and editing, G.T.B., R.G.-F., S.B.-G., E.H.Z. and M.S.-B.; supervision, G.T.B., R.G.-F.,
E.H.Z., S.B.-G. and M.S.-B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Acc: Accuracy; AI: Artificial Intelligence; AUC: Area Under the Curve; BAcc: Balanced Accu-
racy; C-Index: Concordance Index; CAD: Computer-Aided Diagnoses; CE: Contrast Enhanced; CEA:
Carcinoembryonic Antigen; CNN: Convolutional Neural Network; CR: Complete Response; CRC:
Colorectal Cancer; CT: Computer Tomography; DBN: Deep Belief Network; DECT: Dual Energy Com-
puter Tomography; DL: Deep Learning; DL-CAD: Deep Learning based Computer-Aided Diagnoses;
EGFR: Epidermal Growth Factor Receptor; ExHOG: Extended Histogram of Oriented Gradients;
FPSO: Fuzzy Particle Swarm Optimization; FS: Free Survival; GR: Good Response; HC: Hand Crafted;
HER2: Human Epidermal Growth Factor Receptor 2; HGP: Histopathological Grow Pattern; HR:
Hazard Ratio; IBSI: Imaging Biomarker Standardization Initiative; LARC: Locally Advanced Rectal
Cancer; LASSO: Least Absolute Shrinkage and Selection Operator; LDCT: Low Dose Computer
Tomography; LIDC-IDRI: Lung Image Database Consortium-Image Database Resource Initiative;
LmCRC: Liver Metastases of Colorectal Cancer; LN: Lymph Nodes; LVI: Lymphovascular Invasion;
M: Manual; MA: Mucinous rectal cancer; MD: Material Decomposition; MIP: Maximum Intensity
Projections; ML: Machine Learning; MO-FS: Multi-Objective based Feature Selection; MRI: Magnetic
Resonance Imaging; MSI: Microsatellite Instability; N: Number of patients; NA: Not Available; NAR:
Neoadjuvant Rectal score; NCE: Non-Contrast Enhanced; NMA: Non-Mucinous rectal cancer; NPV:
Negative Predictive Value; OR: Odds Ratio; OS: Overall Survival; P: Prospective; PACS: Picture
Archiving Communication Systems; PET: Positron Emission Tomography; PFS: Progression Free
Survival; PM: Peritoneal Metastasis; PNI: Perineural Invasion; PPV: Positive Predictive Value; R:
Retrospective; ResNet: Residual Network; RF: Radiomics Features; ROI: Regions Of Interest; RPN: Re-
gion Proposal network; rs: Spearman’s rank correlation coefficient; S: Sensitivity; SA: Semi-Automatic;
SE: Squeeze Excitation; Spec: Specificity; SVM: Support Vector Machine; TBS: Tumor Burden Score;
TMB: Tumor Mutation Burden; WLTB: Whole Liver Tumor Burden.

References
1. Souto, M. Sobre Imágenes y Máquinas: Medicina Digital del Siglo XXI; USC Ensaio: Santiago de Compostela, Spain, 2015; pp. 59–92,

128–162.
2. Souto, M.; Malagari, K.S.; Tucker, D.; Tahoces, P.G.; Correa, J.; Benakis, V.S.; Roussos, C.; Strigaris, K.A.; Vidal, J.J.; Barnes, G.T.;

et al. Digital radiograph of the chest: State of the art. Eur. Radiol. 1994, 4, 281–297.
3. Suárez-Cuenca, J.J.; Tahoces, P.G.; Souto, M.; Lado, M.J.; Remy-Jardin, M.; Remy, J.; Vidal, J.J. Application of the iris filter for

automatic detection of pulmonary nodules on computed tomography images. Comput. Biol. Med. 2009, 39, 921–933.
4. Fraser, R.F.; Breatnach, E.; Barnes, G.T. Digital radiography of the chest: Clinical experience with a prototype unit. Radiology 1983,

148, 1–5.
5. Barnes, G.T.; Sones, R.A.; Tesic, M.M. Digital chest radiography: Performance evaluation of a prototype unit. Radiology 1985, 154,

801–806.
6. Fraser, R.G.; Sanders, C.; Barnes, G.T.; MacMahon, H.; Giger, M.L.; Doi, K.; Templeton, A.W.; Cox, G.G.; Dwyer, I.I.I.S.J.; Meritt,

C.R.B.; et al. Digital imaging of the chest. Radiology 1989, 171, 297–307. [CrossRef]
7. Yoshimura, H.; Giger, M.L.; Doi, K.; MacMahon, H.; Montner, S.M. Computerized scheme for the detection of pulmonary nodules.

