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Abstract: Medium/distant maritime rescue is significantly important in the development of maritime
business. For typical medium/distant maritime rescue, the range limitation of helicopters and many
difficulties between helicopter and ship cooperation lead to unsatisfactory rescue results. Compared
to helicopters and ships, amphibious aircrafts could effectively solve the problems faced by helicopters
and ships and meet the medium/distant maritime rescue demands with their long cruise range, high
speed, high rescue capability and surface landing capability. Therefore, a time-domain planning
method (TPM) based on the k-means* clustering algorithm and the genetic algorithm* is proposed in
this study for the surface rescue process (SRP) of amphibious aircrafts in medium/distant maritime
rescue. To simulate the SRP of amphibious aircrafts, an agent-based simulation environment of
medium/distant maritime rescue was constructed based on the Python platform. Finally, a case study
was carried out to verify its effectiveness and applicability. The results show that the TPM exhibits
satisfactory rescue results for the SRP of the amphibious aircraft and that less than 1 h of delay time
is recommended for the amphibious aircraft to rescue the persons in distress by using TPM.

Keywords: amphibious aircraft; surface rescue process; medium/distant maritime rescue; agent-based
modeling and simulation

1. Introduction

Maritime rescue plays an important role in the development of the maritime busi-
ness [1]. Maritime rescue can be divided into offshore rescue and medium/distant maritime
rescue according to the distance from the coastline. At present, maritime rescue heavily
relies on helicopters and ships [2–4]. There have been many studies, especially for offshore
rescue [5–9]. However, as the scope of maritime business activities gradually expands to
the medium/distant maritime regions [10], the probability of maritime accidents begins to
increase in medium/distant maritime regions [11]. Research in the field of medium/distant
maritime rescue is becoming increasingly important. However, there is insufficient relevant
research on this specific field [11–13], of which most focus on the allocation and arrange-
ment of the multiple rescue resources, such as rescue bases, rescue helicopters, and rescue
ships. Nevertheless, compared to offshore rescue, the range limitation of helicopters and
the many difficulties between helicopter and ship cooperation lead to unsatisfactory rescue
results in medium/distant maritime rescue [14,15].

Compared to helicopters and ships, amphibious aircrafts can effectively solve the
problems faced by helicopters and ships and meet the medium/distant maritime rescue
demands because of their long cruise range, high speed, high rescue capability, and surface
landing capability [16–19]. Therefore, this study on the amphibious aircraft applications
for medium/distant maritime rescue is meaningful. Most of the current research on am-
phibious aircrafts has focused on the verification of a specific performance of the aircraft
and exploratory design studies [20–24]. There is still a large gap in research on the applica-
tions of amphibious aircrafts. The main application areas of amphibious aircrafts are in
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forest firefighting and maritime rescue [25]. For maritime rescue with amphibious aircrafts,
Yang et al. proposed an optimal algorithm for searching routes of amphibious aircrafts,
considering their flight characteristics and sea rescue capability [26]. Zhou analyzed the
factors affecting the siting of amphibious aircrafts [27]. Du et al. established the amphibious
aircraft selection decision model based on the improved fuzzy evaluation method [28].
Xiong et al. established a landing search and rescue risk assessment system for amphibious
aircrafts. Based on the studied assessment system, they constructed the affiliation function
of each index by the assignment method, and determined a fuzzy comprehensive eval-
uation process [29]. Wu not only used the k-means clustering algorithm, addressing the
multi-amphibious aircraft rescue task assignment problem, but also used the ant colony
algorithm for multi-aircraft rescue route planning [30]. However, there is no detailed study
of the rescue process for amphibious aircrafts. Therefore, it is meaningful and necessary
to carry out an in-depth study on the rescue process of amphibious aircrafts, which is the
main motivation of this study. For medium/distant maritime rescue, one feasible way
is the application of the mathematical methods for optimization. The application of the
mathematical methods for optimization has been widely used in various fields, including
transportation, military, economy, etc.

