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Abstract: The failure of medical devices, such as bones prosthesis, is mainly due to inflammatory and
infectious phenomena. Entrapping anti-inflammatory and antimicrobial agents inside the biomaterial
matrix could avoid these phenomena. In this context, inorganic/organic silica (S)/polyethylene
glycol (P)/caffeic acid (A) hybrid systems were synthesized via the sol-gel method with different
weight percentages of P and A. Fourier-transform infrared (FT-IR) revealed that caffeic acid under-
goes an oxidizing phenomenon in the sol-gel synthesis condition. Additionally, the formation of
a hydroxyapatite layer on hybrid surfaces was demonstrated by employing the Kokubo test and
analyzing the samples using scanning electron microscopy, X-ray diffraction, and FT-IR. Moreover,
further characterization of the antimicrobial activity of the synthesized biomaterials was carried out
using the Kirby–Bauer test. Finally, UV-Vis measurement was useful to evaluate the caffeic acid
kinetic release in simulated body fluid (SBF) at 37 ◦C. The kinetic study disclosed that the hybrid
materials without polyethylene glycol had faster release rates than the ones obtained without the
organic polymer.

Keywords: sol-gel; hybrid materials; drug delivery; bioactivity

1. Introduction

Biomaterials (BMs) are natural or synthetic substances that interact with the human
body, enhancing the repair or replacement of tissues because of their biocompatibility [1].
BMs can be divided into different classes: metallic, ceramic, glassy, polymeric, composite,
and biodegradable polymers [2,3]. Among these classes, bioceramics and bioglasses have
attracted great interest from researchers because of their ability to promote osteointegra-
tion [4–7]. The introduction of new implants to a living body may cause inflammation
phenomena with consequent infection processes. These phenomena could be avoided
by producing hybrid composite BMs with anti-inflammatory and antimicrobial agents,
improving the therapeutic effect, and enhancing controlled drug delivery [8].

Traditional bioceramic and bioglass materials used for the implant are made by high-
temperature processes that may be up to 1000 ◦C, and they do not allow the entrapping
of thermolabile compounds, such as drugs. To avoid this drawback, the use of sol-gel
synthesis allows the incorporation of a bioactive agent (anti-inflammatory or antimicrobial
drug) [9–11].

The sol-gel process is a colloidal route used to synthesize any material with an inter-
mediate stage, including a sol and/or a gel state, starting from a molecular precursor (e.g.,
metal salts, alkoxides, organic monomers, oligomers) or colloidal particles (e.g., graphene
oxide sheet, carbon nanotubes) [12].
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In the case of the sol-gel synthesis for organic/inorganic hybrid glassy biomaterial, it
occurs with hydrolysis and polycondensation of a molecular precursor, generally, a metal
alkoxide M(OR)X where M is a metal (such as Al, B, Si, Ti, Zr, etc.) and R is an alkyl
group, by heating and stirring processes [13]. These reaction steps led to the formation of
a gel structure, which turns into glass material after the drying process [14,15]. Despite
some disadvantages (costs of the precursor, long gelation time, and strong reduction in the
gel volume after the drying procedure [12,14]), the sol-gel allows the control of reaction
parameters, such as the concentration of reactants, temperature, and catalysts; therefore,
the control of materials synthesized, such as the morphology and mechanical properties.
Current state-of-the-art research reflects how sol-gel chemistry shows several advantages
since it allows the possibility to synthesize functional materials, which are usable in various
fields [16–19].

Recent studies have been conducted on the feasibility of synthesizing via the sol-gel
route hybrid systems (formed by silica, polyethylene glycol, and quercetin) having antibac-
terial properties [20,21]. Like quercetin, caffeic acid (A), is one of the major nutritional
antioxidants and belongs to the family of flavonoids. It is ubiquitous in vegetables, fruits,
tea, wine, and food supplements in the form of extracts and/or pure forms [22]. Caffeic acid,
also known as 3,4-dihydroxycinnamic acid, is a phenolic acid derived from hydroxycin-
namic acid. This organic acid has many effects on various diseases, such as osteoporosis,
certain cancers, lung diseases, cardiovascular diseases, and ageing [23,24]. Moreover, it
also has interesting biological properties, such as antimicrobial, fungicides, and antioxi-
dants [25,26]. It has been reported that caffeic acid shows antimicrobial potential against
Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, Serratia marcescens,
Proteus mirabilis, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Micrococcus luteus,
Listeria monocytogenes, and Candida albicans strains [26–29]. The antimicrobial activities
of caffeic acid are partly due to its lipophilic nature that allows the interaction with the
cytoplasmic membrane of the microbial cells, especially with the hydrophobic portion [27].