A nonlinear filtering technique. Investig. Radiol. 1992, 27, 124–129.
8. Amer, H.M.; Abou-Chadi, F.E.; Kishk, S.S.; Obayya, M.I. A CAD System for the Early Detection of Lung Nodules Using Computed

Tomography Scan Images. Int. J. Online Biomed. Eng. IJOE 2019, 15, 40–52.
9. Gu, Y.; Lu, X.; Zhang, B.; Zhao, Y.; Yu, D.; Gao, L.; Cui, G.; Wu, L.; Zhou, T. Automatic lung nodule detection using multi-scale dot

nodule-enhancement filter and weighted support vector machines in chest computed tomography. PLoS ONE 2019, 14, e0210551.
[CrossRef]

http://doi.org/10.1148/radiology.171.2.2649913
http://doi.org/10.1371/journal.pone.0210551


Appl. Sci. 2023, 13, 2218 27 of 31

10. Wagner, A.-K.; Hapich, A.; Psychogios, M.N.; Teichgräber, U.; Malich, A.; Papageorgiou, I. Computer-Aided Detection of
Pulmonary Nodules in Computed Tomography Using ClearReadCT. J. Med. Syst. 2019, 43, 58. [CrossRef]

11. Huang, X.; Sun, W.; Tseng, T.L.B.; Li, C.; Qian, W. Fast and fully-automated detection and segmentation of pulmonary nodules in
thoracic CT scans using deep convolutional neural networks. Comput. Med. Imaging Graph. 2019, 74, 25–36. [CrossRef]

12. Huang, W.; Xue, Y.; Wu, Y. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional
neural networks and ensemble learning. PLoS ONE 2019, 14, e0219369. [CrossRef]

13. Li, L.; Liu, Z.; Huang, H.; Lin, M.; Luo, D. Evaluating the performance of a deep learning-based computer-aided diagnosis
(DL-CAD) system for detecting and characterizing lung nodules: Comparison with the performance of double reading by
radiologists. Thorac. Cancer 2019, 10, 183–192. [CrossRef]

14. Tang, H.; Kim, D.; Xie, X. Automated pulmonary nodule detection using 3D deep convolutional neural networks. Pattern Recognit.
2019, 85, 109–119.

15. Zheng, S.; Guo, J.; Cui, X.; Veldhuis, R.N.J.; Oudkerk, M.; van Ooijen, P.M.A. Automatic Pulmonary Nodule Detection in CT Scans
Using Convolutional Neural Networks Based on Maximum Intensity Projection. IEEE Trans. Med. Imaging 2020, 39, 797–805.

16. Gong, L.; Jiang, S.; Yang, Z.; Zhang, G.; Wang, L. Automated pulmonary nodule detection in CT images using 3D deep
squeeze-and-excitation networks. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 1969–1979. [CrossRef]

17. Tan, J.; Huo, Y.; Liang, Z.; Li, L. Expert knowledge-infused deep learning for automatic lung nodule detection. J. X-ray Sci. Technol.
2019, 27, 17–35.

18. Tran, G.S.; Nghiem, T.P.; Nguyen, V.T.; Luong, C.M.; Burie, J.-C. Improving Accuracy of Lung Nodule Classification Using Deep
Learning with Focal Loss. J. Healthc. Eng. 2019, 2019, 5156416. [CrossRef]

19. Tammemagi, M.; Ritchie, A.J.; Atkar-Khattra, S.; Dougherty, B.; Sanghera, C.; Mayo, J.R.; Yuan, R.; Manos, D.; McWilliams, A.M.;
Schmidt, H.; et al. Predicting Malignancy Risk of Screen-Detected Lung Nodules-Mean Diameter or Volume. J. Thorac. Oncol.
2019, 14, 203–211. [CrossRef]

20. Xie, Y.; Zhang, J.; Xia, Y. Semi-supervised adversarial model for benign-malignant lung nodule classification on chest CT. Med.
Image Anal. 2019, 57, 237–248. [CrossRef]

21. Zhao, X.; Qi, S.; Zhang, B.; Ma, H.; Qian, W.; Yao, Y.; Sun, J. Deep CNN models for pulmonary nodule classification: Model
modification, model integration, and transfer learning. J. X-ray Sci. Technol. 2019, 27, 615–629.

22. da Silva, G.; Silva, A.; de Paiva, A.; Gattass, M. Classification of malignancy of lung nodules in CT images using Convolutional
Neural Network. In Anais do XVI Workshop de Informática Médica; SBC Porto Alegre: Porto Alegre, Brasil, 2016; pp. 2481–2489.

23. Kailasam, S.P.; Sathik, M.M. A Novel Hybrid Feature Extraction Model for Classification on Pulmonary Nodules. Asian Pac. J.
Cancer Prev. APJCP 2019, 20, 457–468.

24. Wu, P.; Sun, X.; Zhao, Z.; Wang, H.; Pan, S.; Schuller, B. Classification of Lung Nodules Based on Deep Residual Networks and
Migration Learning. Comput. Intell. Neurosci. 2020, 2020, 8975078. [CrossRef]

25. Zhang, S.; Han, F.; Liang, Z.; Tan, J.; Cao, W.; Gao, Y.; Pomeroy, M.; Ng, K.; Hou, W. An investigation of CNN models for
differentiating malignant from benign lesions using small pathologically proven datasets. Comput. Med. Imaging Graph. 2019, 77,
101645. [CrossRef]

26. Liu, A.; Wang, Z.; Yang, Y.; Wang, J.; Dai, X.; Wang, L.; Lu, Y.; Xue, F. Preoperative diagnosis of malignant pulmonary nodules in
lung cancer screening with a radiomics nomogram. Cancer Commun. 2020, 40, 16–24.

27. Mao, L.; Chen, H.; Liang, M.; Li, K.; Gao, J.; Qin, P.; Ding, X.; Li, X.; Liu, X. Quantitative radiomic model for predicting malignancy
of small solid pulmonary nodules detected by low-dose CT screening. Quant Imaging Med. Surg. 2019, 9, 263–272.

