
Citation: Yeh, W.-C.; Zhu, W.; Yin, Y.;

Huang, C.-L. Cloud Computing

Considering Both Energy and Time

Solved by Two-Objective Simplified

Swarm Optimization. Appl. Sci. 2023,

13, 2077. https://doi.org/10.3390/

app13042077

Academic Editor: Jose Machado

Received: 31 October 2022

Revised: 18 November 2022

Accepted: 22 November 2022

Published: 6 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Cloud Computing Considering Both Energy and Time Solved
by Two-Objective Simplified Swarm Optimization
Wei-Chang Yeh 1 , Wenbo Zhu 2,* , Ying Yin 1 and Chia-Ling Huang 3

1 Integration and Collaboration Laboratory, Department of Industrial Engineering and Engineering
Management, National Tsing Hua University, Hsinchu 300, Taiwan

2 School of Mechatronical Engineering and Automation, Foshan University, Foshan 528000, China
3 Department of International Logistics and Transportation Management, Kainan University,

Taoyuan 33857, Taiwan
* Correspondence: zhuwenbo@fosu.edu.cn

Abstract: Cloud computing is an operation carried out via networks to provide resources and infor-
mation to end users according to their demands. The job scheduling in cloud computing, which is
distributed across numerous resources for large-scale calculation and resolves the value, accessibility,
reliability, and capability of cloud computing, is important because of the high development of
technology and the many layers of application. An extended and revised study was developed
in our last work, titled “Multi Objective Scheduling in Cloud Computing Using Multi-Objective
Simplified Swarm Optimization MOSSO” in IEEE CEC 2018. More new algorithms, testing, and
comparisons have been implemented to solve the bi-objective time-constrained task scheduling
problem in a more efficient manner. The job scheduling in cloud computing, with objectives including
energy consumption and computing time, is solved by the newer algorithm developed in this study.
The developed algorithm, named two-objective simplified swarm optimization (tSSO), revises and
improves the errors in the previous MOSSO algorithm, which ignores the fact that the number of
temporary nondominated solutions is not always only one in the multi-objective problem, and some
temporary nondominated solutions may not be temporary nondominated solutions in the next gener-
ation based on simplified swarm optimization (SSO). The experimental results implemented show
that the developed tSSO performs better than the best-known algorithms, including nondominated
sorting genetic algorithm II (NSGA-II), multi-objective particle swarm optimization (MOPSO), and
MOSSO in the convergence, diversity, number of obtained temporary nondominated solutions, and
the number of obtained real nondominated solutions. The developed tSSO accomplishes the objective
of this study, as proven by the experiments.

Keywords: energy; computing time; two-objective simplified swarm optimization (tSSO); cloud
computing; job scheduling

1. Introduction

The computing tasks of cloud computing, which play a very important role nowadays
due to the high development of technology and the many layers of application, resulting
in the increasing application and demand for cloud computing, involve the delivery of
on-demand computing resources ranging from applications to remote data centers over the
internet on a pay-for-use basis. Therefore, many scholars and practitioners have devoted
their efforts to strengthening or innovating this related research. Section 2 summarizes the
existing literature and demonstrates how this work differs in its approach.

In essence, the computing tasks of cloud computing, which are distributed across
numerous resources for large-scale calculation and resolve the value, accessibility, reliability,
and capability of cloud computing, comprise a computing style in which dynamically
scalable and often virtualized resources are provided as an Internet service [1]. The service

Appl. Sci. 2023, 13, 2077. https://doi.org/10.3390/app13042077 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13042077
https://doi.org/10.3390/app13042077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7393-0768
https://orcid.org/0000-0001-7835-4990
https://orcid.org/0000-0003-2880-5348
https://doi.org/10.3390/app13042077
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13042077?type=check_update&version=1

Appl. Sci. 2023, 13, 2077 2 of 23

model of computing tasks includes cloud platforms, users, applications, virtual machines,
etc. Within each cloud platform, there are multiple platform users, each with the ability
to run multiple applications on the platform. Each application corresponds to the jobs
requested by a user and uses a certain quota of virtual machines, through which the
application finishes and returns the jobs, thus completing the procedure.

Countless discussions and research have been conducted on the two prevailing issues
in both grid and cloud computing: resource allocation and job scheduling [2–4]. The job
scheduling problem revolves around exploring how the provider of cloud computing
services assigns the jobs of each client to each processor according to certain rules and
regulations to ensure the cost-effectiveness of the job scheduling process. The efficiency
and performance of cloud computing services are usually associated with the efficiency
of job scheduling, which affects not only the performance efficiency of users’ jobs but
also the utilization efficiency of system resources. Hence, the interdependent relationship
between the efficiency and performance of cloud computing services and the efficiency of
job scheduling necessitates research on the job scheduling problem of the computing tasks
of cloud computing.

The job scheduling problem of the computing tasks of cloud computing services
assign jobs to individual processors. It is an NP-hard combinatorial problem, which
renders it difficult to obtain the global optima within polynomial time. The greater the
problem size, e.g., the number of resources or jobs, the more difficult it is for traditional job
scheduling algorithms to solve. Hence, alongside improving traditional algorithms, many
scholars have introduced machine learning algorithms, e.g., the Pareto-set cluster genetic
algorithm [2] and particle swarm optimization [2], the binary-code genetic algorithm [3]
and integer-code particle swarm optimization [3], the simulated annealing algorithm [4],
particle swarm optimization (PSO) [5], the genetic algorithm [6], the machine learning
algorithm [7], Multi-Objective PSO [8], the artificial bee colony algorithm [9], the hybrid
optimization algorithm [10], etc., to solve the job scheduling problem of the computing
tasks of cloud computing.

Numerous different objectives have been discussed to measure service performance,
e.g., cost, reliability, makspan, and power consumption [1–10]. However, when conducting
research on the job assignment problem, most scholars emphasize the single-objective
job scheduling problem and overlook job scheduling problems with more than one ob-
jective [11–17]. By doing so, they fail to acknowledge other goals that may influence the
quality of the cloud-computing service. It is thus necessary to balance various aspects when
evaluating job scheduling problems [15–17]; for example, the objective of minimizing total
energy consumption and the objective of minimizing makspan are conflicting objectives in
real-life applications [17].

With the ever-advancing development of cloud computing, more and more data
centers have successively been established to run a large number of applications that
require considerable computations and storage capacity, but this wastes vast amounts
of energy [12,15–17]. Reducing power consumption and cutting down energy costs has
become a primary concern for today’s data center operators. Thus, striking a balance
between reducing energy consumption and maintaining high computation capacity has
become a timely and important challenge.

Furthermore, with more media and public attention shifting onto progressively severe
environmental issues, governments worldwide have now adopted a stronger environmen-
tal protection stance [12,15–17]. This puts increasing pressure on enterprises to pursue
higher output and also to focus on minimizing power consumption [12,15–17].

Stemming from real-life concerns, as mentioned above, our previous work considered
a two-objective time-constrained job scheduling problem to measure the performance
of a certain job schedule plan with two objectives: the quality of the cloud computing
service in terms of the makspan and the environmental problem based on the energy
consumption [12,15–17].

Appl. Sci. 2023, 13, 2077 3 of 23

There are two different types of algorithms used to solve multi-objective problems.
While one converts multi-objective problems to ones that are single objective in nature
through methods such as ε-constraint, LP-metrics, goal programming, etc., the other solves
multi-objective problems based on the concept of Pareto optimality. The latter is the one
we adapted, both here and in our previous study [10–17].

Moreover, a new algorithm called the multi-objective simplified swarm optimization
(MOSSO) was proposed to solve the above problem [17]. However, there are some errors in
the MOSSO source code, which ignores the multi-objective problem; the number of tempo-
rary nondominated solutions is not always only one, and some temporary nondominated
solutions may not be temporary nondominated solutions in the next generation. Therefore,
the performance comparison is limited to MOSSO and MOPSO, despite both having an
iterative local search [17].

In order to rectify our previous source code with new concepts based on the Pareto
optimality to solve the two-objective time-constrained job scheduling, we proposed a new
algorithm called two-objective simplified swarm optimization (tSSO). It draws from the SSO
update mechanism to generate offspring [18], the crowding distance to rank nondominated
solutions [19], and new hybrid elite selection to select parents [20], and the limited number
of nondominated solutions adapted from multi-objective particle swarm optimization
(MOPSO) serves to guide the update [13].