Many researchers found that the use of polyethylene glycol (P) as an organic additive
in the sol-gel methods allows for protecting and altering the release rate of the drug
embedded in the matrix [30–32]. In addition, the presence of P improves cell adhesion
and growth by increasing the hydrophilicity of the materials and the controlled release of
therapeutic molecules. Indeed, it has been demonstrated that the variation of the P content
of polylactic acid/polyethylene glycol copolymers allows for controlling the adsorption of
adhesion proteins and cell adhesion, due to the occurrence that cell adhesion takes place
only in the presence of serum proteins [33].

In our previous paper, we demonstrated the feasibility to synthesize via the sol-gel
route with hybrid organic/inorganic materials made up of silica and different weight
percentages (wt%) of caffeic acid (from 0 to 20 wt%) [34]. Additionally, it has been demon-
strated that the occurrence of some structural modifications, which nevertheless ensured
a strong radical scavenging capacity of samples with 15 and 20 wt% of caffeic acid incor-
porated into the systems. In this paper, the release study of the entrapped drug was also
investigated. Moreover, in such systems polyethylene glycol, another organic compound
had been added to shed light on the antimicrobial effect and the influence on the release of
the drug.

Here, hybrid organic-inorganic materials were synthesized via acid-catalyzed sol-gel
reactions, where the SiO2 (labelled S) is the inorganic phase, whereas the organic precursors
are the polyethylene glycol (labelled P) and the caffeic acid (labelled A). The SPxAy hybrids
were composed of 0, 6, and 12 wt% (x) of P and 5, 10, 15, and 20 wt% (y) of A. The formation
of new chemical bonds or weak interactions (e.g., van der Waals forces or hydrogen bonds)
among the organic and inorganic phases inside the hybrid materials was evaluated using
Fourier transform-infrared (FT-IR) spectroscopy. The bioactivity, as the ability to facilitate
the hydroxyapatite layer formation on the hybrid materials, was analyzed using scanning
electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), FT-IR and X-ray
diffraction (XRD) after the materials were soaked at 37 ◦C in SBF solution (Simulated
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Body Fluid) for 21 days. The in vitro release study of caffeic acid was evaluated using
UV-Vis spectroscopy, whereas the antibacterial properties were assessed against both Gram-
(Escherichia coli, Pseudomonas aeruginosa) and Gram+ (Staphylococcus aureus, Enterococcus
faecalis) microbial strains.

2. Materials and Methods
2.1. Sol-Gel Synthesis of the Materials

The SPxAy hybrid materials with different percentages of Polyethylene Glycol (P,
MW = 400, Sigma–Aldrich, St. Louis, MO, USA) and Caffeic Acid (A, C9H8O4, MW = 180.16,
Sigma–Aldrich, Milan, Italy) were synthesized using the sol-gel route (starting from our
previous paper [34]) as outlined in Figure 1.
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Figure 1. Flowchart of the used sol-gel procedure.

Briefly, tetraethyl orthosilicate (TEOS, Si(OC2H5)4, Sigma–Aldrich, St. Louis, MO,
USA) was added to a solution of distilled water and ethanol 99% (EtOH, Sigma–Aldrich, St.
Louis, MO, USA) under magnetic stirring, forming Sol A, while polyethylene glycol and
caffeic acid were dissolved in EtOH (Sol B and C). After the formation of Sol A, Sol B and C
were added to Sol A drop-by-drop under continuous stirring at T = 30 ◦C. Within the tem-
perature synthesis, which influences gelation occurrence, nitric acid (HNO3 ≥ 65%, Sigma–
Aldrich, Milan, Italy) was also added to the final solution to increase the hydrolysis rate reac-
tions [13,35]. The molar ratios used for the reagents were TEOS:HNO3:EtOH:H2O = 1:1.7:6:2.
After the gelation process, the wet gels were put in an oven at 40 ◦C for 24 h. All the hybrid
materials were synthesized following the reported procedure and were labelled with the
following name code: SPxAy, where x represents the weight percentages of P compared to
the S weight amount, whilst y represents the weight percentages of A to S content (e.g., the
hybrid material with P = 0 wt% and caffeic acid = 5 wt% is SA5, while SP6A5 is the hybrid
material with polyethylene glycol = 6 wt% and caffeic acid = 5 wt%). Table 1 summarizes
all the synthesized hybrids with their code names.
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Table 1. Compositions of synthesized hybrids with their acronyms. S = SiO2; Ay= caffeic acid wt%;
Px = polyethylene glycol wt%.

