
Citation: Huang, Q.; Zhou, Y.; Yang,

T.; Yang, K.; Cao, L.; Xia, Y. A

Lightweight Transfer Learning Model

with Pruned and Distilled YOLOv5s

to Identify Arc Magnet Surface

Defects. Appl. Sci. 2023, 13, 2078.

https://doi.org/10.3390/app13042078

Academic Editor: Tobias Meisen

Received: 3 January 2023

Revised: 1 February 2023

Accepted: 3 February 2023

Published: 6 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Lightweight Transfer Learning Model with Pruned and
Distilled YOLOv5s to Identify Arc Magnet Surface Defects
Qinyuan Huang 1,2,* , Ying Zhou 1, Tian Yang 1 , Kun Yang 1, Lijia Cao 1,2 and Yan Xia 1,2

1 School of Automation and Information Engineering, Sichuan University of Science and Engineering,
Zigong 643000, China

2 Artificial Intelligence Key Laboratory of Sichuan Province, Zigong 643000, China
* Correspondence: qyhuang@suse.edu.cn

Abstract: Surface defects in arc magnets constitute the main culprit for performance degradation
and safety hazards in permanent magnet motors. Machine-vision methods offer the possibility to
identify surface defects automatically. However, the current methods still do not adequately solve
the problems of low identification accuracy, excessive dependency on training data, and sizeable
computational complexity. This paper proposes a lightweight YOLOv5s-based transfer learning
model with network pruning and knowledge distillation to address these issues. Our model was
derived from a pre-trained YOLOv5s for general object detection. A transfer learning mechanism was
designed to obtain the optimal surface defect identification accuracy of the model from fewer training
samples. Network pruning and knowledge distillation were combined to compress the transferred
model. The transferred model serves as the teacher model of knowledge distillation, while its pruned
model acts as the student model. To weaken the loss of the accuracy after model compression, a
new λ factor was introduced into the confidence loss function of the student model to increase the
sensitivity of identifying the defects. The experimental results show that our model’s performance is
higher than other regular lightweight models. The identification accuracy for different defective arc
magnets could reach 100%, the model size could achieve 1.921 MB, and the average inference time
was 9.46 ms. Our model also has high accuracy in other defect identification applications besides
arc magnets.

Keywords: transfer learning; network pruning; knowledge distillation; arc magnet; surface defect
identification; YOLOv5

1. Introduction

An arc magnet [1] generally refers to a curved, magnetic object made of ferrite, NdFeB,
AlNiCo, etc. It is mounted on the stator or rotor of the motor and is essential to generate
a constant magnetic field in a permanent magnet motor. Surface defects, such as cracks,
blowholes, fray, break, unevenness, and blot, may appear on an arc magnet due to the
complex manufacturing process. These defects tend to seriously affect the mechanical
strength and magnetic properties of an arc magnet, leading to abnormal motor operation
and even safety accidents [2]. The current widely used surface defect detection method for
arc magnets still relies on manual observation methods under visible light. However, such
methods require extensive manual experience and are characterized by vague detection
criteria, unstable recognition accuracy, low execution efficiency, and weak automation [3].
In order to ensure the large-scale production of diverse high-quality arc magnets, it is
particularly urgent and important to develop accurate, fast, and automated identification
methods for arc magnet surface defects.

Due to the visibility of surface defects, machine vision [4] is widely recognized as a
promising technology for identifying surface defects on arc magnets. Over the last decade,
several studies [5–7] have sought to determine typical surface defects by analyzing the
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surface images of arc magnets. In general, the image-based surface-defect identification of
arc magnets can be defined by two approaches: traditional mathematical methods [8] and
deep-learning methods [9]. The former focuses on presenting information rules through
the discrete transformation of images to discover and extract defect features. For example,
Li et al. [10] combined non-sampling outline transformation and texture characteristics to
detect surface defects from arc magnet images; the defect extraction accuracy by this method
reached 93.57%. Gharsallah et al. [11] proposed an image recognition algorithm for arc
magnet surface defects based on a new anisotropic diffusion filtering model that performed
well in the edge extraction of surface defects, resulting in a significant improvement in
defect recognition accuracy. Li et al. [12] proposed a crack defect detection algorithm
based on the Contourlet transform and singular value decomposition to build relationships
between image grey features and arc magnet surface defects, effectively overcoming noise
interference in identifying the crack and fray.

Although these methods are conducive to extracting the image features that represent
surface defects, they are extremely sensitive to the matching and selecting of discrete
laws and feature distributions, which is unsuitable for complex and weak surface defects
with features of poor regularity. On the other hand, with the advancement of recent
developments in artificial intelligence, deep learning [13] has made increasingly noteworthy
achievements in solving the identification problem of arc magnet surface defects. A growing
number of novel learning models are being created to autonomously learn and identify
surface defect information in arc magnet images. For instance, An et al. [14] presented a
segmentation method of the weighted You Only Look At CoefficienTs (YOLACT) model to
solve the problems of slow speed and low segmentation accuracy of different defects on
the magnetic tile surface, achieving good segmentation results at the segmentation speed
of 24.40 fps and mean average precision of 53.44. Hu et al. [15] used UPM-DenseNet to
design an online two-stage model for arc magnet surface defects, improving the accuracy
and speed of the recognition regarding weak defects. Liu et al. [16] provided a semi-
supervised learning method based on pseudo-labeling to address the time-consuming and
error-prone problems of surface defect classification of magnetic tiles with limited labeled
samples. Cao et al. [17] constructed an unsupervised defect segmentation method using
attention-enhanced flexible U-Net to automate surface defect inspection for magnetic tiles,
in which the recall rate reached 97.5% better than the supervised method. Liang et al. [18]
applied a feature enhancement and loop-shaped fusion convolutional neural network to
enhance shallow features and fuse features with a loop-shaped feature pyramid structure
when identifying small objects of magnetic tile surface defects. Compared with traditional
mathematical methods, deep-learning models are more suitable for autonomous discovery
and identification of surface defect targets of arc magnets, which tend to have higher
accuracy and faster speed. Nevertheless, existing models are usually developed for specific
surface defects and lack general applicability to a wide range of defect types.