The motivation and contribution of this work are highlighted as follows:

1. An improved algorithm named two-objective simplified swarm optimization (tSSO)
is developed in this work to revise and improve errors in the previous MOSSO
algorithm [17], which ignores the fact that the number of temporary nondominated
solutions is not always only one in the multi-objective problem, and some temporary
nondominated solutions may not be temporary nondominated solutions in the next
generation. The algorithm is based on SSO to deliver the job scheduling in cloud
computing.

2. More new algorithms, testing, and comparisons have been implemented to solve the
bi-objective time-constrained task scheduling problem in a more efficient manner.

3. In the experiments conducted, the proposed tSSO outperforms existing established
algorithms, e.g., NSGA-II, MOPSO, and MOSSO, in the convergence, diversity, num-
ber of obtained temporary nondominated solutions, and the number of obtained real
nondominated solutions.

The remainder of this paper is organized as follows. Related work in the existing
literature is discussed in Section 2, which also demonstrates how this work is different in
its approach. Section 3 presents notations, assumptions, and the mathematical modeling of
the proposed two-objective time-constrained job scheduling problem to address energy
consumption and service quality in terms of the makspan. Section 4 introduces the simpli-
fied swarm optimization (SSO) [18], the concept of crowd distance [19], and traditional elite
selection [20]. The proposed tSSO is presented in Section 5, together with the discussion of
its novelties and pseudo code. The section also explains the errors in the previous MOSSO
algorithm and how the proposed new algorithm overcomes them. Section 6 compares the
proposed tSSO in terms of nine different parameter settings with the MOSSO proposed
in [17], the MOPSO proposed in [13], and the famous NSGA-II [19,20]. Three benchmark
problems, one small-size, one medium-size, and one large-size, are utilized and analyzed
from the viewpoint of convergence, diversity, and number of obtained nondominated
solutions in order to demonstrate the performance of the tSSO. Our conclusions are given
in Section 7.

2. Literature Review

The related work of the existing literature is provided in this section, which also
demonstrates how this work is different in its approach. The job scheduling problem of
cloud-computing services is very important, meaning that there is a significant amount of
related research on it, which can be classified into the following types.

Appl. Sci. 2023, 13, 2077 4 of 23

2.1. A Review of Job Scheduling in Cloud-Computing

Houssein et al. presented a review of numerous meta-heuristics for solving job
scheduling in cloud-computing [21], and a literature review of the related methods used
for solving job scheduling in cloud-computing has been conducted by Arunarani et al. [22]
and Kumar et al. [23].

2.2. Algorithm Research for Solving the Single-Objective Problem for Job Scheduling in
Cloud-Computing

Chen et al. proposed an improved meta-heuristic whale optimization algorithm to
solve resource utilization for job scheduling in cloud-computing [24]. Attiya et al. studied
improved simulated annealing (SA) to optimize makspan for job scheduling in cloud-
computing [25]. Gąsior and Seredyński worked on a distributed security problem for job
scheduling in cloud computing by a method based on the game theoretic approach [26].
Mansouri and Javidi resolved response time using a cost-based job scheduling method [27].
A deep reinforcement learning (DRL) algorithm was proposed by Cheng et al. [28] to reduce
the cost of job scheduling in cloud computing.

2.3. Algorithm Research for Solving the Multi-Objective Problem for Job Scheduling in
Cloud-Computing

Processing time and cost of job scheduling in cloud computing were optimized by
Shukri et al. [29] using an improved multi-verse optimizer. Jacob and Pradeep minimized
the multi-objective problem, including makspan, cost, and deadline violation rate, using
a hybrid algorithm of cuckoo search (CS) and particle swarm optimization (PSO) [30].
Abualigah and Diabat optimized the makspan and resource utilization using an improved
algorithm based on the elite-based differential evolution method [31]. Sanaj and Prathap
proposed a chaotic squirrel search algorithm (CSSA) to solve the makspan and cost is-
sues [32], and Abualigah and Alkhrabsheh optimized the cost and service availability in
the multi-objective problem [33].

This work aims to optimize a two-objective problem that includes both energy and
makspan, but the objectives of this work are different from the multi-objective contents
of the existing literatures, as shown in the third part of the literature review [29–33].
Furthermore, this work proposes an improved algorithm to solve the two-objective problem
for job scheduling in cloud computing, which is obviously different from the first and
second parts of the existing literatures above [21–28].

3. Assumptions, and Mathematical Problem Description

The formal mathematical model of the two-objective constrained job scheduling prob-
lem of cloud-computing services [12,15–17] is described as follows, together with the
assumptions used in the problem, as well as the algorithms.

3.1. Assumptions

In cloud-computing services, all requests from cloud-computing users are collected as
jobs and subsequently divided into multiple jobs, which are then executed by data centers
with multiple processors [2–4,10–12,15–17]. To simplify our model without foregoing
generality, the following assumptions are utilized to prompt the two-objective constrained
job scheduling problem to focus on the energy consumption and makspan of the cloud-
computing service [2–4,10–12,15–17].

1. All jobs are available, independent, and equal in importance with two attributes, sizei
and timei, for i = 1, 2, . . . , Nvar for processing simultaneously at time zero.

2. Each processor is available at any time with two attributes, denoted as speedj and
powerj, j = 1, 2, . . . , Ncpu, and cannot process two or more jobs simultaneously.

3. All processing times include set-up time.
4. Job pre-emption and the splitting of jobs are not permitted.
5. There is an infinite buffer between the processors.

Appl. Sci. 2023, 13, 2077 5 of 23

3.2. The Mathematical Model

A feasible job scheduling solution is a plan that assigns jobs to processors in a sequence
such that the makspan, which is the time at which the final job is complete before a
predefined limited time. Let solution X = (x1, x2, . . . , xNvar) be a feasible job scheduling
plan and xi be the type of processor assigned to the job i for i = 1, 2, . . . , Nvar.

To maintain efficiency and ensure environmental protection, the two-objective con-
strained job scheduling problem considered here is to assign Nvar jobs to Ncpu processors
to minimize both the energy consumption and makspan so that the makspan is not over-
due [17]:

Min Fe(X) = ∑n
i=1 (ti,xi ·exi) (1)

Min Fm(X) = Max
j

∑n
i=1 ti,j (2)

s.t. Fm(X) ≤ Tub. (3)

Equation (1) is the total energy consumption of a job scheduling plan, and it is the sum
of the usage of energy of all jobs assigned to processors based on X. Note that the energy
consumption of each job is the product of the power cost per unit time and the running
time is equal to the size of the job divided by the execution speed, as shown in formula (4).

ti,j =

{
sizei/speedj if task i is processed on processor j
0 otherwise

. (4)

Equation (2) is the makspan, which is the time the last job is finished. Equation (3) is
the time constraint for each job, such that each job must be finished before the deadline Tub.

4. SSO, Crowding Distance, and Elite Selection

The proposed tSSO, based on SSO [18], is used to update solutions from generation to
generation intelligently; the crowding distance [19] is used to rank temporary nondomi-
nated solutions systematically, and the elite selection [34] is used to select solutions to act
as parents. Hence, SSO, crowding distance, and elite selection are introduced briefly in this
section.

4.1. Simplified Swarm Optimization

SSO, developed by Yeh in 2009 [18], is a simple but powerful machine leaning algo-
rithm that is a hybrid of leader-solution swarm intelligence and population-based evolu-
tionary computation.

In traditional SSO, all variables need to be updated (called the all-variable update
in SSO) such that the jth variable of the ith solution (i.e., xi,j) is obtained from either the
jth variable of the PgBest (i.e., pgBest,j) with probability cg of the Pi with probability cp of its
current value (i.e., xi,j) with probability cw of a randomly generated feasible new value (say
x) with probability cr, where the PgBest is the best solution among all existing solutions; Pi is
the best ith solution in its evolutionary history, and cg + cp + cw + cr = 1.

The above update mechanism of SSO is very simple, efficient, and flexible [17,18,35–40],
and can be presented as a stepwise-function update:

xi,j =

pgBest,j if ρ[0,1] ∈ [0, Cg)

pi,j if ρ[0,1] ∈ [Cg, Cp)

xi,j if ρ[0,1] ∈ [Cp, Cw)

x if ρ[0,1] ∈ [Cw, 1]

, (5)

where Cg = cg, Cp = Cg + cp, and Cw = Cp + cw.
The SSO pseudo code is provided below [17,18,35–39]:

Appl. Sci. 2023, 13, 2077 6 of 23

STEP S0. Generate Xi randomly, find gBest, and let t = 1, k = 1, and Pi = Xi for i = 1, 2, . . . ,
Nsol.