Sample Polyethylene Glycol
(wt% in Relation to SiO2 Matrix)

Caffeic Acid
(wt% in Relation to SiO2 Matrix)

SA5 0 5
SA10 0 10
SA15 0 15
SA20 0 20

SP6A5 6 5
SP6A10 6 10
SP6A15 6 15
SP6A20 6 20
SP12A5 12 5

SP12A10 12 10
SP12A15 12 15
SP12A20 12 20

2.2. FT-IR Analysis

The FT-IR technique was used to investigate the interactions between the components.
Transmittance spectra were obtained by using a Prestige 21 Shimadzu (Japan) instrument.
The spectra were recorded in the 400–4000 cm−1 region, with a resolution of 2 cm−1

(64 scans). FT-IR was conducted on KBr disks containing 2 mg of sample powder and
198 mg of salt. The recorded spectra were processed using IRsolution and Origin software.

2.3. Bioactivity Test

The bioactivity test was carried out by the hydroxyapatite (HA) forming ability of
the synthesized hybrid materials as reported in [36,37]. The HA formation was evaluated
after soaking 250 mg of sample disks into 50 mL of simulated body fluid (SBF), which is a
solution whose ion concentrations are nearly equal to those of human blood plasma [36],
at 37 ◦C for 21 days. Ion species depletion was avoided using the replacement of the
SBF solution each 48 h. After 21 days, the sample disks were gently washed and dried
in a glass desiccator (Sigma–Aldrich, St. Louis, MO, USA), and then subjected to FT-IR,
X-ray diffraction (XRD), and scanning electron microscopy with energy-dispersive X-ray
spectroscopy (SEM/EDS) analyses. FT-IR was carried out as described in the previous
paragraph, whilst XRD analysis was performed with a Philips 139 diffractometer equipped
with a PW 1830 generator, a tungsten lamp, and a Cu anode. Lastly, SEM images were
acquired with Phenoma XL G2 (Alfatest, Italy), whereas EDS information was obtained by
using Live EDS tool from the same machine.

2.4. Antimicrobial Activity

The antimicrobial activity of synthesized hybrid materials was performed according
to Kirby–Bauer Protocol [20,38]. To this aim, the hybrid materials were ground, obtaining
powders, which were further compressed into 100 mg disks. All the sample disks were
sterilized using UV light for 1 h to avoid external contamination during the tests. Antimi-
crobial properties were assessed against both Gram+ bacteria, such as S. aureus (ATCC
25923) and E. faecalis (ATCC 29212), and Gram- bacteria, such as E. coli (ATCC 25922) and
P. aeruginosa (ATCC 27853). These bacteria were chosen as they are known as bacteria
that cause nosocomial infections during patient hospitalization [39]. All the pelletized
bacterial strains were diluted in distilled saline water (0.9% NaCl), achieving suspensions
of 109 CFU/mL, that were plated onto the respective agar-based media (whose preparation
was reported elsewhere in [20]). After the bacterial plating, all the sterilized samples were
left in the middle of the plates and then they were placed in the respective incubators that
mimic the growth condition of each bacterium. Indeed, E. coli was incubated at 44 ◦C for
24 h, P. aeruginosa and E. faecalis were incubated at 36 ◦C for 48 h, whereas S. aureus was
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incubated at 36 ◦C for 24 h. After the incubation times, all the bacterial plates were removed
from the incubators and the inhibition halo diameters (IHDs) were measured.

2.5. In Vitro Release

The in vitro release study was performed to evaluate both the capability of the syn-
thesized materials to release the entrapped drug and the kinetics. The test was performed
with a Shimadzu UV mini-1240 and the measurements were taken at a wavelength of
λ = 216.0 nm, corresponding to the maximum absorption of oxidized caffeic acid. Indeed,
the absorption is ascribed to the C=O group about the electronic transition π–>π* [34]. This
choice is based on the fact that the acid catalyst causes the aromatic destruction system with
shifts of maximum adsorption wavenumber from 324.0 nm to 216.0 nm [34]. Measurements
of oxidized caffeic acid releases were carried out in samples soaked in 10 mL of SBF.