Recently, deep-learning-based object detection algorithms [19] for extensive categories
have made significant breakthroughs, bringing a new potential solution to the problems
involved in the surface defect detection of arc magnets. The applicable methods can be
broadly defined by two categories: two-stage algorithms and one-stage algorithms. The
former, which includes R-CNN [20], Fast R-CNN [21], Faster R-CNN [22], etc., requires
the algorithm to generate a series of target candidate frames and then classify and regress
the frames to identify targets. The latter, including You Only Look Once (YOLO) [23],
Single Shot MultiBox Detector (SSD) [24], etc., can directly predict the class and location of
different targets using only one convolutional neural network (CNN), usually with a higher
execution speed. Among them, YOLO algorithms have been widely used in real-time target
detection due to their obvious advantages in accuracy and speed. The YOLO series has
evolved from YOLOv1 to YOLOv7 and continues to develop. Compared with the old and
new versions, YOLOv5 currently has superior comprehensive performance as well as many
application cases. Moreover, YOLOv5s, which has a minimal network size in the YOLOv5
version, is more convenient for achieving high-efficiency object detection. For example,
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Wang et al. [25] developed an accurate apple fruitlet detection method with a small model
size based on a channel-pruned YOLO v5s deep-learning algorithm, achieving a recall,
precision, F1 score, and false detection rate of 87.6%, 95.8%, 91.5%, and 4.2%, respectively.
Xu et al. [26] modified the backbone network of the YOLOv5s architecture for zanthoxylum
target detection, which improved accuracy, recall rate, and mean average precision by
4.19%, 28.7%, and 14.8%, respectively. Zhao et al. [27] presented a system for detecting
damage in concrete dams that combined the proposed YOLOv5s-HSC algorithm and a
three-dimensional photogrammetric reconstruction method to identify and locate objects
accurately. Most current efforts have been devoted to further refining the performance
of YOLOv5s to expand its applications, but there are few studies on identifying surface
defects on arc magnets.

In addition, it is worth noting that improving the performance of the deep-learning
model inevitably brings a significant increase in training samples, parameters, and model
size. It necessarily imposes an additional burden on computing power and data volume,
raising a series of issues related to cost and efficiency. Therefore, reusing the trained neural
network and compressing the model play an important role in solving these problems.
Transfer learning [28] can convert a model that is already well-trained in some original task
into a model for a new task by using relatively small training samples. Its essence is to use
the knowledge learned from previous tasks, such as data features, model parameters, and
so on, to assist the learning process for the new task. Transfer learning is receiving increas-
ing attention and applications in many fields. Saber et al. [29] designed a novel transfer
learning model to detect and classify breast cancer using mammogram breast images auto-
matically. Ali et al. [30] proposed an enhanced technique of skin cancer classification using
a deep convolutional neural network with transfer learning models. Network pruning [31]
and knowledge distillation [32] are also model compression techniques that are currently
popular and have generated many studies and applications. Network pruning methods in-
volve the removal of irrelevant weight connections in a network to increase inference speed
and decrease model size. Knowledge distillation approaches transfer knowledge from a
heavy network to a compact network so that the lightweight model retains the performance
of the massive one as much as possible. They have proven effective in compressing most
deep-learning models. For instance, Jiang et al. [33] provided a pruning approach for
reducing model parameters to shorten the computation overhead and overall training
time in federated learning on edge devices. Xu et al. [34] used a knowledge-distillation
framework to reduce the model weight and floating-point operations in compressing a
deep neural network for the prediction of a machine’s remaining useful life.

According to the literature reviews mentioned above, YOLOv5s is expected to achieve
highly accurate recognition, while network pruning and knowledge distillation may con-
tribute greatly to its computing efficiency. However, it remains unclear how they could
be correctly integrated and utilized in the automated identification of surface defects on
arc magnets. To this end, we proposed a lightweight transfer learning model with pruned
and distilled YOLOv5s and applied it to identify multiple surface defects on various arc
magnets. The contributions of this paper can be mainly summarized in three aspects:

(1) We developed a transfer learning model based on the frozen and fine-tuned
YOLOv5s to achieve high accuracy in identifying surface defects of arc magnets through
small-sample training.

(2) We presented a YOLOv5s compression strategy of network pruning followed by
knowledge distillation to minimize the loss of recognition accuracy when maximizing the
reduction of model parameters and size.

(3) We introduced a newly defined λ weight factor in the confidence loss function of
the student model during knowledge distillation to improve the sensitivity of identifying
image information regarding the surface defects.

The remainder of this paper is structured as follows: the proposed method for identify-
ing surface defects on arc magnets is described in Section 2. The details of the experiments
for our method are presented in Section 3. The experimental results are analyzed and
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discussed in Section 4. Finally, our conclusions with topics for future research are given in
Section 5.

2. Methodologies
2.1. YOLOv5s

YOLO is a series of one-stage networks for object detection in which the categories
and coordinates of the target can be obtained directly by solving a regression problem.
Its advantage is reflected in the use of an end-to-end network to shorten the detection
time considerably. As the smallest model size among the fifth version of the YOLO series,
YOLOv5s is widely accepted for deployment and real-time inference. As shown in Figure 1,
it is commonly divided into three parts: backbone, neck, and head [35]. The backbone
refers to the network that typically employs CSPDarknet to extract features. CSPDarknet is
mainly composed of five units, including FOCUS, CBS, RES, CSP, and SPP. The neck is a
network used to further enhance the effect of feature extraction, while the head is a classifier
or regressor for extracted features. By using these three parts, YOLOv5s is competent in
extracting, enhancing, and predicting target features. It uses Generalized Intersection over
Union (GIoU) instead of Intersection over Union (IoU) as the model loss function, leading
to an increase in the measurement of the intersection scale. Such an increase contributes to
solving the problem that IoU cannot be optimized when two boxes do not intersect. The
GIoU loss can be formulated as follows:IoU = A∩ B

A∪ B

GIoU = IoU − |C−(A∪ B)|
|C|

, (1)

where A denotes the ground truth, B indicates the prediction box, and C represents the
smallest closed convex object between A and B.
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Figure 1. The YOLOv5s structure.