In terms of maritime rescue, mathematical methods have also been frequently utilized.
Firstly, with the development of maritime weather observation technology, the drifting
trajectory of the person in distress (PDT) can be obtained through more accurate environ-
mental information by using mathematical methods, which can improve the efficiency and
success of maritime rescue [31]. Then, for the maritime rescue process determination and
optimization, Xiong et al. proposed a method for helicopter search area planning based
on a minimum bounding rectangle and k-means clustering [32]. Liu et al. proposed an
evaluation framework of helicopter maritime search and rescue which reveals the influence
mechanism of uncertainty factors [33]. Pang et al. proposed a new target allocation method
based on the improved genetic algorithm called the multi-string genetic algorithm [34].
Moreover, Ma et al. proposed an optimization model of emergency resources allocation,
considering multiple restrictions, including accident black spots, the possible locations of
rescue bases, different types of emergency resources, and rescue ships [35]. These studies
show that mathematical methods have great applications in maritime rescue. Therefore, a
surface rescue process (SRP) of amphibious aircrafts for medium/distant maritime rescue
based on mathematical methods is proposed in this study. This method combines the
adaptive k-means clustering algorithm (k-means*) with the optimal genetic algorithm
(GA*). In addition, to improve the effectiveness and applicability of this method in prac-
tical situations, this study considers the relative motion of the amphibious aircraft and
of the PDTs, differing from the traditional rescue methods which are based on stationary
position [36,37]. Furthermore, the change in the PDTs’ position and the change in the PDTs’
health uncertainty are taken into consideration. In summary, a time-domain planning
method (TPM) for the SRP of amphibious aircrafts in medium/distant maritime rescue, for
the first time, is proposed in this study.

To simulate the SRP of amphibious aircrafts, one common method is to develop a
simulation environment. Most existing research of simulation methods includes agent-
based modeling and simulation (ABMS), discrete event system specification, and the system
dynamic model [38–40]. The amphibious aircraft surface rescue simulation environment
is constructed based on ABMS to solve the impact of the time-domain results on the
simulation results in this study. The amphibious aircraft agent and the PDT agent are built
to simulate the SRP of the amphibious aircraft for medium/distant maritime rescue.

The rest of this article is organized as follows: Section 2 introduces the TPM for SRP of
the amphibious aircraft for medium/distant maritime rescue. Section 3 mainly describes
the construction of the simulation environment based on ABMS. In Section 4, the rescue
time and the successful rescue rates of the PDTs in a capsized ship are calculated based on
the TPM for model verification. Finally, a summary of the article and the future work are
given in Section 5.
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2. Rescue Process of TPM for SRP

The SRP of amphibious aircrafts for medium/distant maritime rescue is shown in
Figure 1. The probable drift trajectories of the PDTs should be predicted first. Next, the
time when the amphibious aircraft arrives at the distress position should be calculated. In
order to maximize the rescue performance of the amphibious aircraft, the PDTs should
be clustered when the amphibious aircraft arrives. Additionally, the uncertainty health
weight of individuals in each cluster should be calculated. The criterion of selecting a water
landing site is based on the maximum uncertainty health weight in the clusters, and should
be the destination of the amphibious aircraft. After the water landing site is selected, the
lifeboat on the amphibious aircraft should be sent out to rescue the PDTs in turn. Therefore,
it is necessary to optimize the rescue sequence of the PDTs in this cluster to save rescue
time. Then, the amphibious aircraft should return to the base after reaching its maximum
capacity, otherwise it will change the clusters. Finally, the rescue should be finished when
the end condition is satisfied. Otherwise, the rescue should be implemented again by the
amphibious aircraft.
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2.1. Predicting the Trajectories of PDTs

For medium/distant maritime rescue, it is worthy to predict the trajectories of the
PDTs first. The drift trajectory can be influenced by winds, currents, and the physical
properties of the PDT. Assuming that the ocean wind speed is Vwd, the ocean flow speed is
Vwt, and the wind speed modification factor is γ. Then, for the maritime rescue mission,
the drift speed of PDTs can be given by:

Vdri f t = Vwt + γ · Vwd (1)
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Assuming that the initial position of the PDT is s0 at a certain time, t0, the ocean wind
speed and the ocean flow speed do not change in a short time, ∆t, and the position of the
PDT after a short time can be predicted by:

sdri f t = s0 +
∫ t0+∆t

t0

Vdri f tdt (2)

Considering that the ocean wind speed and the ocean flow speed, etc., are uncertain,
and that the ∆t cannot be infinitely small, Monte Carlo experiments were used in this study
which could simulate these uncertainties [41]. Additionally, in an actual rescue process, the
lifeboat would have a certain range of rescue capabilities. Although the predicted location
was not the accurate position, the PDTs could be rescued by the lifeboat within a little
amount of time after it reached the predicted position of the PDTs. Therefore, the average
predicted result of the Monte Carlo experiments was used to find the predicted trajectory
of each PDT to improve the successful rescue rate. As shown in Figure 2, four examples of
trajectory prediction were given.
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2.2. Calculating the Time to Reach the Distress Position

After obtaining the drift prediction trajectory of the PDTs, assuming that the distance
between the rescue base and the distance position is L, and that the cruising speed of the
amphibious aircraft is Vc, the time when the amphibious aircraft arrived at the distress
position was calculated by:

Tarrive =
L
Vc

(3)

2.3. Dividing the PDTs into Multiple Clusters by K-Means*

Assuming that the position of the PDTs at the initial moment, T0, could be collected,
the movement of the PDTs between T0 and a short time, ∆T, after T0, was along a straight
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line. Then, based on the arrival time of the amphibious aircraft, the drift position of the
PDTs at T0 + Tarrive could be obtained with the initial position by Equations (1) and (2).

After determining the probable drift trajectory of the PDTs, the arrival time of the
amphibious aircraft was calculated. Then, the lifeboat which was on the amphibious aircraft
was sent out to rescue the PDTs after the amphibious aircraft landed. The lifeboat was used
for rescuing and transferring the PDTs to the amphibious aircraft. Considering that the
PDTs had different positions, and considering the limitation of rescue capability, it was
necessary to determine where to land. In order to reduce the rescue time and increase the
rescue performance of the amphibious aircraft, k-means* was used to divide the location
of the PDTs in this study. Different from the typical k-means clustering algorithm [42–44],
the k-means* clustering algorithm could adjust the optimal number of clustering through
iteration based on the rescue capability of the amphibious aircraft as well as that of the
lifeboat. Based on k-means*, the optimal number of clustered PDTs could be automatically
obtained after iterative optimization.

The detailed optimization process of the k-means* clustering algorithm is shown
as follows:

Step 1: give kcluster as follows. Based on the maximum rescue capability of the am-
phibious aircraft, Anum, the lifeboat voyage, SLmax, means the maximum distance it can
travel without returning to the amphibious aircraft for resupply. The maximum rescue
capability of the lifeboat, Smn, means the maximum number of the PDTs carried, and the
number of PDTs is Ninput:

kcluster =

[Ninput[n]
Anum

]
(4)

Step 2: randomly select kcluster points as initial centers.
Step 3: calculate the distance to each center kcluster for each PDT in turn, and classify

the PDTs to the nearest center kcluster.
Step 4: calculate the new center of each cluster using the mean value method.
Step 5: if the position of the center changes, return to Step 3, otherwise, continue to

Step 6.
Step 6: output the maximum distance maxdis[cluster] of each PDT from the center of

each cluster. If the maximum of maxdis[cluster] is less than SLmax/Smn, continue to Step 7,
otherwise, assign kcluster + 1 to and return to Step 2.

Step 7: output the position of the cluster centroids, C[cluster], the number of the PDTs,
Cnum, and the position, Clocation, for each category.