STEP S1. Update Xk.
STEP S2. If F(Xk) is better than F(Pk), let Pk = Xk. Otherwise, go to STEP S5.
STEP S3. If F(Pk) is better than F(PgBest), let gBest = k.
STEP S4. If k < Nsol, let k = k + 1 and go to STEP S1.
STEP S5. If t < Ngen, let t = t + 1, k = 1, and go to STEP S1. Otherwise, halt.

The stepwise-function update mechanism is very simple and efficient, but it is also
very powerful and has various successful applications, e.g., the redundancy allocation
problem [35,36], flexible grid trading [37], the disassembly sequencing problem [38], artifi-
cial neural networks [39], power systems [40], energy problems [41,42], and various other
problems [17,18,43–52]. Moreover, the stepwise-function update mechanism is easier to
customize by replacing any item of its stepwise function either with other algorithms [36,39]
or hybrid algorithms [41], in sequence or in parallel [42].

4.2. Crowding Distance

Let
_
d l,i = Min{

Fl(Xi)− Fl(Xj)

Max(Fl)−Min(Fl)
} (6)

be the shortest normalized Euclidean distance between the ith temporary nondominated
solution and any other temporary nondominated solutions based on the lth objective
function, where Min(Fl) is the minimal value of the lth objective function and Max(Fl) is the
maximal value of the lth objective function.

The crowding distance is the sum of the individual distance and can be calculated as
follows [19]:

∑
i

√
_
d

2

1,i +
_
d

2

2,i, (7)

for all temporary nondominated solutions, Xi. The crowding distance is only used to rank
temporary nondominated solutions for selecting as parents if the total number of determine
are over a limited value, which is defined as Nnon and Nnon = Nsol in this study.

4.3. The Elite Selection

Among numerous different selection policies, the elite selection is the simplest and
is thus adopted in the proposed tSSO. The elite selection chooses the best solutions in
the current generation to generate and update solutions for the next generation [34]. For
example, let Nsol = 50, X1, X2, . . . , X100 be the solutions required for selection. Elite
selection ranks and selects the best 500 solutions among X1, X2, . . . , X100 and renumbers
these selected solutions as X1, X2, . . . , X50.

In the tSSO, these best solutions are temporary nondominated solutions. Due to the
fact that the number of temporary nondominated solutions may be less than or larger than
the number of parents, a new elite selection called the hybrid elite selection is developed
and used in the proposed tSSO, and the details are discussed in Section 5.3.

5. Proposed Algorithm

The proposed tSSO is a population-based, all-variable update, and it is a stepwise
function-based method, i.e., there are a fixed number of solutions in each generation and
all variables must be updated based on the stepwise function for each solution. Details of
the proposed tSSO are discussed in this section.

5.1. Purpose of tSSO

The developed tSSO algorithm revises and improves the errors in the previous MOSSO
algorithm, which ignores the fact that the number of temporary nondominated solutions in

Appl. Sci. 2023, 13, 2077 7 of 23

the multi-objective problem is not always only one, and some temporary nondominated
solutions may not be temporary nondominated solutions in the next generation.

The developed tSSO algorithm overcomes the errors in the previous MOSSO algorithm
by the following methods:

1. The novel update mechanism of the role of gBest and pBest in the proposed tSSO,
which are introduced in Section 5.3.

2. The hybrid elite selection in the proposed tSSO, which is introduced in Section 5.4.

5.2. Solution Structure

The first step of most machine learning algorithms is to define the solution structure [2–4,35–45].
The solution in the tSSO for the proposed problem is defined as a vector, and the value of the
ith coordinate is the processor utilized to process the ith job. For example, let X5 = (3, 4, 6,
4) be the 5th solution in the 10th generation of the problem with 4 jobs. In X5, jobs 1, 2, 3,
and 4 are processed by processors 3, 4, 6, and 4.

5.3. Novel Update Mechanism

The second step in developing machine learning algorithms is to create an update
mechanism to update solutions [2–4,35–42]. The stepwise update function is a unique
update mechanism of SSO [17,18,35–42]. In the single-objective problem, there is only
one gBest for the traditional SSO. However, in the multi-objective problem, the number of
temporary nondominated solutions is not always only one, and some temporary nondomi-
nated solutions may not be temporary nondominated solutions in the next generation [17].
Note that a nondominated solution is not dominated by any other solution, while a tempo-
rary nondominated solution is a solution nondominated by other found solutions that are
temporary in the current generation, and it may be dominated by other updated solutions
later [13,17,19].

Hence, in the proposed tSSO, the role of gBest is removed completely and the pBest
used in the tSSO is not the original definition in the SSO. The pBest for each solution in the
proposed tSSO is selected from temporary nondominated solutions, i.e., there is no need to
follow its previous best predecessor. The stepwise update function used in the proposed
tSSO is listed below for multi-objective problems for each solution Xi, with i = 1, 2, . . . ,
Nsol:

xi,j =

x∗i if ρ[0,1] ∈ [0, Cp)

xi,j if ρ[0,1] ∈ [Cp, Cw)

x otherwise

, (8)

where X∗ = (x∗1 , x∗2 , . . . , x∗k) is one of the temporary nondominated solutions selected
randomly, ρ[0,1] is a random number generated uniformly in [0, 1], and x is a random
integer generated from 0, 1, 2, . . . , Nvar.

For example, let X6 = (1, 2, 3, 2, 4) and X* = (2, 1, 4, 3, 3) be a temporary nondominated
solution selected randomly. Let Cp = 0.50, Cw = 0.95, and ρ = (ρ1, ρ2, ρ3, ρ4, ρ5) = (0.32, 0.75,
0.47, 0.99, 0.23). The procedure to update X6 based on the stepwise function provided in
Equation (8) is demonstrated in Table 1.

Table 1. Example of the update process in the proposed tSSO.

Variable 1 2 3 4 5

X5 1 2 3 2 4
X* 2 1 4 3 3

ρ 0.32 0.75 0.47 0.99 0.23

New X5 2 2 4 4 # 3

“#” indicates that the corresponding feasible value is generated randomly.

Appl. Sci. 2023, 13, 2077 8 of 23

From the above example, the simplicity, convenience, and efficiency of the SSO can
also be found in the update mechanism of the proposed tSSO.

5.4. Hybrid Elite Selection

The last step is to determine the selection policy to decide which solutions, i.e., parents,
are selected to generate solutions in the next generation. In the proposed tSSO, hybrid
selection is harnessed.

Let πt be a set to store the temporary nondominated solutions found in the tth genera-
tion. It is impossible to have all temporary nondominated solutions because their number
is infinite, and also because temporary nondominated solutions may not be real nondomi-
nated solutions. The value of |πt| is limited to Nsol, and parts of temporary nondominated
solutions are abandoned to keep |πt| = Nsol.

If Nsol ≤ |πt|, the crowding distances need to be calculated for each temporary
nondominated solution, and only the best Nsol solutions will be selected from πt to be
parents. However, all temporary nondominated solutions in πt are used to serve as parents
and (Nsol − |πt|) solutions are selected randomly from offspring if Nsol > |πt|. As
discussed above, there are always Nsol parents for each generation, and these temporary
nondominated solutions are usually chosen first to serve their role as parents.

Note that these temporary nondominated solutions are abandoned if they are not
selected as parents.

5.5. Group Comparison

Referring to Section 4.3, the temporary nondominated solutions play a paramount
role in most multi-objective algorithms. Up to now, the most popular method to achieve
the above goal is pairwise comparison, which takes O(N2) [13,17,19] for each solution in
each generation, where N is the number of solutions from which we determine temporary
nondominated solutions. Hence, the corresponding related time complexity of the tSSO
and NSGA-II are both O(4Nsol

2). Therefore, the most time-consuming aspect of solving
multi-objective problems using machine learning algorithms is the search for all temporary
nondominated solutions from all offspring.

In the proposed tSSO, the parents are selected from temporary nondominated solutions
found in the previous generation and offspring generated in the current generation. To
reduce the computation burden, a new method called group comparison is proposed in
tSSO. All temporary nondominated solutions in offspring are found first using the pairwise
comparison, which takes O(Nsol

2) as the number of offspring in Nsol. The temporary
nondominated solutions obtained in the previous generations are then compared with the
new temporary nondominated solutions found in the current generation. The number of
both sets of temporary nondominated solutions are at most Nsol, i.e., the time complexity is
O(Nsol log(Nsol)) based on the merge sort.

Hence, the time complexity is O(Nsol log(Nsol)) + O(Nsol
2) = O(Nsol

2), which is only
one quarter of the pairwise comparison.

5.6. Proposed tSSO

The procedure of the proposed tSSO, which has nine different parameter settings,
denoted as tSSO0, tSSO1, tSSO2, tSSO3, tSSO4, tSSO5, tSSO6, tSSO7, and tSSO8, has a
detailed introduction in Section 6, based on the solution structure, update mechanism,
hybrid elite selection, and group comparison discussed in this section, which are presented
in pseudo code as follows.