2.2. Transfer Learning

Transfer learning aims to remedy the learning problem when there are differences
between the source and target domains [36]. A domain D = {X, P(x)} is made up of
feature space X and their marginal probability distribution P(x) belonging to [0, 1], while
a task T = {Y, f (x)} is composed of labels Y and a function f (x) for predicting them.
T represents the relationship between X and Y, and f (x) is regarded as the conditional
probability distribution Q(y|x) that predicts the probability of a label y for a sample x. The
above descriptions can be integrated as follows:
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P(x) = Σ

y
P(x, y) = Σ

y
P(x|y)P(y)

T = {Y, f (x)}
f (x) = Q(y|x) = Q(xy)

Q(x)

, (2)

Assuming a labeled source domain DS and an unlabeled target domain DT, transfer
learning is suitable for coping with the condition of PS 6= PT and QS 6= QT . It takes
advantage of the knowledge implied in DS and TS to construct fT(x) for DT and TT, thereby
reducing distribution differences across domains as well as keeping the learning domain
unchanged. Unlike traditional machine-learning methods, transfer learning transfers
knowledge from previous tasks to new ones with relatively little training data, rather than
learning new tasks from scratch through a large number of data. According to the transfer
method, transfer learning mainly covers four categories: instance-based transfer learning,
feature-based transfer learning, model-based transfer learning, and relation-based transfer
learning. Most notably, due to its ability to reuse the parameters and structure of a model,
model-based transfer learning is widely adopted in neural networks.

2.3. Network Pruning

Network pruning (NP) is a network optimization technique for reducing both model
size and inference complexity [37]. It removes redundant network elements in parameters
or neurons that are unable to contribute significantly to learning performance. Aspects
of learning performance, such as accuracy, are most likely to be further improved by
retraining the pruned network. Current network pruning methods can be roughly split
into three approaches, including (1) structured or unstructured pruning according to
whether the pruned network is symmetric, (2) neuron or connection pruning depending
on the type of elements to be pruned, and (3) static or dynamic pruning based on order
of execution. NP can occur flexibly on an element-by-element, row-by-row, column-by-
column, filter-by-filter, or layer-by-layer basis, resulting in element-wise, channel-wise,
shape-wise, filter-wise, and layer-wise pruning. In addition, NP can be mathematically
expressed as below:

argmin
i∈K

L = N(x, w)− Ni(x, wi) = N(x, w)− P[N(x, w)] , (3)

where N refers to the unpruned neural network for the input data x and the weight w; Ni
represents the i-th pruned network corresponding to N; wi denotes the pruned weights
of w under the i-th pruning; L indicates the performance loss from N to Ni; P is a pruning
function to generate a series of different Ni along with wi; K stands for the number of Ni.

2.4. Knowledge Distillation

Knowledge distillation (KD) is a model compression technique to guide the training
process of a compact model (student network) under the rich knowledge of a well-trained
heavy model (teacher network). KD allows a model to be downsized regardless of structural
differences between the teacher and student networks [38]. It enables the student network
to obtain the predictive capability of the teacher network. Depending on whether the
teacher network and the student network are updated synchronously, KD is categorized
as offline distillation, online distillation, or self-distillation. The knowledge of the teacher
network is transferred to the student network by minimizing the difference between the
logits (the inputs to the final softmax) produced by each of these two networks. Each
class probability of the teacher network Ci can be calculated with the logits zi and the
temperature parameter T as follows:

Ci =
exp

( zi
T
)

Σj exp
( zi

T
) , (4)
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where the increase of T can smooth the output probability distribution of softmax and
make the corresponding distribution entropy larger, leading to more information to assist
the teacher network in discovering the class more similar to the predicted class. Such
information is essential for the overall flow of knowledge to be distilled. T is also employed
to compute the logits in the student network when assessing the distillation loss. The KD
loss function LKD can be defined as below:

LKD = α× h[g, ρ(zs)] + β× h[ρ(zt), ρ(zs)] , (5)

where α and β are coefficients; h(·) denotes a loss function; g represents the ground-truth
label; ρ indicates the softmax function parameterized by T (T 6= 1 means a distillation loss);
zt and zs refer to the logits of the teacher and student networks, respectively.

2.5. Proposed Method for Identifying Arc Magnet Surface Defects

Combining the advantages of YOLOv5s, transfer learning, network pruning, and
knowledge distillation, we designed a framework to quickly and accurately identify the
surface defects from visible light images of arc magnets. As shown in Figure 2, our model
is composed of three stages as follows:
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(1) Stage 1: Construct a transferred model from a pre-trained YOLOv5s via trans-
fer learning.

Step 1-1: Prepare the YOLOv5s network that has been trained by the public COCO2017
image dataset as a pre-trained model.
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Step 1-2: Retrain the pre-trained model with a relatively small sample of the specific arc
magnet image dataset to obtain a transferred YOLOv5s network under a transfer learning
mechanism that freezes the layers up to the first CSP1-X module in the backbone network
of YOLOv5s.

(2) Stage 2: Compress the model by knowledge distillation from the transferred
YOLOv5s network to its pruned network.

Step 2-1: Prune the transferred YOLOv5s network by removing unimportant output
channels in each layer of the network according to a custom rule, which specifies that
the removable channels (not including those in the input and output layers of YOLOv5s)
are those corresponding to the smaller norm within a fixed proportion (that is, 75%) after
calculating the L2 norm of each channel and sorting them. The L2 norm can be defined
as below:

L2 =
√

Σn
i=1(ai)

2 , (6)

where ai is the i-th weight parameter of a convolution kernel corresponding to a channel in
a layer.

Step 2-2: Treat the transferred YOLOv5s network as the teacher network of knowledge
distillation, and its pruned network as the corresponding student network.