28. Xu, Y.; Lu, L.; Lin, N.; Lian, W.; Yang, H.; Schwartz, L.H.; Yang, Z.H.; Zhao, B. Application of Radiomics in Predicting the
Malignancy of Pulmonary Nodules in Different Sizes. AJR Am. J. Roentgenol. 2019, 213, 1213–1220.

29. Zhou, Z.; Li, S.; Qin, G.; Folkert, M.; Jiang, S.; Wang, J. Multi-Objective-Based Radiomic Feature Selection for Lesion Malignancy
Classification. IEEE J. Biomed. Health Inform. 2020, 24, 194–204. [CrossRef]

30. Asuntha, A.; Srinivasan, A. Deep learning for lung Cancer detection and classification. Multimed. Tools Appl. 2020, 79, 7731–7762.
[CrossRef]

31. Bhandary, A.; Prabhu, G.A.; Rajinikanth, V.; Thanaraj, K.P.; Satapathy, S.C.; Robbins, D.E.; Shasky, C.; Zhang, Y.; Tavares, J.; Raja,
N.M. Deep-learning framework to detect lung abnormality—A study with chest X-ray and lung CT scan images. Pattern Recognit
Lett. 2020, 129, 271–278.

32. Bansal, G.; Chamola, V.; Narang, P.; Kumar, S.; Raman, S. Deep3DSCan: Deep Residual Network And Morphological Descriptor
Based Framework for Lung Cancer Classification And 3D Segmentation. IET Image Process. 2020, 14, 1217–1425. [CrossRef]

33. El-Bana, S.; Al-Kabbany, A.; Sharkas, M. A Two-Stage Framework for Automated Malignant Pulmonary Nodule Detection in CT
Scans. Diagnostics 2020, 10, 131. [CrossRef]

34. Masood, A.; Yang, P.; Sheng, B.; Li, H.; Li, P.; Qin, J.; Lanfranchi, V.; Kim, J.; Feng, D.D. Cloud-Based Automated Clinical
Decision Support System for Detection and Diagnosis of Lung Cancer in Chest CT. IEEE J Transl Eng Health Med. 2020, 8, 4300113.
[CrossRef]

35. Nasrullah, N.; Sang, J.; Alam, M.S.; Mateen, M.; Cai, B.; Hu, H. Automated Lung Nodule Detection and Classification Using Deep
Learning Combined with Multiple Strategies. Sensors 2019, 19, 3722.

36. Shanid, M.; Anitha, A. Lung cancer detection from ct images using salp-elephant optimization-based deep learning. Biomed. Eng.
Appl. Basis Commun. 2020, 32, 2050001. [CrossRef]

http://doi.org/10.1007/s10916-019-1180-1
http://doi.org/10.1016/j.compmedimag.2019.02.003
http://doi.org/10.1371/journal.pone.0219369
http://doi.org/10.1111/1759-7714.12931
http://doi.org/10.1007/s11548-019-01979-1
http://doi.org/10.1155/2019/5156416
http://doi.org/10.1016/j.jtho.2018.10.006
http://doi.org/10.1016/j.media.2019.07.004
http://doi.org/10.1155/2020/8975078
http://doi.org/10.1016/j.compmedimag.2019.101645
http://doi.org/10.1109/JBHI.2019.2902298
http://doi.org/10.1007/s11042-019-08394-3
http://doi.org/10.1049/iet-ipr.2019.1164
http://doi.org/10.3390/diagnostics10030131
http://doi.org/10.1109/JTEHM.2019.2955458
http://doi.org/10.4015/S1016237220500015


Appl. Sci. 2023, 13, 2218 28 of 31

37. Zhang, C.; Sun, X.; Dang, K.; Li, K.; Guo, X.-W.; Chang, J.; Yu, Z.Q.; Huang, F.Y.; Wu, Y.S.; Liang, Z.; et al. Toward an Expert
Level of Lung Cancer Detection and Classification Using a Deep Convolutional Neural Network. Oncologist 2019, 24, 1159–1165.
[CrossRef]

38. Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577.
[CrossRef]

39. Bodalal, Z.; Trebeschi, S.; Nguyen-Kim, T.D.L.; Schats, W.; Beets-Tan, R. Radiogenomics: Bridging imaging and genomics. Abdom
Radiol (NY) 2019, 44, 1960–1984.

40. van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging—“How-to” guide and
critical reflection. Insights Imaging 2020, 11, 91.

41. Badic, B.; Tixier, F.; Cheze Le Rest, C.; Hatt, M.; Visvikis, D. Radiogenomics in Colorectal Cancer. Cancers 2021, 13, 973. [CrossRef]
42. Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.;

Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput
Image-based Phenotyping. Radiology 2020, 295, 328–338.