The calibration curve (Figure 2) was made by taking the absorbance measurement of
standards prepared in SBF and establishing the relation with the solution concentrations
and absorbance at the length of 216.0 nm, with R2 = 0.9993. The lower limit of the calibration
curve was 0.25 mg/L, whereas the higher limit was 20.0 mg/L.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 16 
 

pelletized bacterial strains were diluted in distilled saline water (0.9% NaCl), achieving 
suspensions of 109 CFU/mL, that were plated onto the respective agar-based media 
(whose preparation was reported elsewhere in [20]). After the bacterial plating, all the 
sterilized samples were left in the middle of the plates and then they were placed in the 
respective incubators that mimic the growth condition of each bacterium. Indeed, E. coli 
was incubated at 44 °C for 24 h, P. aeruginosa and E. faecalis were incubated at 36 °C for 48 
h, whereas S. aureus was incubated at 36 °C for 24 h. After the incubation times, all the 
bacterial plates were removed from the incubators and the inhibition halo diameters 
(IHDs) were measured. 

2.5. In Vitro Release 
The in vitro release study was performed to evaluate both the capability of the 

synthesized materials to release the entrapped drug and the kinetics. The test was 
performed with a Shimadzu UV mini-1240 and the measurements were taken at a 
wavelength of λ = 216.0 nm, corresponding to the maximum absorption of oxidized caffeic 
acid. Indeed, the absorption is ascribed to the C=O group about the electronic transition 
π-->π* [34]. This choice is based on the fact that the acid catalyst causes the aromatic 
destruction system with shifts of maximum adsorption wavenumber from 324.0 nm to 
216.0 nm [34]. Measurements of oxidized caffeic acid releases were carried out in samples 
soaked in 10 mL of SBF. 

The calibration curve (Figure 2) was made by taking the absorbance measurement of 
standards prepared in SBF and establishing the relation with the solution concentrations 
and absorbance at the length of 216.0 nm, with R2 = 0.9993. The lower limit of the 
calibration curve was 0.25 mg/L, whereas the higher limit was 20.0 mg/L. 

 
Figure 2. Calibration curve of Caffeic acid. 

3. Results and Discussion 
3.1. FT-IR Analysis 

Recently, it has been demonstrated that in the hybrid silica/polyethylene 
glycol/quercetin biomaterials, obtained using the acid-catalyzed sol-gel route, the 
phenolic drug compound undergoes an oxidizing phenomenon, which led to the 
formation of a hybrid that still stores the antioxidant and antimicrobial activity [20]. 
Starting from this finding and the previous results based on silica and caffeic acid hybrid 
materials, the occurrence of chemical modification was investigated using the comparison 
of the FT-IR spectra of pure caffeic acid (Figure 3A) and the oxidized one (Figure 3B) 
obtained by using the sol-gel procedure without adding TEOS and P inside the solutions, 
followed by the solvent removal. In the pure caffeic acid spectrum, Bands of about 3424 
and 3233 cm−1 are attributed to the -OH stretching vibration.  Bands at 2982 and 2912 cm−1 
are ascribed to the C-H vibration modes. The intense band at 1645 cm−1 is assigned to the 

Figure 2. Calibration curve of Caffeic acid.