Step 2-3: Use the previous arc magnet image dataset to retrain the student network
iteratively until the total loss of distillation learning is stabilized to a minimum. The total
loss, which is also regarded as a customized loss function, refers to the sum of two parts:
the first one is the distillation loss between the outputs of the teacher network and those of
the student network, while the second one is the student loss (a total of the confidence loss,
the class loss, and the location loss) that is produced by the training process of the student
network. Assuming that LKD, Ld, and Ls are used to describe the aforementioned total loss,
distillation loss, and student loss, respectively, these three losses can be formulated as

LKD = Ld + Ls

Ld = α× T2 × fKLD
(
OT

s , OT
t
)

Ls = (1− α)
(

Lcon f idence + Lclass + Llocation

)
Lcon f idence = −

1
n

Σn
i=1
[
λ ∗ ytrue × ln Oi

sc + (1− ytrue)× ln
(
1−Oi

sc
)]

Lclass = −
1
n

Σn
i=1[ytrue × ln Oi

sp + (1− ytrue)× ln(1−Oi
sp)]

Llocation =
1
n

Σn
i=1

(
1− |Ai∩ Bi |

|Ai∪ Bi |
+
|Am

i −Ai∪ Bi|
|Am

i |

)
(7)

where α and T are the coefficient and the temperature parameter, respectively, and they
empirically are set to α = 0.5 and T = 1.5; fKLD indicates the function of computing
the Kullback–Leibler divergence; OT

s and OT
t are the outputs of the student and teacher

networks at T, separately; Lcon f idence, Lclass, and Llocation represent the confidence loss,
the class loss, and the location loss, severally; n denotes the number of training samples;
λ = 1.85 is a newly introduced weight factor by us; ytrue is a set of sample labels; Oi

sc
and Oi

sp correspond to the student network outputs that are the probability of whether
the i-th sample is defective and the probability of which category the defect belongs to,
respectively; Ai and Bi are the ground-truth frame and the predicted frame for the i-th
sample, respectively; Am

i is the smallest enclosing convex object between Ai and Bi.
(3) Stage 3: Identify the surface defects through the distilled student network.
According to the designed framework above, the task of Stage 1 is to use a high-

precision model that has been robustly trained by other targets to obtain an equally
high-precision model by training with relatively few arc magnet images. The purpose of
Stage 1 is to achieve a high-precision model without over-reliance on a large number of
training samples. On the other hand, the task of Stage 2 is to appropriately downscale
the model by pruning unimportant network layer channels and to ensure that the model
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compression process does not give rise to a significant accuracy loss in virtue of knowledge
distillation with an improved loss function. The goal of Step 2 is to maximally reduce
the complexity and size of the model while minimizing the loss of the achieved accuracy.
Finally, Stage 3 validates whether the application capability of such a compressed high-
precision model is sufficient for the fast and accurate identification of surface defects on
arc magnets.

3. Experiments
3.1. Experimental Rig

To automate the acquisition and processing of images belonging to the arc magnet
surface, we designed an experimental rig, as shown in Figure 3. It is a machine vision
system containing a computer, a visible-light camera, a ring light source, a conveyor belt,
two pairs of photoelectric switches, and a sorting cylinder. In this system, the arc magnets
to be identified are transported from the inlet to the image acquisition area via a conveyor
belt. The first pair of photoelectric switches are mounted below the light source. The
camera above the light source is triggered to take an image when the arc magnet in transit
blocks the optical path of this pair of photoelectric switches, leading to the availability of
the data associated with the surface of such an arc magnet. After that, the computer stores
the corresponding data and runs our proposed model to analyze the image to derive the
results of the surface defect identification. Finally, the identified arc magnet continues to
be transported to the second pair of photoelectric switches. At this point, the arc magnet
identified as defect-free is transferred to the qualified product outlet, while the sorting
cylinder driven by the trigger signal of the second pair of photoelectric switches pushes
the one identified as defective to the unqualified product outlet. Since most surface defects
occur on the outer curved surface, we only used the experimental rig to collect images of
that surface in this study.
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3.2. Dataset

In this work, the visible-light image dataset of the arc magnet appearance comprises
two parts: the basic and the expanded data. The former is derived from a public dataset
named ‘Magnetic-Tile’ [39], which is collected by the Chinese Academy of Sciences. Its
images cover defect-free arc magnets and those corresponding to five types of surface de-
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fects, including blowhole, crack, fray, break, and uneven. Each image involves one or more
surface defects of the same type. There are a total of 1394 surface defects in such a dataset,
but only 442 images related to the five types of surface defects. Regardless of the number
of images or the number of defect types, the ability of such a dataset to represent sufficient
data on arc magnet surface defects is severely limited. Therefore, using the designed ex-
perimental rig and prepared arc magnet samples, we supplemented the number of images
for the original five types in this dataset and appended three newly common defect types
(stained, unfilled, scratched) and their corresponding image quantities, resulting in the
expanded data. By adding 1235 surface defects, the total amount of raw data used in this
study reached 2629, where the added number of surface defects per type was at least 200 or
more. In addition, data augmentation based on image enhancement methods, comprising
enhancement and reduction of brightness, horizontal mirroring, vertical flipping, and
random rotation, was carried out to further expand the amount of image data to form
relatively sufficient data for training, validating, and testing our proposed model [40].

As a result of data augmentation, our dataset ultimated contained 18,770 image-based
data points for both defect-free and defective arc magnets. The images corresponding to
defects covered eight types of common surface defects, and the number of images for each
type was close to the same. Compared with other studies for arc magnets, the dataset in
our work not only embraced a wider range of defect types but also had a more abundant
amount of data. Figure 4a shows the appearance of the selected eight types of surface
defects and defect-free arc magnets, and Figure 4b is an example for the data augmentation
of an image. The details of our dataset are shown in Table 1. Each type of image in the
dataset was divided into three groups according to an approximate ratio of 8:1:1 [41]; these
groups were utilized as the training set, validating set, and testing set together with the
corresponding groups of other types.
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Table 1. Numerical details of the dataset.

Type
Basic Data Expanded Data

Total
Free Blowhole Break Crack Fray Uneven Stained Unfilled Scratched

Original 952 115 119 68 37 103 0 0 0 1394
Added 0 90 111 149 181 97 207 200 200 1235

Subtotal 952 205 230 217 218 200 207 200 200 2629
Augmented 2000 2050 2300 2170 2180 2000 2070 2000 2000 18,770
Training set 1600 1646 1835 1738 1737 1600 1652 1600 1600 15,008
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Table 1. Cont.

Type
Basic Data Expanded Data

Total
Free Blowhole Break Crack Fray Uneven Stained Unfilled Scratched

Validating set 200 203 248 215 219 200 206 200 200 1891
Testing set 200 201 217 217 224 200 212 200 200 1871

3.3. Implementation Details

The model proposed in this study and its experiments were conducted with an Intel(R)
Core(TM) i7-11800H@2.30 GHz CPU, 16 GB memory, and an NVIDIA GeForce GTX3050Ti
GPU. We used the Python programming language and Pytorch framework under the
Windows 10 operating system to build a deep-learning model for training and testing our
designed networks. In addition, the stochastic gradient descent (SGD) is employed for the
end-to-end training of the YOLOv5s network. Considering the limited computing power,
the parameters for training our model, including the batch size, input size, momentum
factor, weight decay rate, and training epochs, were empirically set to 8, 416 × 416, 0.937,
0.0005, and 300, respectively. Meanwhile, anchor boxes were also empirically configured in
the sequence of [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]. After
adjustment via training, the weights were adopted in our model to identify surface defects
on arc magnets.