43. Xue, T.; Peng, H.; Chen, Q.; Li, M.; Duan, S.; Feng, F. A CT-Based Radiomics Nomogram in Predicting the Postoperative Prognosis
of Colorectal Cancer: A Two-center Study. Acad. Radiol. 2022, 29, 1647–1660. [CrossRef]

44. Huang, Y.; He, L.; Li, Z.; Chen, X.; Han, C.; Zhao, K.; Zhang, Y.; Qu, J.; Mao, Y.; Liang, C.; et al. Coupling radiomics analysis of CT
image with diversification of tumor ecosystem: A new insight to overall survival in stage I-III colorectal cancer. Chin. J. Cancer
Res. 2022, 34, 40–52. [CrossRef]

45. Dercle, L.; Zhao, B.; Gönen, M.; Moskowitz, C.S.; Connors, D.E.; Yang, H.; Lu, L.; Reidy-Lagunes, D.; Fojo, T.; Karovic, S.; et al. An
imaging signature to predict outcome in metastatic colorectal cancer using routine computed tomography scans. Eur. J. Cancer
2022, 161, 138–147. [CrossRef]

46. Badic, B.; Desseroit, M.C.; Hatt, M.; Visvikis, D. Potential Complementary Value of Noncontrast and Contrast Enhanced CT
Radiomics in Colorectal Cancers. Acad. Radiol. 2019, 26, 469–479. [CrossRef]

47. Mühlberg, A.; Holch, J.W.; Heinemann, V.; Huber, T.; Moltz, J.; Maurus, S.; Jäger, N.; Liu, L.; Froelich, M.F.; Katzmann, A.; et al.
The relevance of CT-based geometric and radiomics analysis of whole liver tumor burden to predict survival of patients with
metastatic colorectal cancer. Eur. Radiol. 2021, 31, 834–846.

48. Li, M.; Zhu, Y.Z.; Zhang, Y.C.; Yue, Y.F.; Yu, H.P.; Song, B. Radiomics of rectal cancer for predicting distant metastasis and overall
survival. World J. Gastroenterol. 2020, 26, 5008–5021.

49. Zhao, Y.; Yang, J.; Luo, M.; Yang, Y.; Guo, X.; Zhang, T.; Hao, J.; Yao, Y.; Ma, X. Contrast-Enhanced CT-based Textural Parameters
as Potential Prognostic Factors of Survival for Colorectal Cancer Patients Receiving Targeted Therapy. Mol. Imaging Biol. 2021, 23,
427–435. [CrossRef]

50. Ye, S.; Han, Y.; Pan, X.; Niu, K.; Liao, Y.; Meng, X. Association of CT-Based Delta Radiomics Biomarker With Progression-Free
Survival in Patients With Colorectal Liver Metastases Undergo Chemotherapy. Front. Oncol. 2022, 12, 843991. [CrossRef]

51. Rabe, E.; Cioni, D.; Baglietto, L.; Fornili, M.; Gabelloni, M.; Neri, E. Can the computed tomography texture analysis of colorectal
liver metastases predict the response to first-line cytotoxic chemotherapy? World J. Hepatol. 2022, 14, 244–259.

52. Cai, D.; Duan, X.; Wang, W.; Huang, Z.P.; Zhu, Q.; Zhong, M.E.; Lv, M.Y.; Li, C.H.; Kou, W.B.; Wu, X.J.; et al. A Metabolism-Related
Radiomics Signature for Predicting the Prognosis of Colorectal Cancer. Front. Mol. Biosci. 2020, 7, 613918. [CrossRef]

53. Defeudis, A.; Cefaloni, L.; Giannetto, G.; Cappello, G.; Rizzetto, F.; Panic, J.; Barra, D.; Nicoletti, G.; Mazzetti, S.; Vanzulli, A.; et al.
Comparison of radiomics approaches to predict resistance to 1st line chemotherapy in liver metastatic colorectal cancer. Annu.
Int. Conf. IEEE Eng. Med. Biol. Soc. 2021, 2021, 3305–3308.

54. Lutsyk, M.; Gourevich, K.; Keidar, Z. Complete Pathologic Response Prediction by Radiomics Wavelets Features of Unenhanced
CT Simulation Images in Locally Advanced Rectal Cancer Patients after Neoadjuvant Chemoradiation. ISR Med. Assoc. J. 2021,
23, 805–810.

55. Bibault, J.E.; Giraud, P.; Housset, M.; Durdux, C.; Taieb, J.; Berger, A.; Coriat, R.; Chaussade, S.; Dousset, B.; Nordlinger, B.; et al.
Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer.
Sci. Rep. 2018, 8, 12611. [CrossRef]

56. Zhang, Z.; Yi, X.; Pei, Q.; Fu, Y.; Li, B.; Liu, H.; Han, Z.; Chen, C.; Pang, P.; Lin, H.; et al. CT radiomics identifying non-responders
to neoadjuvant chemoradiotherapy among patients with locally advanced rectal cancer. Cancer Med. 2022. [CrossRef]

57. Giannini, V.; Pusceddu, L.; Defeudis, A.; Nicoletti, G.; Cappello, G.; Mazzetti, S.; Sartore-Bianchi, A.; Siena, S.; Vanzulli, A.;
Rizzetto, F.; et al. Delta-Radiomics Predicts Response to First-Line Oxaliplatin-Based Chemotherapy in Colorectal Cancer Patients
with Liver Metastases. Cancers 2022, 14, 241. [CrossRef]

58. Vandendorpe, B.; Durot, C.; Lebellec, L.; Le Deley, M.C.; Sylla, D.; Bimbai, A.M.; Amroun, K.; Ramiandrisoa, F.; Cordoba, A.;
Mirabel, X.; et al. Prognostic value of the texture analysis parameters of the initial computed tomographic scan for response
to neoadjuvant chemoradiation therapy in patients with locally advanced rectal cancer. Radiother. Oncol. 2019, 135, 153–160.
[CrossRef]

59. Zhuang, Z.; Liu, Z.; Li, J.; Wang, X.; Xie, P.; Xiong, F.; Hu, J.; Meng, X.; Huang, M.; Deng, Y.; et al. Radiomic signature of the
FOWARC trial predicts pathological response to neoadjuvant treatment in rectal cancer. J. Transl. Med. 2021, 19, 256.