The flowchart of k-means is shown in Figure 3. As seen in Figure 3, the detailed
process of k-means* is given. The pseudo code of k-means* is shown in Appendix A. In
addition, Figure 4 shows the results of the clustering of the PDTs by k-means*. The number
of the PDTs is 40 in Figure 4 (left) and 65 in Figure 4 (right).

2.4. Selecting the Water Landing Site Based on the Uncertainty Health Weight of PDTs

After obtaining C[cluster], i.e., the location of the optional water landing site for the
amphibious aircraft, it is important to choose the order of clustering points for the SRP
of the multiple clustering centers. In this study, a method was proposed to calculate the
uncertainty health weight based on the survival probability of the PDTs.

The survival time of the PDTs varied significantly because of the uncertainty of the
health conditions of the PDTs. The maximum survival time of the PDTs after falling into
the water can be given by:

Ti
max = σi·5.75· exp(0.1·wt) (5)

where Ti
max is the maximum survival time of the ith PDT, σi is the correction factor, whichde-

pends on the uncertainties of the PDTs, and wt is the water temperature at the current position.
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This study proposes the uncertainty health weight of the PDTs based on the maximum
survival time. In this way, the survival probability of the ith PDT at the moment, T, after
distress can be given by:

Pi =

{
Ti

max−T
Ti

max
, 0 ≤ T < Ti

max

0, Ti
max ≤ T

(6)
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Next, the uncertainty health weight of each PDT can be given by:

Wi =
Pi

∑Num−1
i=0 Pi

, (7)

where Wi is the uncertainty health weight of the ith PDT, and Num is the total number of
the PDTs.

Then, the uncertainty health weight in the jth cluster of the C[cluster] clustering
category result can be calculated as:

W j = ∑Cj
num−1

i=0 W j
i

(8)

where Cj
num is the number of the PDTs in the jth cluster of the C[cluster] clustering category

result, and W j
i is the uncertainty health weight of the ith PDT in the jth cluster. Finally, the

optimal position can be chosen as the water landing site which is one with the maximum W j.

2.5. Optimizing the Rescue Sequence for the Selected Cluster by GA*

After the amphibious aircraft selected the water landing site, the lifeboat was sent
out to rescue the PDTs. One had to assume there was only one lifeboat in the amphibious
aircraft. Furthermore, the positions of the PDTs were not going to change after selecting
the water landing site. Since the positions of the PDTs would have been be differentiated,
and since the lifeboat had a limited capacity, the lifeboat had to return to the amphibious
aircraft when the maximum number of rescued persons was reached. Therefore, the issue
at hand was how to choose the rescue sequence of the PDTs. In this study, the GA* was
used to optimize the rescue sequence.

Different from the typical GA [45–47], in this study, the GA* could perform self-
optimization by using LNS [48]. With LNS, the iterative optimization converges faster.
Moreover, considering the limited rescue capability of the lifeboat, the optimization process
of this study was slightly different from that of the typical GA. In detail, the lifeboat
should have returned to the amphibious aircraft, which would have caused the rescue
sequence to have many repeated points. Therefore, all operators were adjusted for better
optimization. Furthermore, the detailed optimization process of the GA* is shown in the
following section.

2.5.1. Population Definition

As mentioned in Section 2.3, the lifeboat was the only rescue responder for the PDTs.
In a real rescue process, rescue results are usually influenced by the rescue sequence of the
PDTs. For instance, it usually takes different amounts of time for rescue under different
rescue paths. To include a consideration of this, the population was defined to describe the
sequential paths of the lifeboat when rescuing the PDTs.

2.5.2. Individual Chromosome Coding

Assuming that the amphibious aircraft selected the jth cluster center as the water
landing site, to highlight the characteristics of the population chromosome coding, the
number of the PDTs in the cluster, Cj

num, is denoted by N.
For the N PDTs of the cluster, it was digitally coded from 0 to N− 1 as the chromosomal

component of individuals within population. In addition, considering the limitations of
the lifeboat rescue capacity mentioned previously, the water landing site of the amphibious
aircraft was digitally coded as N. The chromosome code of a random individual in the
population is shown in Figure 5 as an example.
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2.5.3. Optimization Objective

The optimization objective of the GA* was calculated with:

F = min ∑D
i=0

1
di(i+1)

(9)

where D is the rescue sequence of the PDTs, F(D) is the fitness function of the D, and di(i+1)

is the distance between the ith PDT and the (i + 1)th PDT in the rescue sequence.