3. Results and Discussion
3.1. FT-IR Analysis

Recently, it has been demonstrated that in the hybrid silica/polyethylene glycol/
quercetin biomaterials, obtained using the acid-catalyzed sol-gel route, the phenolic drug
compound undergoes an oxidizing phenomenon, which led to the formation of a hybrid
that still stores the antioxidant and antimicrobial activity [20]. Starting from this finding
and the previous results based on silica and caffeic acid hybrid materials, the occurrence
of chemical modification was investigated using the comparison of the FT-IR spectra of
pure caffeic acid (Figure 3A) and the oxidized one (Figure 3B) obtained by using the sol-gel
procedure without adding TEOS and P inside the solutions, followed by the solvent removal.
In the pure caffeic acid spectrum, Bands of about 3424 and 3233 cm−1 are attributed to the
-OH stretching vibration. Bands at 2982 and 2912 cm−1 are ascribed to the C-H vibration
modes. The intense band at 1645 cm−1 is assigned to the stretching of carbonyl group
C=O [40–42]. Moreover, the intense bands at 1625 cm−1 and 1450 cm−1 are attributed to
olefinic C-C stretching modes. Thus, the signal at 1217cm−1 is imputed to aromatic bending
C-H modes. Frequencies lower than 1120 cm−1 might be due to the C-C-C bending modes
of the aromatics system except for the signals at 815 and 648 cm−1 that are assigned to
bending modes of the carbonyl group [34,41,42]. As a confirmation of oxidation occurrence,
there are some shifts of the main signals both to lower and higher wavenumbers, followed
by the formation of new absorption bands. Indeed, the two sharp absorption peaks in
the range of 3500–3200 cm−1 (Figure 3A) changed into a main broad peak at 3431 cm−1,
with a shoulder located at 3250 cm−1 (Figure 3B), probably due to the increase in -OH and
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H-bonds [43] in the oxidized structure. Moreover, because of the oxidization, the signals
at 2982 and 2912 cm−1 (Figure 3A), attributed to -CH3 sp3 stretching, shifted at 2987 and
2908 cm−1. Furthermore, there was also a shift of the C=O vibration from 1645 cm−1 to
1745 cm−1. This shift to higher wavenumbers could be explained by the stopping of π
electron delocalization of the C=O group [40,41], because of the oxidization phenomenon.
This latter band within the bands at 860 cm−1, attributed to C-H alkene bending, and the
band at 1635 cm−1, attributed to C=C alkene stretching, may suggest that the oxidized
caffeic acid still contains the active part of its molecule.
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To better understand the chemical influence of the inorganic and organic components
of the synthesized hybrid materials, in Figure 4A, the spectra of the silica and the caffeic
acid are compared to the SP12Ay systems, whereas in Figure 4B, the spectra of the silica and
polyethylene glycol are compared to SPxA20 systems. SiO2 showed the -OH stretching and
bending at 3450 cm−1 and 1640 cm−1. The shoulder at 3700–3500 cm−1 could be ascribable
to the -OH of the silanol groups [44–46]. The Si-O-Si asymmetric stretching is assigned
to the band at 1077 cm−1 with the shoulder at 1200 cm−1 [44,47,48]), whereas the peak
absorption at 800 and 460 cm−1 are attributed to Si-O-Si and Si-OH bending vibrations [45].
In addition, the band at 1385 cm−1 is assigned to residual HNO3 [42]. In all the spectra
shown in Figure 4A, at a fixed amount of silica and polyethylene glycol (12 wt%), the
increment in the caffeic acid amount corresponds to an increase in the intensity of the
band detected at 1745 cm−1 (C=O vibration [36]). This is further proof that caffeic acid is
present in its oxidized form in all the synthesized systems. Figure 4B pointed out that at
a fixed amount of silica and A (20 wt%), an increase in polyethylene glycol corresponds
to an increase in the C-H twisting and C-O-C ether stretching [40,49] detected at 1240 and
1100 cm−1, which also affect the shape of the shoulder at 1200 cm−1 in all the spectra.
Moreover, the signals detected at 2900–2800 cm−1, assigned the C-H vibrations, increase
with the increasing of P content. Additionally, all the bands under the wavenumber range
1000–460 cm−1 are almost superimposable to those of pure SiO2 [42]. Finally, The co-
presence of P, A, and S absorption peaks suggests the formation of hybrids, in which both
the inorganic and organic parts could interact with hydrogen bonds, as also reported in [20].
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3.2. Bioactivity

The HA forming-ability of the synthesized hybrid materials was performed in vitro
using the Kokubo Test [37]. To this aim, the samples were immersed in SBF solution for
21 days and the nucleated HA on the surfaces of the materials was investigated using FT-IR,
SEM/EDX, and XRD analysis. Figure 5 reports the obtained FT-IR spectra of SP6A20 and
SP12A20 hybrid biomaterials after soaking in SBF. The spectra revealed the presence of
new peaks at 635, 585, 560, and 470 cm−1 that are related to P-O bending and vibration
modes [42,50,51].



Appl. Sci. 2023, 13, 2164 8 of 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 16 
 

21 days and the nucleated HA on the surfaces of the materials was investigated using FT-
IR, SEM/EDX, and XRD analysis. Figure 5 reports the obtained FT-IR spectra of SP6A20 
and SP12A20 hybrid biomaterials after soaking in SBF. The spectra revealed the presence 
of new peaks at 635, 585, 560, and 470 cm−1 that are related to P-O bending and vibration 
modes [42,50,51]. 

 
Figure 5. FT-IR spectra of washed SP6A20 and SP12A20 after soaking in SBF for 21 days. 

Moreover, the SEM/EDS image (Figure 6) of SP12A20 hybrid biomaterial confirmed 
the formation of the HA. Indeed, the sample surface was almost covered by globular-
shaped HA particles [52] whose elemental composition was composed mainly of Ca and 
P, with an atomic ratio equal to 1.67. This finding is also in accordance with another similar 
system in which SP systems were doped with indomethacin [53]. 

 
Figure 6. Representative SEM/EDX image of SP12A20. 