60. Wang, F.; Tan, B.F.; Poh, S.S.; Siow, T.R.; Lim, F.L.W.T.; Yip, C.S.P.; Wang, M.L.C.; Nei, W.; Tan, H.Q. Predicting outcomes for
locally advanced rectal cancer treated with neoadjuvant chemoradiation with CT-based radiomics. Sci. Rep. 2022, 12, 6167.

http://doi.org/10.1634/theoncologist.2018-0908
http://doi.org/10.1148/radiol.2015151169
http://doi.org/10.3390/cancers13050973
http://doi.org/10.1016/j.acra.2022.02.006
http://doi.org/10.21147/j.issn.1000-9604.2022.01.04
http://doi.org/10.1016/j.ejca.2021.10.029
http://doi.org/10.1016/j.acra.2018.06.004
http://doi.org/10.1007/s11307-020-01552-2
http://doi.org/10.3389/fonc.2022.843991
http://doi.org/10.3389/fmolb.2020.613918
http://doi.org/10.1038/s41598-018-30657-6
http://doi.org/10.1002/cam4.5086
http://doi.org/10.3390/cancers14010241
http://doi.org/10.1016/j.radonc.2019.03.011


Appl. Sci. 2023, 13, 2218 29 of 31

61. Dercle, L.; Lu, L.; Schwartz, L.H.; Qian, M.; Tejpar, S.; Eggleton, P.; Zhao, B.; Peissevaux, H. Radiomics Response Signature for
Identification of Metastatic Colorectal Cancer Sensitive to Therapies Targeting EGFR Pathway. J. Natl. Cancer Inst. 2020, 112,
902–912.

62. Yuan, Z.; Frazer, M.; Zhang, G.G.; Latifi, K.; Moros, E.G.; Feygelman, V.; Felder, S.; Sanchez, J.; Dessureault, S.; Imanirad, I.; et al.
CT-based radiomic features to predict pathological response in rectal cancer: A retrospective cohort study. J. Med. Imaging Radiat.
Oncol. 2020, 64, 444–449.

63. Bonomo, P.; Socarras Fernandez, J.; Thorwarth, D.; Casati, M.; Livi, L.; Zips, D.; Gani, C. Simulation CT-based radiomics for
prediction of response after neoadjuvant chemo-radiotherapy in patients with locally advanced rectal cancer. Radiat. Oncol. 2022,
17, 84.

64. Fan, S.; Cui, X.; Liu, C.; Li, X.; Zheng, L.; Song, Q.; Qi, J.; Ma, W.; Ye, Z. CT-Based Radiomics Signature: A Potential Biomarker for
Predicting Postoperative Recurrence Risk in Stage II Colorectal Cancer. Front. Oncol. 2021, 11, 644933.

65. Badic, B.; Da-Ano, R.; Poirot, K.; Jaouen, V.; Magnin, B.; Gagnière, J.; Pezet, D.; Hatt, M.; Visvikis, D. Prediction of recurrence after
surgery in colorectal cancer patients using radiomics from diagnostic contrast-enhanced computed tomography: A two-center
study. Eur. Radiol. 2022, 32, 405–414. [CrossRef]

66. Hong, E.K.; Bodalal, Z.; Landolfi, F.; Bogveradze, N.; Bos, P.; Park, S.J.; Min-Lee, J.; Beets-Tan, R. Identifying high-risk colon
cancer on CT an a radiomics signature improve radiologist’s performance for T staging? Abdom Radiol. (NY) 2022, 47, 2739–2746.

67. Ge, Y.X.; Li, J.; Zhang, J.Q.; Duan, S.F.; Liu, Y.K.; Hu, S.D. Radiomics analysis of multicenter CT images for discriminating
mucinous adenocarcinoma from nomucinous adenocarcinoma in rectal cancer and comparison with conventional CT values. J
Xray Sci. Technol. 2020, 28, 285–297. [CrossRef]

68. Hu, P.; Wang, J.; Zhong, H.; Zhou, Z.; Shen, L.; Hu, W.; Zhang, Z. Reproducibility with repeat CT in radiomics study for rectal
cancer. Oncotarget 2016, 7, 71440–71446. [CrossRef]

69. Dou, Y.; Liu, Y.; Kong, X.; Yang, S. T staging with functional and radiomics parameters of computed tomography in colorectal
cancer patients. Medicine (Baltimore) 2022, 101, e29244.

70. Liu, Q.; Li, J.; Xu, L.; Wang, J.; Zeng, Z.; Fu, J.; Huang, X.; Chu, Y.; Wang, J.; Zhang, H.Y.; et al. Individualized Prediction of
Colorectal Cancer Metastasis Using a Radiogenomics Approach. Front. Oncol. 2021, 11, 620945.

71. Huang, X.; Cheng, Z.; Huang, Y.; Liang, C.; He, L.; Ma, Z.; Chen, X.; Wu, X.; Li, Y.; Liang, C.; et al. CT-based Radiomics Signature
to Discriminate High-grade From Low-grade Colorectal Adenocarcinoma. Acad. Radiol. 2018, 25, 1285–1297.