2.5.4. Self-Optimization Based on LNS

To improve the optimization ability of the GA*, in this study, individuals in the
population were self-optimized based on LNS.

As shown in Figure 6, the studied LNS-based self-optimization algorithm was con-
ducted as follows:
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Step 1: randomly select an individual in the population.
Step 2: determine the number of self-optimizations, Imcount, and initialize the number

of the optimizations, p = 0.
Step 3: remove N codes from the individual chromosome coding.
Step 4: randomly generate two integers j, k to generate neighboring solution.
Step 5: destroy. Take out the code of the jth and kth position of the chromosome.
Step 6: repair. Put the jth code into the original kth position, and put the kth code into

the original jth position.
Step 7: insert N codes according to the rules mentioned in individual chromosome

coding, then generate the neighboring solution.
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Step 8: the fitness of the newly generated chromosome is compared with the fitness
of the original chromosome, and the one with the greater fitness is taken as the new
chromosome for the selected individual.

Step 9: if p = Imcount − 1, output the current chromosome individual, otherwise, use
p = p + 1, and return to Step 2.

2.5.5. Selection Operator

In the selection operator, the elitist selection method was used. The elitist selection
method was started by selecting a proportion of the most adapted individuals first in each
generation of the selection process, and retaining the individuals in the next generation.
The elitist selection method had a faster convergence of results and could find the global
optimum faster. To prevent the population from falling into a local optimum as much as
possible, the remaining individuals with a certain probability were randomly selected to be
retained in the next generation.

2.5.6. Crossover Operator

A crossover operator was used to create new chromosomes from the retained individ-
uals in the selection operator. This operator ensured the diversity of the population. As
shown in Figure 7, the detailed process of using the crossover operator was as follows:
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Step 1: to satisfy population size stability, set the number of the individuals with the
crossover operator Child, which is equal to the population size, N, minus the number of
individuals retained by the selection operator.

Step 2: two different individuals retained by the selection operator are randomly
selected as FA and MO.

Step 3: remove the N codes from the individual chromosome coding, and denote the
codes in FA and MO by f and m, respectively.
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Step 4: randomly generate the cross fragment length, CL, and randomly select the
cross fragment start point, i.

Step 5: copy the i f , . . . , j f and im, . . . , jm fragments as cross fragments starting from i.
Step 6: remove the digitally coded f in FA if f is equal to the code in the im, . . . , jm

fragments, and remove the digitally coded m in MO if m is equal to the code in im, . . . , jm,
to ensure that the codes cannot be duplicated. Then, FAre and MOre are obtained.

Step 7: insert the copied i f , . . . , j f fragments into MOre, and insert the copied im, . . . , jm
fragments into FAre.

Step 8: insert the N codes according to the previously mentioned rules, then get the
offspring Child1 and Child2.

Step 9: if the number of the population reaches N, stop the crossover operator, other-
wise, return to Step 2.

2.5.7. Mutation Operator

To improve the exploration of the optimal solution, the mutation operator was used.
The mutation operator involved a random selection of an individual in the Child obtained
with the crossover operator. The position of the two codes in the chromosome were
randomly changed with a certain probability.

As shown in Figure 8, the detailed process of using the mutation operator was as follows:
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Step 1: obtain the size of the Child as Nchild, then initialize the number of the mutation
operators as Munum = 0.

Step 2: generate the Murate, and perform Step 2 to Step 7 for each Child obtained with
the crossover operator.

Step 3: select the Child in turn, and generate a random number, mu. If mu is less than
Murate, continue to Step 4. Otherwise, perform Step 3 again and Munum = Munum + 1.