PROCEDURE tSSO

STEP 0. Create initial population Xi randomly for i = 1, 2, . . . , Nsol and let t = 2.
STEP 1. Let πt be all temporary nondominated solutions in S* = {Xk | for k = 1, 2, . . . ,

2Nsol} and XNsol+k is updated from Xk based on Equation (8) for k = 1, 2, . . . , Nsol.
STEP 2. If Nsol ≤ |πt|, let S = {top Nsol solutions in πt based on crowding distances} and

go to STEP 4.

Appl. Sci. 2023, 13, 2077 9 of 23

STEP 3. Let S = πt ∪ {Nsol − |πt| solutions selected randomly from S* − πt}.
STEP 4. Re-index these solutions in S such that S = {Xk|for k = 1, 2, . . . , Nsol}.
STEP 5. If t < Ngen, then let t = t + 1 and go back to STEP 1. Otherwise, halt.

6. Simulation Results and Discussion

For fair comparison with MOSSO [17], which was the previous work of the extended
topic, the numerous experiments of the parameter-setting procedure sof the three different-
sized benchmark problems used in [17] were carried out using tSSO. The experimental re-
sults obtained by the proposed tSSO were compared with those obtained using MOSSO [17],
which were acquired using MOPSO [13] and NSGA-II [19,20].

6.1. Parameter-Settings

All machine learning algorithms have parameters in their update procedures and/or
the selection procedure. Thus, there is a need to tune parameters for better results. To
determine the best parameters of the proposed tSSO, three different levels of the two factors
of cp and cw, the low value of 0.1, the middle value of 0.3, and the high value of 0.5, have
been combined, e.g., nine different parameter settings denoted as tSSO0, tSSO1, tSSO2,
tSSO3, tSSO4, tSSO5, tSSO6, tSSO7, and tSSO8, as shown in Table 2.

Table 2. Nine different parameter setting of the proposed tSSO.

ID tSSO0 tSSO1 tSSO2 tSSO3 tSSO4 tSSO5 tSSO6 tSSO7 tSSO8

Cp 0.1 0.1 0.1 0.3 0.3 0.3 0.5 0.5 0.5
Cw 0.2 0.4 0.6 0.4 0.6 0.8 0.6 0.8 1.0

Note that Cp = cp and Cw = cp + cw. The following provided the parameter settings for
the other algorithms:

NSGA-II: ccrossover = 0.7, cmutation = 0.3
MOPSO: w = 0.871111, c1 = 1.496180, c2 = 1.496180 [17]
MOSSO: Cg = 0.1 + 0.3t/Ngen, Cp = 0.3 + 0.4t/Ngen, Cw = 0.4 + 0.5t/Ngen, where t is

the current generation number [17].

6.2. Experimental Environments

To demonstrate the performance of the proposed tSSO and select the best parameter
settings, tSSOs with nine parameter settings were utilized for three job scheduling bench-
marks [17], namely (Njob, Ncpu) = (20, 5), (50, 10), and (100, 20), and the deadlines were all
set as 30 for each test [17].

The following lists the special characteristics of the processor speeds (in MIPs), the
energy consumptions (in KW/per unit time), and the job sizes (in MI) in these three
benchmark problems [17]:

1. Each processor speed is generated between 1000 and 10,000 (MIPs) randomly, and the
largest speed is ten times the smallest one.

2. The power consumptions grow polynomial as the speed of processors grow, and the
value range is between 0.3 and 30 (KW) per unit time.

3. The values of job sizes are between 5000 and 15,000 (MIs).

Alongside the proposed tSSO with nine parameter settings, there are three other multi-
objective algorithms; MOPSO [13,17], MOSSO [17], and NSGA-II [19,20] were tested and
compared to further validate the superiority of the proposed tSSO. NSGA-II [19,20] is the
current best multi-objective algorithm and is based on genetic algorithms, while MOPSO is
based on particle swarm optimization [13], and MOSSO on SSO [17].

The proposed tSSO with its nine parameter settings and NSGA-II have no iterative
local search to improve the solution quality. To ensure a fair comparison, the iterative local
search is removed from both MOPSO and MOSSO. All algorithms were coded in DEV

Appl. Sci. 2023, 13, 2077 10 of 23

C++ on a 64-bit Windows 10 PC, implemented on an Intel Core i7-6650U CPU @ 2.20 GHz
notebook with 16 GB of memory.

In addition, for a fair comparison between all algorithms, Nsol = Nnon = 50, Ngen = 1000,
and Nrun = 500, i.e., the same solution number, generation number, size of external reposi-
tory, and run number for each benchmark problem were used. Furthermore, the calculation
number of the fitness function of all algorithms was limited to Nsol × Ngen = 50,000,
100,000, and 150,000 in each run for the small-size, medium-size, and large-size benchmarks,
respectively.

Note that the reason for the large value of Nrun is to simulate the Pareto front, and the
details are discussed in Section 6.3.

6.3. Performance Metrics

The convergence metrics and diversity metrics are always both used to evaluate
the performances of the multi-objective algorithms in the solution quality. Among these
metrics, the general distance (GD), introduced by Van Veldhuizen et al. [53], and spacing
(SP), introduced by Schott [54], are two general indexes for the convergence metrics and
diversity metrics, respectively. Let di be the shortest Euclidean distance between the ith
temporary nondominated solution and the Pareto front, and d be the average sum of all di
for all i. The GD and SP are defined below:

GD =

√
Nsol
∑

i=1
di

2

Nsol
, (9)

SP = .

√√√√√Nsol
∑

i=1
(d− di)

2

Nsol − 1
. (10)

The GD is the average of the sum of the squares of di, and the SP is very similar to
the standard deviation in probability theory and statistics. If all temporary nondominated
solutions are real nondominated solutions, we have GD = 0. The solutions are equality far
from d, we have SP = 0. Hence, in general, the smaller the SP is, the higher the diversity of
solutions along the Pareto front and the better the solution quality becomes [13,17,19,46,47].

The Pareto front is needed for both the GD and SP in calculating from their formu-
las [43,44]. Unfortunately, it requires infinite nondominated solutions to form the Pareto
front, and this is impossible to accomplish, even with exhaustive methods for the job
scheduling problem of cloud computing, which is an NP-hard problem that has no guar-
antee of having the ability to obtain the global optimal solution under the complexity
of polynomial time, and the traditional algorithms are intractable, resulting to a special
optimization algorithm having to be used to reduce the system search complexity and
improve the overall search quality [12,15–17]. Rather than a real Pareto front, a simulated
Pareto front is implemented by collecting all temporary nondominated solutions in the final
generation from all different algorithm with different values of Nsol for the same problem.

There are 12 algorithms with three different Nsol = 50, 100, and 150 for Nrun = 500, i.e.,
12 × 500 × (50 + 100 + 150) = 1,800,000 solutions obtained at the end for each test problem.
All temporary nondominated solutions are found from these 1,800,000 final solutions to
create a simulated Pareto front to calculate the GD and SP.

6.4. Numerical Results

All numerical results attained in the experiments are listed in this section. Tables 3–5
list the averages and standard deviations of the obtained number of temporary nondom-
inated solutions (denoted by Nn), the obtained number of nondominated solutions in
the Pareto front (denoted by Np), the converge metric GD, and the diversity metric SP,
the required run time, the energy consumption values, and the makspan values for three

Appl. Sci. 2023, 13, 2077 11 of 23

different-sized benchmark problems with Nsol = 50, 100, and 150, respectively. In these
tables, the best of all the algorithms is indicated in bold, and the proposed BSSO with its
nine parameter settings are denoted as BSSO0–8, respectively, in Tables 3–5.

From Tables 3–5, we can make the following general observations:

1. The lower the cr value, the better the performance. In the small-size problem, the
proposed tSSO7 with cp = 0.5 and cw = 0.3 is the best among all 12 algorithms. However,
the proposed tSSO8 with cp = 0.5 and cw = 0.5 is the best one for the medium- and
large-size problems. The reason for this is that the number of real nondominated
solutions is infinite. Even though in the update mechanism of the proposed tSSO
when cr = 0 there is only an exchange of information between the current solution itself
and one of selected temporary nondominated solutions, it is already able to update
the current solution to a better solution without needing any random movement.

2. The larger the size of the problem, e.g., Njob, the fewer the number of obtained
nondominated solutions, e.g., Nn and Np. There are two reasons why this is the
case: (1) due to the characteristic of the NP-hard problems, i.e., the larger the size
of the NP-hard problem, the more difficult it is to solve; (2) it is more difficult to
find nondominated solutions for larger problems with the same deadline of 30 for all
problems.