72. Liang, C.; Huang, Y.; He, L.; Chen, X.; Ma, Z.; Dong, D.; Tian, J.; Liang, C.; Liu, Z. The development and validation of a
CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer. Oncotarget 2016,
7, 31401–31412.

73. Badic, B.; Hatt, M.; Durand, S.; Jossic-Corcos, C.L.; Simon, B.; Visvikis, D.; Corcos, L. Radiogenomics-based cancer prognosis in
colorectal cancer. Sci. Rep. 2019, 9, 9743. [CrossRef]

74. Chu, Y.; Li, J.; Zeng, Z.; Huang, B.; Zhao, J.; Liu, Q.; Wu, H.; Fu, J.; Zhang, Y.; Cai, J.; et al. A Novel Model Based on CXCL8-Derived
Radiomics for Prognosis Prediction in Colorectal Cancer. Front. Oncol. 2020, 10, 575422.

75. Huang, Y.C.; Tsai, Y.S.; Li, C.I.; Chan, R.H.; Yeh, Y.M.; Chen, P.C.; Shen, M.R.; Lin, P.C. Adjusted CT Image-Based Radiomic Features
Combined with Immune Genomic Expression Achieve Accurate Prognostic Classification and Identification of Therapeutic
Targets in Stage III Colorectal Cancer. Cancers 2022, 14, 1895. [CrossRef]

76. Hoshino, I.; Yokota, H.; Iwatate, Y.; Mori, Y.; Kuwayama, N.; Ishige, F.; Itami, M.; Uno, T.; Nakamura, Y.; Tatsumi, Y.; et al.
Prediction of the differences in tumor mutation burden between primary and metastatic lesions by radiogenomics. Cancer Sci.
2022, 113, 229–239. [CrossRef]

77. Yang, L.; Dong, D.; Fang, M.; Zhu, Y.; Zang, Y.; Liu, Z.; Zhang, H.; Ying, J.; Zhao, X.; Tian, J. Can CT-based radiomics signature
predict KRAS/NRAS/BRAF mutations in colorectal cancer? Eur. Radiol. 2018, 28, 2058–2067.

78. Shi, R.; Chen, W.; Yang, B.; Qu, J.; Cheng, Y.; Zhu, Z.; Gao, Y.; Wang, Q.; Liu, Y.; Li, Z.; et al. Prediction of KRAS, NRAS and BRAF
status in colorectal cancer patients with liver metastasis using a deep artificial neural network based on radiomics and semantic
features. Am. J. Cancer Res. 2020, 10, 4513–4526.

79. González-Castro, V.; Cernadas, E.; Huelga, E.; Fernández-Delgado, M.; Porto, J.; Antunez, J.R.; Souto-Bayarri, M. CT Radiomics
in Colorectal Cancer: Detection of KRAS Mutation Using Texture Analysis and Machine Learning. Appl. Sci. 2020, 10, 6214.
[CrossRef]

80. Wu, X.; Li, Y.; Chen, X.; Huang, Y.; He, L.; Zhao, K.; Huang, X.; Zhang, W.; Huang, Y.; Li, Y.; et al. Deep Learning Features Improve
the Performance of a Radiomics Signature for Predicting KRAS Status in Patients with Colorectal Cancer. Acad. Radiol. 2020, 27,
e254–e262.

81. He, K.; Liu, X.; Li, M.; Li, X.; Yang, H.; Zhang, H. Noninvasive KRAS mutation estimation in colorectal cancer using a deep
learning method based on CT imaging. BMC Med. Imaging 2020, 20, 59. [CrossRef]

82. Hu, J.; Xia, X.; Wang, P.; Peng, Y.; Liu, J.; Xie, X.; Liao, Y.; Wan, Q.; Li, X. Predicting Kirsten Rat Sarcoma Virus Gene Mutation
Status in Patients With Colorectal Cancer by Radiomics Models Based on Multiphasic CT. Front. Oncol. 2022, 12, 848798.

83. Jang, B.S.; Song, C.; Kang, S.B.; Kim, J.S. Radiogenomic and Deep Learning Network Approaches to Predict KRAS Mutation from
Radiotherapy Plan CT. Anticancer Res. 2021, 41, 3969–3976. [CrossRef]

84. Xue, T.; Peng, H.; Chen, Q.; Li, M.; Duan, S.; Feng, F. Preoperative prediction of KRAS mutation status in colorectal cancer using a
CT-based radiomics nomogram. Br. J. Radiol. 2022, 95, 20211014.

http://doi.org/10.1007/s00330-021-08104-4
http://doi.org/10.3233/XST-190614
http://doi.org/10.18632/oncotarget.12199
http://doi.org/10.1038/s41598-019-46286-6
http://doi.org/10.3390/cancers14081895
http://doi.org/10.1111/cas.15173
http://doi.org/10.3390/app10186214
http://doi.org/10.1186/s12880-020-00457-4
http://doi.org/10.21873/anticanres.15193


Appl. Sci. 2023, 13, 2218 30 of 31

85. Xue, T.; Peng, H.; Chen, Q.; Li, M.; Duan, S.; Feng, F. Preoperative Prediction of BRAF Mutation Status in Colorectal Cancer Using
a Clinical-radiomics Model. Acad. Radiol. 2022, 29, 1298–1307.