Furthermore, the XRD spectrum, reported in Figure 7, revealed that the spheres 
nucleated on the hybrid surfaces possess the typical HA crystalline peaks with hkl indices 

Figure 5. FT-IR spectra of washed SP6A20 and SP12A20 after soaking in SBF for 21 days.

Moreover, the SEM/EDS image (Figure 6) of SP12A20 hybrid biomaterial confirmed
the formation of the HA. Indeed, the sample surface was almost covered by globular-
shaped HA particles [52] whose elemental composition was composed mainly of Ca and P,
with an atomic ratio equal to 1.67. This finding is also in accordance with another similar
system in which SP systems were doped with indomethacin [53].
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Furthermore, the XRD spectrum, reported in Figure 7, revealed that the spheres
nucleated on the hybrid surfaces possess the typical HA crystalline peaks with hkl indices
of (002), (211), (300), (202), (310), (002), (222), and (213), obtained by matching the spectrum
with one found in ICDD database.
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3.3. Antibacterial Activity

The antimicrobial ability of the synthesized hybrid biomaterials was assessed using
the Kirby–Bauer protocol. This latter is applied to evaluate the sensitivity of pathogenic
aerobic and facultative anaerobic bacteria to several antimicrobial compounds, assisting
a physician in selecting treatment options for his or her patients [40]. In this paper, both
Gram+ (S. aureus and E. faecalis) and Gram- (E. coli and P. aeruginosa) bacteria were tested in
the presence and absence of the SPxAy hybrid biomaterials. All these bacterial strains cause
nosocomial infections, which are healthcare-associated infections that occur in patients
under medical care [54,55].

The antimicrobial activity was expressed by measuring the IHDs as reported in para-
graph 2.4. Figure 8 describes, as an example, the acquired images of the bacterial growths of
S. aureus and P. aeruginosa incubated with SA20, SP6A20, and SP12A20 hybrid biomaterials,
while Figure 9 reports all the IHDs obtained for each synthesized system.
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Caffeic acid and its derivatives are already known for their antibacterial activity [56,57].
Here, it has been proved that they are still active in the synthesized hybrids. Indeed, when
bacteria were grown in the presence of the SAy hybrid biomaterials, there was an increased
activity against all the Gram+ and Gram- assayed, especially regarding E. coli [58], as
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a function of the A content. SA5 showed lower activity in the presence of P. aeruginosa
(IHD = 2.08 ± 0.07 cm) compared to the IHDs (2.60 to 3.00 cm) obtained with the other
bacteria, while SA10, SA15, and SA20 samples showed a slightly increased activity against
S. aureus, E. faecalis, and P. aeruginosa, whereas against E. coli, the IHDs increased from 3.00
to 4.50 cm as the increase in the caffeic acid amount inside the systems. The increment of the
antibacterial activity in these systems can be justified by the fact that the catechol functional
group present in caffeic acid can be totally or partially oxidized to form the orthoquinone or
the semiquinone radical [56]. These two forms can undergo subsequent oxidative processes
that can damage and/or destroy DNA and protein structures [29,59–63].
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Comparing the samples with 5, 10, and 15 wt% of caffeic acid only, and the one
containing the same amount of caffeic acid but with the addition of 6 wt% of P, it is possible
to observe that the addition of P does not affect the antibacterial activity against the Gram+
strains and P. aeruginosa. However, as found in the literature regarding the polyethylene
glycol [64], the addition of 6 wt% of P seems to highly influence the antibacterial activity
against E.coli strains, indeed, the IHDs recorded for this strain, of SA5, SA10 and SA15 are
2.74 ± 0.04 cm, 3.67 ± 0.09 cm and 3.84 ± 0.03 cm, respectively, while the IHDs of SP6A5,
SP6A10 and SP6A15 are 4.29 ± 0.07 cm, 4.59 ± 0.09 cm, and 4.76 ± 0.12 cm, respectively.

On the other hand, with the same amount of caffeic acid (20%), the addition of 6% of P
leads to a slight increase in the inhibition halos for E. coli and S. areus and a slight decrease
for P. aeruginosa and E. faecalis strains.

The same comparisons made with samples having 12 wt% of P showed that in general,
a high amount of P negatively affects the antibacterial activity of all samples. Although in
many cases the addition of 12 wt% of P leads to a higher antibacterial activity, the value
reached is less high than the one reached with the addition of 6 wt% of P. This finding is
also in accordance with the data recorded for hybrid systems based on silica, silica/PEG,
and silica/PEG/Quercetin [20]. Indeed, even if silica and silica/PEG systems possess
antimicrobial activity, this latter increased with the presence of the drug and 6 wt% of PEG
and decreased by increasing the PEG amount [20].