3.4. Evaluation Criteria

Extensive studies associated with object detection have confirmed that indicators
including Precision, Recall, Average Precision (AP), and mean Average Precision (mAP),
can jointly describe the performance of a learning model. Usually, the higher values of
these indicators represent better performance. The indicators can be formalized as below:

Precision =
TP

TP + FP
× 100% , (8)

Recall =
TP

TP + FN
× 100% , (9)

where TP, FP, and FN indicate the number of true positives, false positives, and false
negatives, respectively. Precision is defined as the fraction of relevant instances among all
retrieved instances. Recall, sometimes referred to as Sensitivity, is the fraction of retrieved
instances among all relevant instances. To identify the surface defects on an arc magnet,
the Recall indicator for a category of defects should reach 100% to ensure that the category
can be completely identified.

AP =
1
M

ΣM
i=1ρinterp(ri) , (10)

mAP =
1
N

ΣN
i=1 APi , (11)

where ρinterp(ri) is the precision corresponding to the i-th Recall (ri); M refers to the number
of recalls associated with all interpolated points; N refers to the number of object categories;
APi denotes the average precision for the i-th class of objects.

According to the actual manufacturing needs, the surface defect identification of arc
magnets is particularly concerned with the other accuracy indicator, named AD, which
refers to the correct identification rate of all defective samples. Unlike Precision and Recall,
which correspond to the quantitative identification accuracy for identifying a certain
category of surface defects from all samples, AD is the qualitative indicator for determining
whether each sample is defective, regardless of the category. An increase in AD indicates
that a sample that has defects can be determined more accurately. It is worth noting that in
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the case of high-quality arc magnet manufacturing, AD should be strictly 100% to ensure
the absolute reliability of the product quality. The indicator can be defined as follows:

AD =
ΣN

i=1TPi

ΣN
i=1(TPi + FNi)

× 100% , (12)

where TPi and FNi are the numbers of true positives and false positives for the i-th category
of surface defects, respectively.

To further analyze the model performance in detail, additional indicators, including the
total number of network parameters (TNNP), floating-point operations per second (FLOPS),
model size (MS), and average inference time consumption for one image (AITC), were also
considered as evaluation metrics in our study. These additional indicators are frequently
utilized to quantify model complexity, computing power burden, and runtime speed.

4. Results and Discussion
4.1. Pre-Training of the YOLOv5s Model

In our study, we adopted the publicly available dataset called COCO2017 to train the
learning networks of the YOLO family to build suitable pre-trained models. This dataset
stems from Microsoft Common Objects in Context (MS COCO), which is a large-scale
dataset for object detection, segmentation, keypoint detection, and captioning. COCO2017
belongs to the sub-dataset of MS COCO for object detection, containing 164,000 images of
80 object categories with bounding boxes and segmentation masks for each instance. The
number of images for the training set, validating set, and testing set was 118,000, 5000, and
41,000, respectively.

The YOLO family is currently in its seventh generation; YOLOv3-v7 are the versions
with relatively superior performance in object detection. Since lightweight models are
beneficial for quickly identifying images, we trained the pre-trained model on the smallest
network in terms of size over each generation. As shown in Table 2, YOLOv5s, YOLOv6-
nano, and YOLOv7-tiny had better comprehensive performance in terms of scale, accuracy,
and speed compared to other models. Considering that the mAP indicator of YOLOv5s is
extremely similar to that of YOLOv6-nano and YOLOv7-tiny, and more importantly, that
its current applications and researches are more extensive, we finally decided on YOLOv5s
for our pre-training model due to its high acceptance.

Table 2. Performance comparison of different pre-trained models for the same datasset.

Model TNNP (M) FLOPS (G) MS (MB) mAP@0.5:0.95 (%)

YOLOv3-tiny 8.849 13.201 33.873 16.000
YOLOv4-tiny 6.057 6.945 23.150 21.500

YOLOv5s 7.277 7.208 27.899 35.600
YOLOx-nano 0.912 1.079 3.666 27.400

YOLOv6-nano 4.300 4.700 17.684 30.800
YOLOv7-tiny 6.227 5.800 23.879 36.800

4.2. Transfer Learning Process from a Pre-Trained YOLOv5s to a Fine-Tuned YOLOv5s

The pre-training result empowered the YOLOv5s model to extract and distinguish
image-based features, resulting in the ability to identify specific objects. The network
weights obtained from pre-training were also general for the processing of data not involved
in training, but did not necessarily achieve acceptable performance, especially in cases like
arc magnet images that differ significantly from the object images used for pre-training.
Although retraining the pre-trained model with a large number of arc magnet images
was highly beneficial for improving the surface defect identification performance, our
dataset was limited and relatively small. Therefore, in our study, transfer learning was
exploited to retain those parts of the network in the pre-trained model that were suitable for
processing arc magnet images and to adapt the others to be more conducive to perceiving
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and distinguishing the image-based features of the surface defects through the training
of small samples. Our strategy for transfer learning was model-based and contained
two aspects. The first was to freeze the partial layers from the backbone network in the
already trained YOLOv5s; they were available for extracting the image-based features of
arc magnets. The second was to fine-tune the remaining layers of YOLOv5s under small-
sample training to improve the accuracy of the model in extracting and discriminating
image-based features of the surface defects.