3. The larger the Nsol, the more likely it is to find more nondominated solutions, i.e., the
larger Nn and Np for the best algorithm among these algorithms no matter the size
of the problem. Hence, it is an effective method to have a larger value of Nsol if we
intend to find more nondominated solutions.

4. The smaller the Njob, the fewer the number of obtained nondominated solutions,
e.g., There are two reasons for the above: (1) due to the characteristic of the NP-hard
problems, i.e., the larger the size of the NP-hard problem, the more difficult it is to
solve; (2) it is more difficult to find nondominated solutions for larger problems with
the same deadline, which is set 30 for all problems.

5. The smaller the value of Np, the shorter the run time. The most time-consuming aspect
of finding nondominated solutions is filtering out these nondominated solutions from
current solutions. Hence, a new method, called the group comparison, is proposed
in this study to find these nondominated solutions from current solutions. However,
even the proposed group comparison is more efficient than the traditional pairwise
comparison on average, but it still needs O(Np

2) to achieve the goal.
6. There is no special pattern in solution qualities, e.g., the value of GD, SP, Nn, and Np,

from the final average values of the energy consumption and the makspan.
7. The one with the better number of obtained nondominated solutions also has better

DP and SP values.
8. The MOPSO [13] and the original MOSSO [17] share one common factor: each solution

must inherit and update based on its predecessor (parent) and its pBest, and this is
the main reason that it is less likely to find new nondominated solutions. The above
observation is coincident to that observed in item 1. Hence, the proposed tSSO and
the NSGA-II [19,20] are much better than MOSSO [17] and MOPSO [13] in solution
quality.

In general, the proposed tSSO without cr has a more satisfying performance in all
aspect of measures.

Appl. Sci. 2023, 13, 2077 12 of 23

Table 3. Result for small-size problem.

Nsol Alg Avg (Nn) Std (Nn) Avg (Np) Std (Np) Avg (GD) Std (GD) Avg (SP) Std (SP) Avg (T) Std (T) Avg (F1) Std (F1) Avg (F2) Std (F2)

50 tSSO0 48.34 2.22 0.012 0.109 0.565 0.611 3.527 4.343 2.8954 0.5839 11,937.28 261.3206 2539.957 4798.1386
tSSO1 49.634 0.904 0.018 0.133 0.26 0.25 1.475 1.781 3.4103 0.6708 11,689.93 272.5046 1015.790 1926.8740
tSSO2 49.966 0.202 0.058 0.234 0.138 0.059 0.722 0.445 4.1789 0.6901 11,185.89 273.4064 838.2936 632.7848
tSSO3 49.494 1.165 0.012 0.109 0.311 0.349 1.819 2.495 3.2951 0.6579 11,766.60 269.7630 1208.2600 2270.2913
tSSO4 49.936 0.276 0.034 0.202 0.17 0.073 0.915 0.547 3.9837 0.6919 11,317.03 289.0288 779.7255 448.9989
tSSO5 50 0 0.284 0.544 0.118 0.065 0.71 0.478 4.7604 0.7535 10,603.56 229.7030 938.6334 22.5991
tSSO6 49.968 0.208 0.054 0.235 0.153 0.101 0.821 0.734 4.2185 0.6928 11,230.14 290.7808 817.7619 631.6859
tSSO7 50 0 0.218 0.464 0.121 0.064 0.722 0.475 4.86 0.7531 10,561.73 236.0619 936.6982 24.2198
tSSO8 49.7 0.766 0.188 0.457 0.153 0.103 0.776 0.598 4.4077 0.8044 10,088.10 550.3918 1010.433 888.7098

MOPSO 9.274 2.026 0 0 2.947 0.908 17.366 6.314 3.1238 0.5445 12,176.37 230.151 29,378.78 16,620.2163
MOSSO 1.23 0.508 0 0 9.914 0.122 8.417 4.978 1.2282 0.187 9833.03 24.8444 488,648.8 10,786.0609
NSGA-II 17.22 3.216 0 0 2.213 1.27 13.107 8.676 0.0102 0.0202 11,963.00 487.9212 19,913.23 20,625.1095

100 tSSO0 61.856 5.503 0.024 0.153 1.996 0.502 18.548 4.721 10.3052 1.4032 24,162.67 365.2535 48,016.98 20,979.7233
tSSO1 71.016 5.808 0.05 0.227 1.284 0.506 12.06 4.968 10.2902 1.3693 23,633.28 438.6975 24,077.66 15,460.6944
tSSO2 95.07 4.779 0.184 0.463 0.289 0.306 2.712 3.064 11.282 1.6767 22,010.09 475.5156 4596.549 5938.6783
tSSO3 71.316 5.619 0.064 0.253 1.347 0.508 12.678 4.946 10.5688 1.3536 23,621.20 426.826 26,436.17 16,447.3743
tSSO4 88.894 6.061 0.116 0.362 0.537 0.387 5.102 3.839 10.8808 1.4016 22,401.50 480.8059 8531.313 8913.8709
tSSO5 99.98 0.165 0.668 0.824 0.061 0.037 0.514 0.382 21.7762 2.6418 19,982.09 420.3826 1891.765 452.4866
tSSO6 98.638 2.135 0.278 0.549 0.137 0.174 1.212 1.755 13.335 2.399 21,646.20 473.8394 2588.289 3570.9857
tSSO7 99.996 0.088 0.714 0.849 0.062 0.035 0.521 0.369 23.0932 2.6965 19,860.81 428.8591 1879.873 57.8411
tSSO8 99.89 0.546 1.354 1.173 0.059 0.04 0.497 0.401 26.0226 4.3313 19,086.17 614.0985 2056.674 772.1143

MOPSO 12.042 2.554 0 0 2.113 0.454 17.758 4.29 12.0856 1.6538 24,347.86 307.4949 57,505.36 23,415.3032
MOSSO 1.58 0.699 0 0 7.01 0.055 9.271 3.117 4.7402 0.4797 19,666.68 33.48 977,197.9 13,878.8233
NSGA-II 21.096 3.25 0 0 2.25 0.777 19.435 7.076 0.0392 0.0489 24,289.14 713.0953 65,231.95 40,247.3188

150 tSSO0 67.96 5.77 0.036 0.197 1.97 0.343 21.901 3.817 23.0904 3.509 36,497.8 446.2135 99,073.14 31,223.9014
tSSO1 76.334 6.347 0.078 0.276 1.552 0.349 17.458 4.014 22.8375 3.3043 35,809.46 542.9496 69,700.06 27,524.2792
tSSO2 102.624 7.73 0.22 0.473 0.929 0.312 10.699 3.723 23.8908 3.3867 33,666.71 657.8649 36,715.2 20,668.0023
tSSO3 79.2 5.726 0.098 0.304 1.465 0.327 16.518 3.814 23.6139 3.4082 35,679.86 536.1647 64,560.6 24,571.6138
tSSO4 98.296 6.9 0.166 0.413 0.932 0.276 10.655 3.313 24.0771 3.3979 33,969.23 669.9933 36,254.89 18,845.1508
tSSO5 149.92 0.427 1.362 1.177 0.042 0.028 0.441 0.361 43.0185 7.8536 29,176.09 593.4306 2833.142 627.5616
tSSO6 122.092 7.632 0.408 0.631 0.591 0.254 6.907 3.087 25.971 3.4265 32,432.3 657.7752 20,747.74 14,131.2079
tSSO7 149.954 0.277 1.47 1.151 0.04 0.028 0.414 0.356 51.0654 7.7838 28,979.39 598.0727 2870.726 638.1370
tSSO8 149.904 0.602 3.548 2.013 0.036 0.028 0.39 0.347 74.6991 13.5849 27,451.57 612.008 3233.779 995.0084

MOPSO 13.692 2.496 0 0 1.744 0.289 18.011 3.32 26.7054 4.1966 36,486.46 388.5253 87,266.1 26,859.1298
MOSSO 1.986 0.921 0 0 5.724 0.038 9.331 2.551 10.4472 1.2398 29,494.15 43.4111 1,466,864 18,034.0917
NSGA-II 23.45 3.732 0 0 2.109 0.579 22.251 6.213 0.0855 0.0743 36,643.47 992.1199 120,913.5 60,590.6631

Appl. Sci. 2023, 13, 2077 13 of 23

Table 4. Result for medium-size problem.