The reason why a higher amount of P leads to a lower antibacterial activity could be
attributed to different reasons. Surely P is known to modulate the release of drugs [64], so a
slower release of A could lead to a minor presence of free A and so a lower presence of the
group responsible for the antibacterial activity. Furthermore, even in the presence of both P
and A, it is not possible to state that these have a synergistic action, and on the contrary,
they could negatively influence each other.
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3.4. In Vitro Release

Figure 10A–C illustrates the cumulative kinetics as a percentage of the drug released,
whilst Figure 10D–F reports the release rates of the drug over experimental time. The
rate of each stage might depend on the formation of hydrogen bonds among the carbonyl
group of drugs with the -OH group of silica and aqueous solvent (SBF) [65]. SAy samples
showed the fastest release (wt%) and rate (mg/min) (Figure 10A,D). In particular, the
SA5 hybrid released all the drug within 1 h, while SA10, SA15, and SA20 released up
to 90 wt% of the drug within 6 h, and the release was completed after 12 h for the SA10
hybrid and 24 h for SA15 and SA20. An increase in P amount of 6 wt% (Figure 10B,E)
led to a slight decrease in the release rate. Indeed, SP6A5 released 90 wt% of the drug in
6 h and released all the amount after 24 h. An increase in caffeic acid amount (from 10
to 20 wt%) corresponds to a decrease in wt% and rate release, which seems to be more
controlled. Furthermore, the data reported in Figure 10C,F, related to SP12Ay hybrid
systems underline that an increase in polyethylene glycol and caffeic acid amount led to
a drug-release rate lower than the samples without the P, which is also confirmed by the
graphs shown in Figure 11. According to [66], which investigated the properties of silica
matrix synthesized via sol-gel route by using different TEOS:H2O ratios, a silica matrix
with TEOS:H2O = 1:2 ratio has a nanometric scale (12.50 nm < x < 32.01 nm), a high surface
area (347.31 m2/g < x < 549.92 m2/g), a total pore volume ranging from 0.41 to 0.51 cm3/g,
and isotherm hysteresis type H2. These features could explain the reason why there is a
faster release of the drug in the matrices without P. Moreover, the presence of P positively
affects the release of the drug increasing the control of release over time. Finally, the kinetic
study suggests a two-step mechanism: the first fast step occurs by dissolution and diffusion
of the caffeic acid entrapped onto the material surface, while the second slow step occurs
with the dissolution and diffusion inside the material clusters.
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4. Conclusions

The sol-gel method was successfully applied to obtain hybrid biomaterials made up
of silica as an inorganic component and polyethylene glycol and caffeic acid as organic
compounds. The latter was selected as a drug for its natural antioxidant properties. FT-IR
analysis disclosed that during the sol-gel synthesis, caffeic acid undergoes an oxidizing
process and that all the hybrids revealed both the main vibration bands of the organic phases
and the inorganic phase. Moreover, it also proved that in all the SPxAy hybrid biomaterials,
the absorption bands are from both the inorganic and organic phases. SEM/EDX, XRD,
and FT-IR demonstrated that all the samples were involved in the first step of bioactive
materials for bone regeneration as the soaking in the SBF solution led to the formation of
HA granules, which were found on the hybrid surfaces. Even though the caffeic acid is
in its oxidized form, the synthesized biomaterials possessed high antimicrobial activity
and the SP6Ay samples were the ones that had an improved activity, especially against
E. coli. Finally, the UV/Vis kinetic studies revealed that the drug is released with a two-
step mechanism and the increase in P amount inside the systems led to a decrease in the
release rate.

Even if all these results are promising, a deep investigation will be performed in
order to evaluate the applicability of the above-synthesized SPxAy hybrid biomaterials on
eucaryotic cells (e.g., osteoblast, fibroblast).
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Sokovic, M. New Caffeic Acid Derivatives as Antimicrobial Agents: Design, Synthesis, Evaluation and Docking. Curr. Top. Med.
Chem. 2019, 19, 292–304. [CrossRef] [PubMed]

57. Araújo, M.O.; Pessoa, H.L.F.; Lira, A.B.; Castillo, Y.P.; de Sousa, D.P. Synthesis, Antibacterial Evaluation, and QSAR of Caffeic
Acid Derivatives. J. Chem. 2019, 2019, 3408315. [CrossRef]

58. Hapiot, P.; Neudeck, A.; Pinson, J.; Fulcrand, H.; Neta, P.; Rolando, C. Oxidation of caffeic acid and related hydroxycinnamic
acids. J. Electroanal. Chem. 1996, 405, 169–176. [CrossRef]