Since the three CSP1-Xs in the backbone network of YOLOv5s are the most crucial
feature extraction modules, we used them as references to divide the backbone network
into three frozen regions, each of which referred to the corresponding CSP1-X and all layers
before it. In parallel, we treated the maximum mAP@0.5 and the minimum training loss as
the basis for judging the optimal effect of fine-tuning all network layers outside the frozen
region. As a result, comparing the effects of fine-tuning in different freezing cases enabled
us to determine the most suitable transfer from a pre-trained model for the COCO2017
dataset to a highly accurate identification model for our dataset. The effects of the mAP@0.5
and training loss formed by different combinations of freezing and fine-tuning are depicted
in Figure 5a,b. As can be seen, freezing with fewer layers gave better results after fine-
tuning. The maximum mAP@0.5 (0.999 at the 72nd epoch) and the minimum training loss
(0.018 at the 268th epoch) always appeared in the fine-tuning result when freezing the
network layers up to the first CSP1-X (namely, CSP1-1). In contrast, the worst mAP@0.5
and training loss occurred in the fine-tuning result without any frozen layer. Thus, freezing
the first CSP1-X module and its preceding layers, which is the approach that we adopted in
our proposed framework, proved to be the most reasonable way to freeze layers.

To further illustrate the fine-tuning effect, we used the visualization for the output of
the second CSP1-X (namely, the CSP1-3 closest to the CSP1-1) in the backbone network
as an example to observe the improvement in the feature extraction. As seen in Figure 5c,
for the same image, the outputs of extracted features from the layer in the frozen and
fine-tuned model, which was also regarded as the transferred model, were superior to those
of the un-frozen and un-tuned ones. The edge contours belonging to the surface defects
of an arc magnet extracted by the transferred model were generally sharper, implying
more accurate feature extraction results. Moreover, the image information extracted by
the transferred model was more concentrated and had less redundant data, facilitating the
filtering and reduction of the output. These results demonstrate that the design of both
freezing and fine-tuning the YOLOv5s model that was adopted in our proposed framework
was effective. Considering the significant difference between the dataset for pre-training
and our dataset for transferring, these freezing and fine-tuning results also indicate a
noteworthy phenomenon in transferring a model in the case of large differences in training
data: layers frozen in the pre-trained model decrease, while those to be fine-tuned increase.

The performance of the transferred and un-transferred YOLOv5s model in identi-
fying arc magnet surface defects was also evaluated on our dataset’s testing set. The
un-transferred model refers to the pre-trained model that had only been retrained by the
training set in our dataset, instead of the transferred one that had been frozen and then
fine-tuned under our dataset. As shown in Figure 5d, the transferred model performed
better in each accuracy indicator that was related to identifying different surface defects
in the testing set of our dataset. Compared to the pre-trained model dataset, our dataset’s
training volume was only 12.20% (14,400:118,000). This suggests that our transfer learning
strategy allowed the pre-trained model to be adapted and become competent for the arc
magnet surface defect identification task with relatively low dependence on the training
volume. This also implies that the performance of the pre-trained model that was suitable
for surface defect identification was effectively inherited and improved.
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4.3. Pruning of the Transferred YOLOv5s Model

The transferred YOLOv5s model only increased in accuracy but did not improve in
complexity, size, or computing power dependency, which determine its running speed.
To achieve the fast identification of the surface defects, as can be seen in Figure 6a, we
adopted a network pruning approach based on channel removal after calculating the L2
norm. Taking the output channels corresponding to all convolutional kernels with the
3 × 3 × 32 size in the second layer of the transferred YOLOv5s network as an example, a
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total of 64 output channels were available in these layers. For the convenience of observa-
tion, the 3 × 3 × 32 values of each output channel were accumulated in a 3 × 3 matrix to
form a 3× 3 visualization of this channel, as shown in Figure 6b. According to Equation (6),
each channel can obtain an L2 norm value corresponding to itself. As depicted in Figure 6c,
these norm values reorder all channels in descending order. Of them, 75%, corresponding
to the smaller norm values, were considered redundant channels that need to be removed.
By rounding, a total of 48 channels were deleted from this layer. We found that the deleted
channels did not contain significant feature information, or even not at all. Except for
the input and output layers in the YOLOv5s network, this sort of channel removal was
performed for every layer, thereby creating a pruned model. By pruning 75% of the chan-
nels, the transferred YOLOv5s model was significantly reduced. The performance of the
transferred YOLOv5s model before and after the network pruning is shown in Figure 6d.

After the channel removal, TNNP, FLOPS, MS, and AITC were decreased by 93.505%,
88.337%, 92.943%, and 9.839%, respectively. Such results offered greater possibilities for
rapid identification and easy deployment. However, there was an unacceptable degradation
in accuracy; for instance, mAP and AD dropped by 98.990% and 100% in the validating set
of our dataset, respectively. It was strongly necessary to recover the accuracy after pruning.
The most convenient way to improve the accuracy of a changed model is to retrain it. After
retraining on the same training set in our dataset, as also shown in Figure 6d, the mAP and
AD of the pruned model in the validating set were significantly regained by 98.950% and
99.521%, respectively, and were rather close to the accuracy level of the un-pruned model.
This implies that retraining offers a tremendous contribution to accuracy recovery and that
pruned channels do not have a serious impact on accuracy. Nevertheless, the retraining
could not fully restore the accuracy. Especially in the case of AD, which requires a strict
performance of 100%, this constituted an unacceptable loss.

In addition, to justify the amount of pruning, we selected different pruning rates in
5% steps between 60% and 85% to form six models: 60%, 65%, 70%, 75%, 80%, and 85%.
The changes in AD and MS, corresponding to the validating set, reflect the effect of the
pruning rate on the model performance. The optimal pruning rate needed to make AD as
large as possible and MS as small as possible. However, a decrease in MS is bound to cause
an inevitable reduction in AD. Thus, the most appropriate pruning rate can be considered
as a balance between maximizing AD and minimizing MS. To describe such a balance, we
designed the following objective function Fx related to the pruning rate, AD, and MS:

Fx = AD(pr) + [MSini −MS(pr)] , (13)

where pr indicates a variable of the pruning rate; AD(pr) and MS(pr) denote the AD and
MS corresponding to pr, respectively; MSini is the MS when unpruned. According to the
MS of the transferred YOLOv5s in Figure 6d, MSini = 27.221. The maximum value of Fx is
the most appropriate balance between ad and AD and MS. As illustrated in Figure 6e, it
is clear that the maximum extreme value of Fx is obtained when the pruning rate is equal
to 75%. This also means that setting the pruning rate to 75% can establish a relatively
reasonable balance between maximizing AD and minimizing MS, whereas the others suffer
from either too much loss in AD or too little reduction in MS. Figure 6f further shows the
change in the number of channels before and after pruning. Except for one input and three
output layers, all layers have a proportional decrease in the number of channels, and these
reductions are significant.
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4.4. Knowledge Distillation from the Transferred YOLOv5s Model to the Pruned Model