Nsol Alg Avg (Nn) Std (Nn) Avg (Np) Std (Np) Avg (GD) Std (GD) Avg (SP) Std (SP) Avg (T) Std (T) Avg (F1) Std (F1) Avg (F2) Std (F2)

50 tSSO0 24.472 4.177 0 0 20.001 2.216 109.497 7.657 4.5751 0.7871 32,537.48 456.8619 196,678.1 37,821.6436
tSSO1 25.954 4.105 0 0 18.074 2.375 103.29 9.431 4.403 0.7533 32,405.09 566.3836 167,400.6 37,900.9380
tSSO2 29.672 4.648 0 0 14.629 2.778 89.001 13.521 4.3079 0.7238 32,177.28 716.8466 120,611.9 39,137.8242
tSSO3 26.74 4.27 0 0 17.701 2.308 102.104 9.346 4.5363 0.765 32,413.09 581.7217 161,630.7 37,035.2625
tSSO4 29.87 4.493 0 0 14.258 2.518 87.075 12.468 4.397 0.7395 32,032.87 750.0289 118,041.1 36,646.8146
tSSO5 35.19 5.142 0.006 0.077 9.059 2.676 58.733 16.013 4.0844 0.6768 31,237.8 919.8058 65,527.05 32,220.9459
tSSO6 32.81 4.649 0 0 12.138 2.64 76.712 14.884 4.417 0.748 32,117.32 801.4451 90,607.97 32,073.7435
tSSO7 36.364 4.946 0.002 0.045 8.258 2.656 54.108 16.584 4.2589 0.7155 31,191.78 946.228 56,523.23 28,417.2914
tSSO8 44.082 4.463 0.064 0.303 0.976 1.184 6.054 8.46 4.0538 0.6846 28,331.11 1073.477 5418.824 8430.7514

MOPSO 5.278 1.58 0 0 18.821 1.434 85.456 4.305 6.7045 1.1244 31,253.08 456.2674 286,050.1 35,533.4621
MOSSO 1 0 0 0 20.393 0.106 5.148 3.944 2.6425 0.3924 28,024.24 44.3314 499,880.3 1086.7815
NSGA-II 8.528 2.42 0 0 23.357 3.072 109.155 10.135 0.013 0.022 32,648.83 926.4653 272,009.9 62,082.4709

100 tSSO0 27.056 4.507 0 0 16.977 0.907 113.305 3.756 17.8248 2.9748 65,051.87 667.284 558,643.9 50,252.7832
tSSO1 28.476 4.388 0 0 15.963 1.018 111.674 4.176 17.1294 2.739 64,873.31 824.3303 509,758.2 53,979.6751
tSSO2 31.5 5.173 0 0 14.406 1.139 107.424 5.392 16.6702 2.6083 64,582.33 1120.178 438,233.4 60,357.1999
tSSO3 30.116 4.689 0 0 15.331 0.948 110.571 4.615 17.569 2.8203 64,877.63 892.6177 478,286.6 49,968.1420
tSSO4 32.442 4.55 0 0 13.563 1.04 104.043 5.577 16.9932 2.6475 64,347.25 1159.757 402,642.2 55,190.6790
tSSO5 37.524 5.4 0 0 10.642 1.067 87.882 6.868 15.7426 2.3916 62,982.56 1581.812 302,505.7 58,114.0986
tSSO6 37.188 4.95 0.002 0.045 11.909 1.066 96.473 6.802 17.1704 2.702 64,295.33 1245.893 334,714.5 50,535.6466
tSSO7 40.262 5.529 0.002 0.045 9.49 1.126 80.679 8.005 16.5428 2.4717 62,883.59 1635.266 260,267.7 55,235.1007
tSSO8 57.302 6.849 0.152 0.435 2.329 0.992 21.916 9.291 15.8048 2.3262 55,830.02 2048.334 57,761.36 42,030.1210

MOPSO 6.848 1.843 0 0 13.321 0.697 85.525 3.172 25.8886 3.993 62,458.84 631.2151 573,135.1 48,380.8306
MOSSO 1 0 0 0 14.418 0.054 5.869 2.966 10.1184 1.161 56,046.99 62.3825 999,720.8 1646.6140
NSGA-II 10.444 2.663 0 0 17.906 1.378 109.495 7.892 0.0476 0.05 65,316.82 1320.111 621,792.5 85,797.1254

150 tSSO0 29.234 4.409 0 0 14.51 0.548 111.228 3.186 39.0909 5.8462 97,500.52 813.8773 924,285.2 56,397.7725
tSSO1 30.044 4.752 0.004 0.063 13.987 0.624 111.209 3.446 37.5183 5.4441 97,367.75 1050.166 873,603.5 62,586.7269
tSSO2 32.602 4.976 0 0 12.975 0.721 109.937 3.887 36.3396 5.1288 97,031.77 1314.433 781,236.9 72,066.7149
tSSO3 32.566 4.636 0 0 13.238 0.588 110.849 3.482 38.4948 5.5112 97,373.33 1186.611 801,509.8 59,333.8052
tSSO4 34.552 4.915 0 0 12.02 0.672 106.822 4.391 37.3443 5.448 96,646.12 1497.259 702,948.2 67,389.4702
tSSO5 38.842 5.225 0 0 9.865 0.657 94.662 5.112 34.557 4.8437 94,766.85 2117.23 561,339.4 76,923.5292
tSSO6 39.38 4.876 0.002 0.045 10.63 0.684 100.761 5.231 37.7004 5.5096 96,480.24 1760.161 593,359.7 66,298.1134
tSSO7 43.326 5.156 0.002 0.045 8.652 0.66 86.662 5.569 36.3051 5.1832 94,508.79 2363.881 476,971 77,652.8961
tSSO8 62.466 7.329 0.336 0.713 2.584 0.702 29.27 7.644 34.4403 4.8116 83,208.2 2666.568 142,370.8 69,677.5283

MOPSO 7.816 1.896 0 0 10.879 0.497 85.598 2.492 56.5194 8.1362 93,759.12 788.4589 857,348.1 63,773.8475
MOSSO 1 0 0 0 11.777 0.036 5.749 2.406 22.2228 2.7068 84,077.84 77.1704 1,499,801 1397.3776
NSGA-II 11.27 2.609 0 0 15.074 0.927 107.625 7.159 0.1059 0.0684 97,772.24 1688.187 994,780.5 101,431.9720

Appl. Sci. 2023, 13, 2077 14 of 23

Table 5. Result for large-size problem.

Nsol Alg Avg (Nn) Std (Nn) Avg (Np) Std (Np) Avg (GD) Std (GD) Avg (SP) Std (SP) Avg (T) Std (T) Avg (F1) Std (F1) Avg (F2) Std (F2)

50 tSSO0 27.174 4.155 0 0 748.62 96.656 4480.39 365.757 8.4167 1.5329 98,628.83 771.7182 143,665.5 35,722.9236
tSSO1 29.798 4.686 0 0 639.303 109.316 4019.28 526.113 8.0533 1.343 98,279.76 960.7157 106,329.4 34,186.9693
tSSO2 34.79 5.074 0 0 478.211 136.159 3161.886 809.014 7.7758 1.2132 97,705.9 1259.995 62,884.07 30,649.8855
tSSO3 30.616 4.385 0 0 633.698 108.007 3994.477 524.318 8.218 1.3142 98,354.38 893.9128 104,469.4 33,485.2153
tSSO4 34.058 4.867 0 0 484.791 118.408 3210.835 695.26 7.9161 1.2229 97,382.84 1207.66 63,353.57 27,636.0545
tSSO5 42.104 5.073 0 0 237.875 158.78 1641.271 1075.713 7.293 1.092 95,492.67 1530.155 21,440.25 19,011.2797
tSSO6 37.198 4.822 0 0 408.566 128.757 2754.903 808.218 7.904 1.2089 97,480.85 1267.524 46,923.7 24,637.2246
tSSO7 42.934 4.724 0.002 0.045 205.495 154.737 1424.205 1060.277 7.6309 1.108 95,610.53 1573.731 17,520.32 16,311.2192
tSSO8 45.918 2.998 0.006 0.1 6.73 36.201 45.981 255.548 6.8534 1.0066 89,370.73 2219.432 1315.029 2029.9054

MOPSO 6.328 1.726 0 0 904.797 76.097 4909.066 144.96 12.4131 1.93 97,663.75 709.6203 207,628.7 34,209.3182
MOSSO 4.948 1.556 0 0 1152.116 58.678 4687.853 261.903 4.7327 0.6193 98,649.82 634.5005 334,246.6 33,687.3944
NSGA-II 10.368 2.799 0 0 856.652 145.453 4711.009 392.009 0.0201 0.0245 98,891.73 1471.68 190,118.4 61,317.1989