Step 4: remove the N codes from the individual chromosome coding.
Step 5: randomly generate two integers, j, and k, and swap the position of the

two codes.
Step 6: insert the N codes according to the previously mentioned rules.
Step 7: if Munum = Nchild, stop the mutation operator, otherwise, return to Step 3.
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After selecting the water landing site, the population and the parameters of the
population were initialized randomly. Then, within the evolution times, the population
evolved by using the self-optimization based on LNS, selection operator, crossover operator,
and mutation operator. The flowchart of the GA* is show in Figure 9.
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3. Simulation Environment

In this study, ABMS [36,49] was applied to construct the simulation environment by
using the Python platform [50,51]. The amphibious aircraft and the PDT were built to sim-
ulate the SRP of the amphibious aircraft in medium/distant maritime rescue. In addition,
the distress environment information needed to be set in the simulation environment by
the user, this information including winds, currents, and water temperature.

In the simulation, the distress position and the airport position were set in the form of
longitude and latitude by the user. Then, the distance between the distress position and
the airport was calculated based on the longitude and latitude. The PDTs were placed
at the initial location around the distress position. As time went on, the PDTs drifted
along a certain trajectory, which was affected by the environment. In addition, the PDTs
generated a maximum survival time according to their health at the initial time. After the
amphibious aircraft received the rescue mission, the arrival time at the distress position
was calculated. Then, the criterion of selecting the water landing site was based on the
maximum uncertainty health weight in the clusters. Finally, the rescue of the PDTs was
carried out.

3.1. The PDT Agent

In the simulation, the initial positions and the maximum survival times of the PDTs
were generated at the initial time.

The behavior model of the PDT agent is shown in Figure 10. As time went on, the PDT
agent departed from the initial position. The next drifting trajectory position of the PDT
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was calculated by Equations (1) and (2), and the PDT agent moved to the next position
after one simulation step in the simulation model. In this simulation environment, the
simulation step length was one minute.
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3.2. The Amphibious Aircraft Agent

In a simulation, the amphibious aircraft agent is generated at the rescue base with the
performance parameters, including: cruising speed, the maximum rescue capacity of the
amphibious aircraft, the number of carried lifeboats, the rescue capacity of the lifeboats,
and the lifeboats’ speed. Based on the cruise range and the refuel capacity at the rescue
base of the amphibious aircraft, the fuel consumption for each rescue performed in this
simulation environment was not considered.

The behavior model of the person in distress agent is shown in Figure 11.
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Firstly, the arrival time at the distress position of the amphibious aircraft was calcu-
lated, and the drifting trajectories of the PDTs were predicted. The PDTs were clustered
by k-means* based on the performance parameters of the amphibious aircraft. Then, the
amphibious aircraft chose the water landing site, considering the uncertainty health weight
of the PDTs. After the amphibious aircraft selected the water landing site, the lifeboat
was sent out to rescue the PDTs following the optimized rescue path based on the GA*.
Finally, after the rescue at the landing site was completed, it was be determined whether the
amphibious aircraft should rescue again or finish the rescue according to the number of the
rescued PDTs. If all the surviving PDTs were rescued, the rescue was finished. Otherwise,
the amphibious aircraft was scheduled to rescue again. Additionally, the amphibious air-
craft determined whether to continue the rescue or return to the base based on the number
of PDTs on the amphibious aircraft.

4. Simulation Case and Analysis

Based on the simulation environment and the construction of the amphibious aircraft
agent and the PDT agent, the effectiveness and applicability of the TPM is verified with
cases in this section. In addition, the simulation environment could perform the TPM
smoothly for different situations in the simulation case.

The simulation case was designed to be a capsized ship case that occurred in the
distant sea region of the East China Sea. At 9:00 am on 11 June 2022, a ship capsized at
the position 31◦12′28.8′′ N, 127◦0′43.2′′ E. The persons on the ship were all overboard. The
average water temperature at the ship’s position was 16 ◦C. In addition, the ocean wind
speed and the ocean flow speed in the distress position could be obtained through weather
monitoring applications.