86. Negreros-Osuna, A.A.; Parakh, A.; Corcoran, R.B.; Pourvaziri, A.; Kambadakone, A.; Ryan, D.P.; Sahani, D.V. Radiomics Texture
Features in Advanced Colorectal Cancer: Correlation with BRAF Mutation and 5-year Overall Survival. Radiol. Imaging Cancer
2020, 2, e190084. [CrossRef]

87. Fan, S.; Li, X.; Cui, X.; Zheng, L.; Ren, X.; Ma, W.; Ye, Z. Computed Tomography-Based Radiomic Features Could Potentially
Predict Microsatellite Instability Status in Stage II Colorectal Cancer: A Preliminary Study. Acad. Radiol. 2019, 26, 1633–1640.

88. Li, Z.; Zhong, Q.; Zhang, L.; Wang, M.; Xiao, W.; Cui, F.; Yu, F.; Huang, C.; Feng, Z. Computed Tomography-Based Radiomics
Model to Preoperatively Predict Microsatellite Instability Status in Colorectal Cancer: A Multicenter Study. Front. Oncol. 2021,
11, 666786. [CrossRef]

89. Ying, M.; Pan, J.; Lu, G.; Zhou, S.; Fu, J.; Wang, Q.; Wang, L.; Hu, B.; Wei, Y.; Shen, J. Development and validation of a radiomics-
based nomogram for the preoperative prediction of microsatellite instability in colorectal cancer. BMC Cancer 2022, 22, 524.
[CrossRef]

90. Chen, X.; He, L.; Li, Q.; Liu, L.; Li, S.; Zhang, Y.; Liu, Z.; Huang, Y.; Mao, Y.; Chen, X. Non-invasive prediction of microsatellite
instability in colorectal cancer by a genetic algorithm-enhanced artificial neural network-based CT radiomics signature. Eur
Radiol. 2022, 33, 11–22. [CrossRef]

91. Pei, Q.; Yi, X.; Chen, C.; Pang, P.; Fu, Y.; Lei, G.; Chen, C.; Tan, F.; Gong, G.; Li, Q.; et al. Pre-treatment CT-based radiomics
nomogram for predicting microsatellite instability status in colorectal cancer. Eur Radiol. 2022, 32, 714–724.

92. Cao, Y.; Zhang, G.; Zhang, J.; Yang, Y.; Ren, J.; Yan, X.; Wang, Z.; Zhao, Z.; Huang, X.; Bao, H.; et al. Predicting Microsatellite
Instability Status in Colorectal Cancer Based on Triphasic Enhanced Computed Tomography Radiomics Signatures: A Multicenter
Study. Front. Oncol. 2021, 11, 687771. [CrossRef]

93. Wu, J.; Zhang, Q.; Zhao, Y.; Liu, Y.; Chen, A.; Li, X.; Wu, T.; Li, J.; Guo, Y.; Liu, A. Radiomics Analysis of Iodine-Based Material
Decomposition Images With Dual-Energy Computed Tomography Imaging for Preoperatively Predicting Microsatellite Instability
Status in Colorectal Cancer. Front. Oncol. 2019, 9, 1250. [CrossRef]

94. Golia Pernicka, J.S.; Gagniere, J.; Chakraborty, J.; Yamashita, R.; Nardo, L.; Creasy, J.M.; Petkovska, I.; Do, R.R.K.; Bates, D.D.B.;
Paroder, V.; et al. Radiomics-based prediction of microsatellite instability in colorectal cancer at initial computed tomography
evaluation. Abdom Radiol. (NY) 2019, 44, 3755–3763.

95. Liu, Y.; Dou, Y.; Lu, F.; Liu, L. A study of radiomics parameters from dual-energy computed tomography images for lymph node
metastasis evaluation in colorectal mucinous adenocarcinoma. Medicine (Baltimore) 2020, 99, e19251.

96. Cheng, Y.; Yu, Q.; Meng, W.; Jiang, W. Clinico-Radiologic Nomogram Using Multiphase CT to Predict Lymph Node Metastasis in
Colon Cancer. Mol Imaging Biol. 2022, 24, 798–806.

97. Huang, Y.Q.; Liang, C.H.; He, L.; Tian, J.; Liang, C.S.; Chen, X.; Ma, Z.L.; Liu, Z.Y. Development and Validation of a Radiomics
Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer. J. Clin. Oncol. 2016, 34, 2157–2164.

98. Eresen, A.; Li, Y.; Yang, J.; Shangguan, J.; Velichko, Y.; Yaghmai, V.; Benson, A.B., 3rd; Zhang, Z. Preoperative assessment of lymph
node metastasis in Colon Cancer patients using machine learning: A pilot study. Cancer Imaging 2020, 20, 30. [CrossRef]

99. Li, M.; Jin, Y.; Rui, J.; Zhang, Y.; Zhao, Y.; Huang, C.; Liu, S.; Song, B. Computed tomography-based radiomics for predicting
lymphovascular invasion in rectal cancer. Eur. J. Radiol. 2022, 146, 110065.