59. Collins, W.; Lowen, N.; Blake, D.J. Caffeic Acid Esters Are Effective Bactericidal Compounds Against Paenibacillus larvae by
Altering Intracellular Oxidant and Antioxidant Levels. Biomolecules 2019, 9, 312. [CrossRef] [PubMed]

60. Perumal, S.; Mahmud, R.; Ismail, S. Mechanism of action of isolated caffeic acid and epicatechin 3-gallate from Euphorbia hirta
against Pseudomonas aeruginosa. Pharmacogn. Mag. 2017, 13, S311–S315. [CrossRef]

61. Patitapaban, M.S.S.; Sunita, B.; Rubi, B.; Anantjyoti, A.; Debajyoti, B.; Sameer, K.S.; Rojalin, S.; Ram, C.S.; Bigyan, R.J. A Brief
Review: Antibacterial Activity of Quinone Derivatives. Biointerface Res. Appl. Chem. 2021, 12, 3247–3258.

62. Lima, V.N.; Oliveira-Tintino, C.D.; Santos, E.S.; Morais, L.P.; Tintino, S.R.; Freitas, T.S.; Geraldo, Y.S.; Pereira, R.L.; Cruz, R.P.;
Menezes, I.R.; et al. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid
and pyrogallol. Microb. Pathog. 2016, 99, 56–61. [CrossRef]

63. Chirife, J.; Herszage, L.; Joseph, A.; Bozzini, J.P.; Leardini, N.; Kohn, E.S. In vitro antibacterial activity of concentrated polyethylene
glycol 400 solutions. Antimicrob. Agents Chemother. 1983, 24, 409–412. [CrossRef]

64. Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential
Alternatives. Angew. Chem. Int. Ed. 2010, 49, 6288–6308. [CrossRef]

http://doi.org/10.1016/j.biomaterials.2006.01.017
http://doi.org/10.1016/j.msec.2019.03.035
http://doi.org/10.1016/S0022-3093(02)01637-X
http://doi.org/10.1016/S0031-9422(00)94790-3
http://doi.org/10.1016/S0039-6028(87)80150-4
http://doi.org/10.1016/j.jnoncrysol.2009.01.010
http://doi.org/10.1063/1.477374
http://doi.org/10.1016/j.colsurfa.2006.08.001
http://doi.org/10.1016/j.tca.2009.10.005
http://doi.org/10.4236/msa.2012.38083
http://doi.org/10.1590/1516-1439.298014
http://doi.org/10.1016/j.tripleo.2011.03.033
http://doi.org/10.3201/eid0403.980320
http://doi.org/10.1016/S1773-2247(14)50069-X
http://doi.org/10.1016/j.apjtb.2017.01.019
http://doi.org/10.1155/2018/2127814
http://doi.org/10.2174/1568026619666190122152957
http://www.ncbi.nlm.nih.gov/pubmed/30674263
http://doi.org/10.1155/2019/3408315
http://doi.org/10.1016/0022-0728(95)04412-4
http://doi.org/10.3390/biom9080312
http://www.ncbi.nlm.nih.gov/pubmed/31357646
http://doi.org/10.4103/pm.pm_309_15
http://doi.org/10.1016/j.micpath.2016.08.004
http://doi.org/10.1128/AAC.24.3.409
http://doi.org/10.1002/anie.200902672


Appl. Sci. 2023, 13, 2164 16 of 16

65. Raffaini, G.; Catauro, M. Surface Interactions between Ketoprofen and Silica-Based Biomaterials as Drug Delivery System
Synthesized via Sol–Gel: A Molecular Dynamics Study. Materials 2022, 15, 2759. [CrossRef]

66. Bourebrab, M.A.; Oben, D.T.; Durand, G.G.; Taylor, P.G.; Bruce, J.I.; Bassindale, A.R.; Taylor, A. Influence of the initial chemical
conditions on the rational design of silica particles. J. Sol-Gel Sci. Technol. 2018, 88, 430–441. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/ma15082759
http://doi.org/10.1007/s10971-018-4821-9

	Introduction 
	Materials and Methods 
	Sol-Gel Synthesis of the Materials 
	FT-IR Analysis 
	Bioactivity Test 
	Antimicrobial Activity 
	In Vitro Release 

	Results and Discussion 
	FT-IR Analysis 
	Bioactivity 
	Antibacterial Activity 
	In Vitro Release 

	Conclusions 
	References