Assuming that the number of PDTs was 45,the PDTs were randomly generated within
a 2 km square around the distress position as the initial position. For each PDT, 50 samples
were carried out in Monte Carlo experiments to predict their drifting trajectories based
on the simulated time advance. Considering that the predicted trajectories were not the
accurate positions, some extra time (5 min) was needed for the lifeboat to rescue one PDT.

The amphibious aircraft was located at Shanghai Pudong International Airport. The
main performance parameters of the amphibious aircraft in the simulation environment
are listed in Table 1.

Table 1. Performance parameters of the amphibious aircraft.

Performance Parameters Value

initial position 31◦9′0′′ N, 121◦48′21.6′′ E
cruising speed (km/h) 480
aircraft guarantee time

(refuel, transfer of the persons in distress, etc.) (min) 30

the maximum rescue capability (person) 30
number of lifeboats 1

lifeboat speed (km/h) 28
lifeboat voyage (km) 92.6

the maximum rescue capability of the lifeboat (person) 5
time to rescue one person of lifeboat (min/person) 5

To the best of our knowledge, the distress information sent by the PDT cannot be
immediately available to the rescue base in practical applications. Apart from that, the
response and the preparation of the TPM will also take some time. Therefore, the start of
the rescue may be delayed for some time while the PDTs are in distress. The TPM-X is used
to indicate that the start of the rescue is delayed by X hours. Taking the TPM-0.5 as an
example, the main screenshots of the TPM-0.5 and the simulation results for 45 PDTs are
shown in Figure 12 and Table 2. To illustrate the TPM-0.5 of SRP in detail, the rescue time
of each stage is shown in Figure 13.
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The simulation results show that the TPM-0.5 had a high successful rescue rate and
a short rescue time, which meant that the TPM-0.5 had greater effectiveness for 45 PDTs.
The result shows that the amphibious aircraft needed to rescue the PTDs twice when there
were 45 PDTs. The percentage of time taken to rescue the PDTs was the largest. This means
it is necessary to optimize the SRP for medium/distant maritime rescue.

To verify the adaptability of the TPM for different rescue situations, a simulation
experiment with 70 PDTs was conducted with other parameters equal to those mentioned
in this study. Moreover, the initial positions of the PDTs were randomly generated, which
caused uncertainties. The prediction trajectories of the PDTs also caused uncertainties
in the Monte Carlo experiments, and the simulation results might be different for the
same case because of uncertainty factors, including the hardware platform that supports
the simulation environment. Therefore, to reduce the impact of random factors on the
simulation results, the simulation of the TPM-0.5 for 45 and 70 PDTs was conducted fifty
times separately. The box line diagram of the successful rescue rate and the rescue time for
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the TPM-0.5 is shown in Figure 14. The results demonstrate the adaptivity of TPM with
different numbers s of PDTs. The successful rescue rate decreases as the number of the
PDTs increases, whereas the change in the rescue time follows the opposite trend.
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The average rescue times for each stage of the TPM-0.5 with 45 PDTs and 70 PDTs are
shown in Figures 15 and 16. The meaning of Ti in Figures 15 and 16 is the same as that
in Figure 13. The results show that the number of the amphibious aircraft transfer sorties
increased with the number of the PDTs due to the limitation of the amphibious aircraft
rescue capabilities.
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It can be seen that the percentage of time for rescuing the PDTs increased with the
number of the PDTs. Therefore, the TPM has practical advantages for amphibious aircraft
applications in medium/distant maritime rescue.