Since the transferred YOLOv5s model was unable to fully recover the accuracy by
retraining after the network pruning, we resorted to a knowledge-distillation technique
to further improve the accuracy. In the knowledge-distillation process we designed, the
transferred YOLOv5s model was regarded as the teacher network, while the student
network referred to its pruned model. The customized total loss function formulated in
Equation (7) served as the core to guide the operation of knowledge distillation; that is, a
model that could stabilize and minimize such a total loss was established through repeated
training. The minor total loss indicated that the student network inherited more adequate
knowledge from the teacher network, implying that its accuracy performance was closer to
that of the teacher network. Unlike conventional knowledge distillation, we introduced a
new weight factor λ in the confidence part of the total loss function to adjust the sensitivity
to defective objects. Since λ represents the sensitivity weight for distinguishing defective
arc magnets, if the value is too large, the ability to identify defect-free magnets would be
seriously compromised. In our design, when this weight factor is less than 1, the model
can be insensitive to defective arc magnets; in contrast, when greater than 2, it can be
exponentially more sensitive to identifying defective arc magnets than defect-free ones,
which is not conducive to balancing the identification performance. As a result, we limited
λ to the range of 1 to 2.

Figure 7a illustrates the variation in the accuracy performance of the student network
when such a weighting factor was assigned to different values. Obviously, the increase in
λ tended to improve both mAP and AD, but the optimal value was reached at 1.85 when
AD was already 100% and mAP was also maximum. Following this value, we obtained
the training process results shown in Figure 7b. It can be clearly viewed that both mAP
and distillation loss converged rapidly during the iterative training process. The rapid
convergence was completed around the 50th epoch, and it tended to stabilize after the
250th epoch. There were no large fluctuations or variances in mAP or distillation loss
throughout the training process. This means that the student network did not have a
significant training burden or risk and was able to form an identification performance
similar to that of the teacher network with a small training cost. To further demonstrate the
improved performance of the student network, the output visualization of the first CSP1-3
of the YOLOv5s backbone in this network before and after knowledge distillation is shown
as an example in Figure 7c. It can be seen that the output of the corresponding layer in the
teacher network had 128 channels, while there were only 32 channels in that of the student
network due to pruning.

Before knowledge distillation, through our pruning strategy, the retrained student
network retained most of the teacher network’s channel information that characterized
the original image. Still, the feature information belonging to the 2nd, 3rd, 4th, 5th, 17th,
and 25th channels was always less or almost absent. This is likely to be the cause of the
inability of the student network to fully recover the accuracy of the teacher network by
repetitive training before knowledge distillation. On the contrary, after implementing the
knowledge distillation we designed, channels that initially lacked the feature information
were supplemented with considerable new information related to the arc magnet surface
defects in the image. The defect-related feature output capability of this layer was enhanced
explicitly, which also reflected the crucial role of our designed loss function with the new
weight factor, λ. In this way, the student network could be used as a model for identifying
surface defects on arc magnets after completing the knowledge-distillation training process.
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Figure 7. Results of the knowledge distillation for the student network: (a) the contribution of the
introduced weight factor λ to the accuracy improvement; (b) the mAP and loss of student network
during the training process; (c) the output visualization of the specific layer in the networks before
and after knowledge distillation.

4.5. Identification Results for Multiple Surface Defects on Various Arc Magnets

The models trained by knowledge distillation were applied to test all data of the
testing set in our dataset to verify our models’ ability to identify different defect types.
Depending on our previously prepared and expanded dataset, a total of 1871 data points,
covering eight categories of images for defective arc magnets and one category of that for
defect-free magnets, were tested by our model. The amount of data per category ranged
from 200 to 217 in order to allow for a relative data balance between different categories,
avoiding considerable specificity in the testing results. The confusion matrix in Figure 8a
illustrates the identification results of our model for each data item in all categories. As
can be seen, each category of data representing defective arc magnets was identified with
100% accuracy, confirming that AD is also at 100%. This ability to identify different surface
defects is entirely consistent with the teacher network corresponding to the transferred
YOLOv5s before network pruning and knowledge distillation. Moreover, it overcomes the
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problem that the AD of the previously retrained and pruned transferred YOLOv5s could
not reach 100%.
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For defect-free arc magnets, there were two misidentifications, including one with
a blowhole and one with a crack, such that the accuracy was only 99%. The existing
misidentification rate was most likely caused by the enhanced sensitivity to defective
arc magnet recognition and the weakened recognition ability of defect-free magnets in
knowledge distillation, but the misidentification rate of 1%, as well as the arbitrary defect
recognition rate of 100%, fully met the conventional accuracy requirements and could
be widely accepted by the actual production. Figure 8b further shows realistic scenarios
of identifying different surface defects on arc magnets from their images. It follows that
our model is extremely capable of accurately identifying the surface defects, regardless
of the number and type of defects in the same image. These results demonstrate that
the student network, after knowledge distillation, fully inherited the accurate recognition
performance of the teacher network for all defects, compensating for the accuracy loss
given by pruning the teacher network as the student network. It is noteworthy that the
student network model generated by the knowledge distillation process we designed is
more oriented towards accurately identifying surface defects. Its 100% accuracy is reflected
in the ability to confirm both the presence of surface defects on an arc magnet and the type
of the corresponding defects.