100 tSSO0 30.448 4.494 0 0 657.704 35.537 4947.358 69.806 33.2646 5.1487 197,248.5 1061.073 436,547.4 46,564.5095
tSSO1 32.06 4.894 0 0 613.194 42.945 4832.571 135.141 31.8998 4.8814 196,881.6 1430.933 380,499.4 52,806.8613
tSSO2 36.274 5.131 0 0 539.157 47.963 4531.276 241.08 30.8796 4.6327 196,021.5 1827.626 295,533.3 51,535.3657
tSSO3 34.158 4.699 0 0 586.502 42.738 4742.246 167.804 32.6676 4.963 196,844.5 1456.553 348,421.8 49,963.8885
tSSO4 37.156 5.092 0 0 511.663 48.763 4388.164 277.232 31.3592 4.5905 195,426.1 2058.278 266,699.6 49,262.8425
tSSO5 44.196 5.801 0 0 400.691 56.641 3663.083 419.515 28.8562 4.0773 192,100.9 2664.295 166,154.7 45,483.4355
tSSO6 41.918 5.683 0 0 453.726 49.978 4037.566 329.065 31.453 4.5322 195,306.7 2181.89 210,798.2 45,526.3109
tSSO7 47.33 5.836 0 0 363.759 57.152 3381.729 449.962 30.127 4.1393 191,714.3 2919.089 137,930.9 41,874.8504
tSSO8 72.528 7.324 0.116 0.468 38.469 58.147 382.143 578.595 27.616 3.7534 176,917.2 4417.363 6889.327 8665.4426

MOPSO 7.948 2.065 0 0 641.551 38.106 4910.514 90.919 49.2814 7.0987 195,334.2 995.1512 416,075.8 48,864.6986
MOSSO 6.508 1.72 0 0 813.33 28.137 4705.793 166.873 19.1044 2.2699 197,323 843.5352 665,380.8 45,753.2918
NSGA-II 12.482 2.856 0 0 686.503 64.443 4926.057 119.871 0.0794 0.041 197,624.3 2143.287 478,296.4 87,822.5684

150 tSSO0 31.892 4.499 0 0 571.334 23.553 4986.075 23.806 74.9205 11.0373 295,934.7 1364.945 739,913.7 60,689.2869
tSSO1 33.948 4.799 0 0 541.511 25.246 4952.636 54.778 71.7156 10.4578 295,532.6 1663.517 665,347.3 61,362.5540
tSSO2 37.058 5.306 0 0 497.394 31.575 4816.909 128.206 69.2553 9.7601 294,401.4 2369.671 562,929.2 70,555.4639
tSSO3 36.176 5.035 0 0 515.033 26.975 4884.23 88.475 73.4922 10.7752 295,225.5 1901.874 602,559.3 62,546.5565
tSSO4 38.654 5.274 0 0 461.168 33.508 4648.141 179.439 70.7016 10.1622 293,575.6 2662.045 485,020.5 69,694.8734
tSSO5 46.074 6.107 0.002 0.045 375.99 38.045 4077.306 301.451 65.0655 9.094 289,048.3 3537.873 325,141.9 64,553.0441
tSSO6 44.548 5.498 0 0 407.532 32.447 4317.863 231.212 70.9386 10.2171 292,870.2 2835.374 379,900.7 59,375.2787
tSSO7 49.592 5.643 0.004 0.063 339.382 35.921 3774.411 317.912 68.0226 9.4273 288,517.2 3575.387 265,771.2 54,642.6111
tSSO8 77.03 7.705 0.362 1.141 75.415 53.721 915.721 647.916 62.04 8.258 263,672.3 6382.976 22,508.07 20,508.0012

MOPSO 8.758 2.175 0 0 522.934 26.468 4906.145 78.318 110.3736 14.8236 293,040.9 1222.526 621,413.8 62,184.5910
MOSSO 7.398 2.044 0 0 666.568 18.525 4689.758 137.576 43.2861 4.9709 295,948.8 1105.613 1,005,113 55,590.2798
NSGA-II 13.36 3.007 0 0 590.492 41.685 4939.701 88.364 0.18 0.0623 296,189.8 2758.174 792,818.2 110,125.8133

Appl. Sci. 2023, 13, 2077 15 of 23

In addition, the histogram graphs for the average and standard deviations of the
results of two-objective values, i.e., the energy consumption values and the makspan values,
for three different-sized benchmark problems by the proposed tSSO and the compared
MOPSO, MOSSO, and NSGA-II algorithms are further drawn, as shown in the following
Figures 1–12, in order to obtain more results and discussion to validate the performance of
the proposed model and to have a comparison at a glance. The best results among tSSO0 to
tSSO8 are taken as the solution of tSSO and plotted in Figures 1–12.

Figure 1. Average of the energy consumption for small-size benchmark.

Figure 2. Std of the energy consumption for small-size benchmark.

Appl. Sci. 2023, 13, 2077 16 of 23

Figure 3. Average of the makspan for small-size benchmark.

Figure 4. Std of the makspan for small-size benchmark.

Figure 5. Average of the energy consumption for medium-size benchmark.

Appl. Sci. 2023, 13, 2077 17 of 23

Figure 6. Std of the energy consumption for medium-size benchmark.

Figure 7. Average of the makspan for medium-size benchmark.

Figure 8. Std of the makspan for medium-size benchmark.

Appl. Sci. 2023, 13, 2077 18 of 23

Figure 9. Average of the energy consumption for large-size benchmark.

Figure 10. Std of the energy consumption for large-size benchmark.

Figure 11. Average of the makspan for large-size benchmark.

Appl. Sci. 2023, 13, 2077 19 of 23

Figure 12. Std of the makspan for large-size benchmark.

On average, the average of the energy consumption for the small-size benchmark
obtained by the proposed tSSO is better than those obtained by the compared algorithms,
including MOPSO, MOSSO, and NSGA-II, though it is slightly worse than the performance
of MOSSO when Nsol equals 50, as shown in Figure 1.

The standard deviation of the energy consumption for the small-size benchmark
obtained by the MOSSO is the best, as shown in Figure 2.

The average of the makspan for the small-size benchmark obtained by the proposed
tSSO is the best and is superior to MOSSO, as shown in Figure 3.

The standard deviation of the makspan for the small-size benchmark obtained by the
proposed tSSO is the best and is superior to the compared algorithms, including MOPSO,
MOSSO, and NSGA-II, as shown in Figure 4.

On average, the average of the energy consumption for the medium-size benchmark
obtained by the proposed tSSO is better than those obtained by the compared algorithms,
including MOPSO, MOSSO, and NSGA-II, though it is slightly worse than the performance
of MOSSO when Nsol equals 50, as shown in Figure 5.

The standard deviation of the energy consumption for the medium-size benchmark
obtained by the MOSSO is the best, as shown in Figure 6.

The average of the makspan for the medium-size benchmark obtained by the proposed
tSSO is the best and is superior to the compared algorithms, including MOPSO, MOSSO,
and NSGA-II, as shown in Figure 7.

The standard deviation of the makspan for the medium-size benchmark obtained by
the MOSSO is the best and is superior to the compared algorithms, including the proposed
tSSO, MOPSO, and NSGA-II, as shown in Figure 8.

The average of the energy consumption for the large-size benchmark obtained by
the proposed tSSO is better than those obtained by the compared algorithms, including
MOPSO, MOSSO, and NSGA-II, as shown in Figure 9.

The standard deviation of the energy consumption for the large-size benchmark
obtained by the MOSSO is the best, as shown in Figure 10.

The average of the makspan for the large-size benchmark obtained by the proposed
tSSO is the best and is superior to the compared algorithms, including MOPSO, MOSSO,
and NSGA-II, as shown in Figure 11.

The standard deviation of the makspan for the large-size benchmark obtained by the
proposed tSSO is the best and is superior to the compared algorithms, including MOPSO,
MOSSO, and NSGA-II, as shown in Figure 12.

Appl. Sci. 2023, 13, 2077 20 of 23

Overall, the performance of the proposed tSSO outperforms the compared algorithms,
including MOPSO, MOSSO, and NSGA-II in all aspects of measures.

7. Conclusions

This study sheds light on a nascent two-objective time-constrained job scheduling
problem focusing on energy consumption and service quality in terms of the makspan
to find non-dominated solutions for the purpose of ameliorating the service quality and
addressing the environmental issues of cloud computing services. In response to this two-
objective problem, we proposed a new two-objective simplified swarm optimization (tSSO)
algorithm to revise and improve the errors in the previous MOSSO algorithm [17], which, in
the multi-objective problem, ignores the fact that the number of temporary nondominated
solutions is not always only one, and some temporary nondominated solutions may not be
temporary nondominated solutions in the next generation, based on SSO to deliver the job
scheduling in cloud computing.