To investigate the effect of the time factor on the effectiveness of the TPM, TPM-X
with a delay time varying from 1 h to 8 h was simulated for 45 and 70 PDTs, additionally.
To reduce the impact of random factors on the simulation results, the simulation of each
TPM-X was conducted fifty times. The simulation results of the successful rescue rate and
the rescue time for 45 PDTs are shown in Figure 17. The successful rescue rate and the
rescue time for 70 PDTs are shown in Figure 18.
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It is noted that the TPM can significantly affect medium/distant maritime rescue.
The effect of the time factor on the effectiveness of the TPM can be seen in the simulation
results. The greater the delay time of the TPM, the lower the successful rescue rate and the
longer the rescue time. The successful rescue rate for 70 PDTs decreased faster than that
for 45 PDTs, with the delay time increasing. Moreover, the successful rescue rate and the
rescue time of the TPM were affected by many factors, such as the drift speed of PDTs, the
uncertain weather conditions, and the practical rescue experience of the amphibious aircraft.
In addition, the accuracy of the trajectory prediction for the PDTs decreased over time.

Therefore, it is necessary to rapidly respond and prepare to the distress, especially
when the number of the PDTs is high. Based on the simulation results of the TPM, for
medium/distant maritime rescue, a delay time which is less than 1 h is usually recom-
mended for the amphibious aircraft to rescue PDTs by using TPM.
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5. Conclusions

Compared to offshore rescue, medium/distant maritime rescue is more challenging.
However, most previous works have not fully developed a process for medium/distant
maritime rescue, which is essential. The TPM is proposed to determine and optimize
the SRP of the amphibious aircraft in medium/distant maritime rescue. To include the
influence of the time variation, the TPM comprised the relative motion of the amphibious
aircraft and of the PDTs, the change of PDTs’ positions, and the changed uncertainty health
weight of the PDTs. Based on this, the k-means* and the GA* were used to determine and
optimize the SRP of the amphibious aircraft for TPM applications.

To evaluate the effectiveness and the applicability of the TPM, a simulation environ-
ment based on ABMS was constructed. The amphibious aircraft agent and the PDT agent
were built to simulate the SRP of the amphibious aircraft in medium/distant maritime
rescue. Finally, considering the practical rescue situation, it took a certain time delay for
the rescue base to receive a request for rescue, respond to it, and prepare for the rescue.
A capsized ship simulation with 45 PDTs and a 0.5-h time delay was designed to verify
the effectiveness of the TPM. Moreover, to verify the applicability of the TPM for different
situations, a simulation experiment with 70 PDTs and a 0.5-h time delay was additionally
conducted with other parameters equal to those in this study. In addition, to investigate
the effect of the time on the effectiveness of the TPM, a TPM with a delay time varying
from 1 h to 8 h was simulated for 45 and 70 PDTs, respectively.

The simulation results show that the TPM has greatly applicability for different situa-
tions. In medium/distant maritime rescue, a delay time of less than 1 h is recommended for
the amphibious aircraft to rescue PDTs using TPM. Correspondingly, it should be suggested
that the rescue base responds and prepares quickly for rescue in practical situations. The
proposed method proves to be available for effective rescue in a medium/distant maritime
region. Moreover, the developed simulation environment can serve as a decision-making
support tool in evaluating the effectiveness and the rapidity of medium/distant maritime
rescue. To the best of our knowledge, the rescue results are unsatisfactory, as the number of
PDTs increases because of the limitations on number of the amphibious aircraft and of the
lifeboat in this study.

Finally, many extensions of this study could be considered in future work. One
promising direction is the influence of other parameters on using TPM for medium/distant
maritime rescue, such as lifeboat characteristics, the winds, the ocean flow, temperature,
and other environment parameters. Moreover, the additional uncertainties of the PDTs
could be considered, for example, the age, the weight, and the gender, instead of the
correction factor (σi), for more accurate rescue results in an actual rescue process. This
could not only retrieve more accurate rescue results, but could also enable the association
between personal characteristics and simulation results to be observed. Furthermore, a
multi-aircraft rescue method should be considered for more complex emergencies using
amphibious aircrafts in medium/distant maritime rescue. This also provides a promising
direction that allows a more accurate trajectory prediction for PDTs, since the accuracy of
the trajectory prediction based on the Monte Carlo experiment decreased with a longer
delay time.
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