4.6. Performance Comparison of Different Models for Identifying the Surface Defects

To further investigate the effectiveness of the proposed method for the surface defect
detection in this work, we selected current lightweight models that are widely avail-
able in a large number of object detection studies, including SSD-VGG16, YOLOv3-tiny,
YOLOv4-tiny, original YOLOv5s, and YOLOx-nano, for comparison with our model. The
performances of these selected models were all obtained from the same testing set used for
our model. The corresponding performance comparison results are exhibited in Figure 9.
The results show that our model was consistently minimal in terms of TNNP, FLOPS, and
MS. In the case of TNNP, our model was 98.136%, 94.704%, 92.190%, 93.505%, and 48.775%
smaller than the other five models, respectively. Similar reductions were observed in the
other two indicators (FLOPS and MS): for example, 98.685%, 93.751%, 88.146%, 88.337%,
and 22.562% in FLOPS; 97.957%, 94.208%, 91.463%, 92.932%, and 48.457% in MS. For the
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identification speed, compared to the original YOLOv5s and YOLOx-nano, our model
reduced AITC by 12.867% and 44.017%, separately. Due to the simpler model architectures
of SSD-VGG16, YOLOv3-tiny and YOLOv4-tiny, they produced shorter AITCs than our
model. However, all three of them were significantly worse than our model as well as the
original YOLOv5s and YOLOx-nano in the Precision and Recall indicators. This indicates
that their accuracy was measurably weaker than our model, such that the faster speeds of
these three models do not have potential for practical application. The significant results
mentioned above demonstrate that our model had a lower complexity, a smaller scale,
a weaker computing power dependence, and a faster running speed. Our model also
offers notable improvements in mAP, AD, Precision, and Recall in identifying the eight types
of surface defects. Our model outperformed the others in the indicators related to the
accuracy. In particular, it exclusively achieved 100% for AD and all Recalls for defective
arc magnets where other models did not. Unlike the other models, the false identification
rate of our model on the Recall indicator occurred only in the defect-free arc magnets and
was merely 1%, which is widely acceptable for actual production. Such results suggest that
our model is more conducive to accurately identifying defective arc magnets. The above
performance comparison shows that our model had obvious advantages in the deployment
(1.921 MB in MS), speed (9.46 ms in AITC), and accuracy (100% in Recall for different
defective arc magnets) for identifying surface defects on arc magnets, signifying more
reliable application.

4.7. Potential for Other Applications

To explore the application potential of our method on objects other than arc magnets,
we attempted to use our model for the detection of image-based insulator defects in a high-
voltage tower. The data used in this attempt were sourced from the Chinese Power Line
Insulator Dataset (CPLID) [42], which provided 600 defect-free insulator images captured
by unmanned aerial vehicles (UAVs) and 248 synthetic defective insulator images. All
images in this dataset were derived from a synthesis of the ground truth and defective
insulators due to the limited number of real defective insulator images. The purpose of
this identification was to determine whether the insulator in each image has defects. The
same data augmentation was still followed due to the small and unbalanced sample data.
The number of images of both defect-free and defective insulators was expanded to 1200,
which were also respectively divided into the training set, the validating set, and the testing
set according to a ratio of 8:1:1. The model employed wass still derived from a fine-tuned
network based on the same pre-trained YOLOv5s and compressed with the help of pruning
and distillation. An example of the detection of defective insulators is shown in Figure 10.
We found that the defective insulators in the figure could be detected accurately. We chose
the original YOLOv5s trained directly with the augmented CPLID data to compare with
our model to investigate their performance in detecting defective insulators. As exhibited
in Table 3, compared to the original YOLOv5s, our model reduced TNNP, FLOPS, MS,
and AITC by 93.559%, 88.380%, 92.985%, and 5.634%, respectively. This indicates that the
complexity and computing power dependence of the model were significantly smaller,
implying a faster detection speed and a more convenient deployment. More importantly,
mAP increased by 0.03% and AD was boosted by 1.667% and improved to 100%, enabling
the most accurate detection of defective insulators. It follows that there is considerable
potential for broader applications given the advantages of our method in compressing
models and improving accuracy.
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Table 3. Performance comparison of the proposed model and original YOLOv5s in the image-based
insulator defect detection.

Model TNNP (M) FLOPS (G) MS (MB) AITC (mS) mAP (%) AD (%)

YOLOv5s 7.064 6.919 27.170 10.046 99.960 98.333
Our model 0.455 0.804 1.906 9.480 99.990 100.000
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5. Conclusions

This paper proposed a machine-vision method for identifying surface defects on
arc magnets. The proposed method combines transfer learning, network pruning, and
knowledge distillation for the YOLOv5s model to obtain high recognition accuracy of
surface defects while greatly compressing the model size at a slight loss of accuracy, thereby
improving the recognition speed. In our work, the type and quantity of the original
public image-based dataset of surface defects on arc magnets were appended by us to
make the dataset more extensive and representative. To overcome the dependence of
model training on massive image-based data of arc magnets, our model was derived
from YOLOv5s that had been robustly pre-trained by another publicly available dataset
with a large number of different targets other than arc magnets. The transfer-learning
mechanism under the frozen and fine-tuned YOLOv5s enabled the target recognition
ability obtained by pre-training on the other dataset to be converted into highly accurate
surface-defect identification after training based on relatively few image-based arc magnets.
The proposed pruning rate, validated by the objective function we designed, achieved
an optimal balance between maximizing model compression and minimizing accuracy
loss during the network pruning for the transferred YOLOv5s. The unpruned and pruned
transferred YOLOv5s were respectively employed as the teacher and student networks for
knowledge distillation. A proposed λ weighting factor was introduced into the confidence
loss function of knowledge distillation to increase the sensitivity of the student network for
extracting and identifying image-based features of surface defects, but such a sensitivity
improvement was bound to sacrifice a small amount of recognition accuracy for defect-free
arc magnets. The experimental results show that our model is only 1.921 MB in size and can
identify any defective arc magnet with 100% accuracy within an average inference time of
9.46 ms. Moreover, the misidentification rate for defect-free arc magnets did not exceed 1%.
Considering accuracy, speed, and size together, our model outperforms other conventional
lightweight models and is more conducive to high-precision and rapid identification of
surface defects on arc magnets under a lightweight model deployment with low computing
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power. Similar superior performance was also obtained for the detection of insulator
defects in a high-voltage tower, for which our model was used to identify image-based
insulator data. Given the advantages of our model in compressing models and improving
accuracy, more applications based on our method have the potential to be developed.

Even though the identification accuracy of defective arc magnets reached 100%, 1% of
defect-free arc magnets still could not be accurately identified. The significant compression
of the model size did not result in a substantial reduction of inference time. These phenom-
ena make it necessary to continue improving our method in terms of accuracy and speed,
but the corresponding improvements are also limited by the performance of YOLOv5s.
Along with developing the YOLO series, we will attempt newer and better YOLO models
to update YOLOv5s for the surface-defect identification of arc magnets in future work.
Meanwhile, we will continue to explore different model compression methods to achieve
faster identification speed.
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