100. Ge, Y.X.; Xu, W.B.; Wang, Z.; Zhang, J.Q.; Zhou, X.Y.; Duan, S.F.; Hu, S.D.; Fei, B.J. Prognostic value of CT radiomics in evaluating
lymphovascular invasion in rectal cancer: Diagnostic performance based on different volumes of interest. J. X-ray Sci. Technol.
2021, 29, 663–674. [CrossRef]

101. Liu, C.; Meng, Q.; Zeng, Q.; Chen, H.; Shen, Y.; Li, B.; Cen, R.; Huang, J.; Li, G.; Liao, Y.; et al. An Exploratory Study on the
Stable Radiomics Features of Metastatic Small Pulmonary Nodules in Colorectal Cancer Patients. Front Oncol. 2021, 11, 661763.
[CrossRef]

102. Markich, R.; Palussière, J.; Catena, V.; Cazayus, M.; Fonck, M.; Bechade, D.; Buy, X.; Crombé, A. Radiomics complements clinical,
radiological, and technical features to assess local control of colorectal cancer lung metastases treated with radiofrequency
ablation. Eur Radiol. 2021, 31, 8302–8314.

103. Giannini, V.; Defeudis, A.; Rosati, S.; Cappello, G.; Mazzetti, S.; Panic, J.; Regge, D.; Balestra, G. An innovative radiomics approach
to predict response to chemotherapy of liver metastases based on CT images. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020,
2020, 1339–1342.

104. Taghavi, M.; Staal, F.C.; Simões, R.; Hong, E.K.; Lambregts, D.M.; van der Heide, U.A.; Beets-Tan, R.G.; Maas, M. CT radiomics
models are unable to predict new liver metastasis after successful thermal ablation of colorectal liver metastases. Acta Radiol.
2021, 2841851211060437.

105. Staal, F.C.R.; Taghavi, M.; van der Reijd, D.J.; Gomez, F.M.; Imani, F.; Klompenhouwer, E.G.; Meek, D.; Roberti, S.; de Boer, M.;
Lambregts, D.M.J.; et al. Predicting local tumour progression after ablation for colorectal liver metastases: CT-based radiomics of
the ablation zone. Eur. J. Radiol. 2021, 141, 109773. [CrossRef]

106. Liu, P.; Zhu, H.; Zhu, H.; Zhang, X.; Feng, A.; Zhu, X.; Sun, Y. Predicting Survival for Hepatic Arterial Infusion Chemotherapy of
Unresectable Colorectal Liver Metastases: Radiomics Analysis of Pretreatment Computed Tomography. J. Transl. Int. Med. 2022,
10, 56–64.

http://doi.org/10.1148/rycan.2020190084
http://doi.org/10.3389/fonc.2021.666786
http://doi.org/10.1186/s12885-022-09584-3
http://doi.org/10.1007/s00330-022-08954-6
http://doi.org/10.3389/fonc.2021.687771
http://doi.org/10.3389/fonc.2019.01250
http://doi.org/10.1186/s40644-020-00308-z
http://doi.org/10.3233/XST-210877
http://doi.org/10.3389/fonc.2021.661763
http://doi.org/10.1016/j.ejrad.2021.109773


Appl. Sci. 2023, 13, 2218 31 of 31

107. Giannini, V.; Rosati, S.; Defeudis, A.; Balestra, G.; Vassallo, L.; Cappello, G.; Mazzetti, S.; De Mattia, C.; Rizzetto, F.; Torresin,
A.; et al. Radiomics predicts response of individual HER2-amplified colorectal cancer liver metastases in patients treated with
HER2-targeted therapy. Int J Cancer 2020, 147, 3215–3223.

108. Creasy, J.M.; Cunanan, K.M.; Chakraborty, J.; McAuliffe, J.C.; Chou, J.; Gonen, M.; Kingham, V.S.; Weiser, M.R.; Balachandran,
V.P.; Drebin, J.A.; et al. Differences in Liver Parenchyma are Measurable with CT Radiomics at Initial Colon Resection in Patients
that Develop Hepatic Metastases from Stage II/III Colon Cancer. Ann. Surg. Oncol. 2021, 28, 1982–1989. [CrossRef]

109. Taghavi, M.; Staal, F.; Gomez Munoz, F.; Imani, F.; Meek, D.B.; Simões, R.; Klompenhouwer, L.G.; van der Heide, U.A.; Beets-Tan,
R.G.H.; Maas, M. CT-Based Radiomics Analysis Before Thermal Ablation to Predict Local Tumor Progression for Colorectal Liver
Metastases. Cardiovasc. Intervent Radiol. 2021, 44, 913–920. [CrossRef]

110. Starmans, M.P.A.; Buisman, F.E.; Renckens, M.; Willemssen, F.E.J.A.; van der Voort, S.R.; Groot Koerkamp, B.; Grünhagen,
D.J.; Niessen, W.J.; Vermeulen, P.B.; Verhoef, C.; et al. Distinguishing pure histopathological growth patterns of colorectal liver
metastases on CT using deep learning and radiomics: A pilot study. Clin Exp Metastasis 2021, 38, 483–494.

111. Cheng, J.; Wei, J.; Tong, T.; Sheng, W.; Zhang, Y.; Han, Y.; Gu, D.; Hong, N.; Ye, Y.; Tian, J.; et al. Prediction of Histopathologic
Growth Patterns of Colorectal Liver Metastases with a Noninvasive Imaging Method. Ann. Surg. Oncol. 2019, 26, 4587–4598.
[CrossRef]
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