To ensure better solution quality, the tSSO algorithm integrates the crowding distance,
a hybrid elite selection, and a new stepwise update mechanism, i.e., the proposed tSSO is
a population-based, all-variable update, and stepwise function-based method. From the
experiments conducted on three different-sized problems [17], regardless of the parameter
setting, each of the proposed tSSOs outperformed the MOPSO [13], MOSSO [17], and
NSGA-II [19,20], in convergency, diversity, the number of obtained temporary nondomi-
nated solutions, and the number of obtained real nondominated solutions. Among nine
different parameter settings, we concluded that the tSSO algorithm with cp = cw = 0.5 is the
best one. The results prove that the proposed tSSO can successfully achieve the aim of this
work.

In order for the readers to understand the real-life cloud problems, the assumptions
in Section 3.2 are simplified. Hence, future work will relax the assumptions to further
meet and solve real-life cloud problems. In addition, a sequel work that considers real-life
assumptions with changes in the algorithms is needed in the near future.

Moreover, in future works, the proposed model will be tested with more data from
different domains, and the results will be compared with recently published studies from
top journals and conferences.

Author Contributions: Conceptualization, W.-C.Y., W.Z., Y.Y. and C.-L.H.; methodology, W.-C.Y.,
W.Z., Y.Y. and C.-L.H.; software, W.-C.Y., W.Z., Y.Y. and C.-L.H.; validation, W.-C.Y.; formal analysis,
W.-C.Y., W.Z. and Y.Y.; investigation, W.-C.Y., W.Z. and Y.Y.; resources, W.-C.Y., W.Z., Y.Y. and C.-L.H.;
data curation, W.-C.Y., W.Z., Y.Y. and C.-L.H.; writing—original draft preparation, W.-C.Y., W.Z.,
Y.Y. and C.-L.H.; writing—review and editing, W.-C.Y. and W.Z.; visualization, W.-C.Y. and W.Z.;
supervision, W.-C.Y.; project administration, W.-C.Y. and W.Z.; funding acquisition, W.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the National Natural Science Foundation of China
(Grant No. 621060482), Research and Development Projects in Key Areas of Guangdong Province
(Grant No. 2021B0101410002), and the National Science and Technology Council, R.O.C. (MOST
107-2221-E-007-072-MY3, MOST 110-2221-E-007-107-MY3, MOST 109-2221-E-424-002 and MOST
110-2511-H-130-002).

Acknowledgments: We wish to thank the anonymous editor and the referees for their constructive
comments and recommendations, which significantly improved this paper. This article was once
submitted to arXiv as a temporary submission that was only for reference and did not provide the
copyright.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2023, 13, 2077 21 of 23

Notations
The following notations are used:

|•| number of elements in •
Nvar number of jobs used in the test problem
Ncpu number of processors contained in the given data center
Nrun number of runs for the algorithms
Ngen number of generations in each run
Nsol number of solutions in each generation
Nnon number of selected temporary nondominated solutions
Xi ith solution
xi,j jth variable in Xi
Pi the best solution among all solutions updated based on Xi in SSO
pi,j jth variable in Pi
gBest index of the best solution among all solutions in SSO, i.e., F(PgBest) is better than or

equal to F(Pi) for i = 1, 2, . . . , Nsol
ρI random number generated uniformly within interval I
cg, cp, cw, cr positive parameters used in SSO with cg + cp + cw + cr = 1
Cg, Cp, Cw Cg = cg, Cp = Cg + cp, and Cw = Cp + cw
Fl(•) lth fitness function value of solution •
Max(•) maximal value of •, i.e., Max(Fl) is the maximal value of the lth objective function
Min(•) minimal value of •, i.e., Min(Fl) is the minimal value of the lth objective function
St set of selected solutions from Πt to generate new solutions in the (t + 1)th generation.

Note that S1 = Π1 and |St| = Nsol for i = 1, 2, . . . , Ngen
sizei size of the job i for i = 1, 2, . . . , Nvar
starti start time of the job i for i = 1, 2, . . . , Nvar
speedj execution speed of the processor j for j = 1, 2, . . . , Ncpu

ej energy consumption per unit time of the processor j for j = 1, 2, . . . , Ncpu

Tub deadline constraint of job scheduling

ti,j processing time ti,j where ti,j =

{
sizei/speedj if task i is processed on processor j

0 otherwise
for i = 1, 2, . . . , Nvar and j = 1, 2, . . . , Ncpu

References
1. Wang, F.; Xu, J.; Cui, S. Optimal Energy Allocation and Task Offloading Policy for Wireless Powered Mobile Edge Computing

Systems. IEEE Trans. Wirel. Commun. 2020, 19, 2443–2459. [CrossRef]
2. Wei, S.C.; Yeh, W.C. Resource allocation decision model for dependable and cost-effective grid applications based on Grid Bank.

Future Gener. Comput. Syst. 2017, 77, 12–28. [CrossRef]
3. Yeh, W.C.; Wei, S.C. Economic-based resource allocation for reliable Grid-computing service based on Grid Bank. Future Gener.

Comput. Syst. 2012, 28, 989–1002. [CrossRef]
4. Manikandan, N.; Gobalakrishnan, N.; Pradeep, K. Bee optimization based random double adaptive whale optimization model

for task scheduling in cloud computing environment. Comput. Commun. 2022, 187, 35–44. [CrossRef]
5. Guo, W.; Li, J.; Chen, G.; Niu, Y.; Chen, C. A PSO-Optimized Real-Time Fault-Tolerant Task Allocation Algorithm in Wireless

Sensor Networks. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 3236–3249. [CrossRef]
6. Afifi, H.; Horbach, K.; Karl, H. A Genetic Algorithm Framework for Solving Wireless Virtual Network Embedding. In Proceedings

of the 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona,
Spain, 21–23 October 2019.

7. Santos, J.; Hempel, M.; Sharif, H. Compression Distortion-Rate Analysis of Biomedical Signals in Machine Learning Tasks in
Biomedical Wireless Sensor Network Applications. In Proceedings of the 2020 International Wireless Communications and
Mobile Computing (IWCMC), Limassol, Cyprus, 15–19 June 2020.

8. Sun, Z.; Liu, Y.; Tao, L. Attack Localization Task Allocation in Wireless Sensor Networks Based on Multi-Objective Binary Particle
Swarm Optimization. J. Netw. Comput. Appl. 2018, 112, 29–40. [CrossRef]

9. Lu, Y.; Zhou, J.; Xu, M. Wireless Sensor Networks for Task Allocation using Clone Chaotic Artificial Bee Colony Algorithm. In
Proceedings of the 2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE), Fuzhou, China,
26–29 April 2019.

10. Khan, M.S.A.; Santhosh, R. Task scheduling in cloud computing using hybrid optimization algorithm. Soft Comput. 2022, 26,
3069–13079. [CrossRef]

http://doi.org/10.1109/TWC.2020.2964765
http://doi.org/10.1016/j.future.2017.06.019
http://doi.org/10.1016/j.future.2012.03.005
http://doi.org/10.1016/j.comcom.2022.01.016
http://doi.org/10.1109/TPDS.2014.2386343
http://doi.org/10.1016/j.jnca.2018.03.023
http://doi.org/10.1007/s00500-021-06488-5

Appl. Sci. 2023, 13, 2077 22 of 23

11. Malawski, M.; Juve, G.; Deelman, E.; Nabrzyski, J. Algorithms for cost-and deadline-constrained provisioning for scientific
workflow ensembles in IaaS clouds. Future Gener. Comput. Syst. 2015, 48, 1–18. [CrossRef]

12. Chen, H.; Zhu, X.; Guo, H.; Zhu, J.; Qin, X.; Wu, J. Towards energy-efficient scheduling for real-time tasks under uncertain cloud
computing environment. J. Syst. Softw. 2015, 99, 20–35. [CrossRef]

13. Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol.
Comput. 2004, 8, 256–279. [CrossRef]

14. Guo, X. Multi-objective task scheduling optimization in cloud computing based on fuzzy self-defense algorithm. Alex. Eng. J.
2021, 60, 5603–5609. [CrossRef]

15. Liu, J.X.; Luo, G.; Zhang, X.M.; Zhang, F.; Li, B.N. Job scheduling model for cloud computing based on multi-objective genetic
algorithm. Int. J. Comput. Sci. Issues 2013, 10, 134–139.

16. Jena, R.K. Multi objective task scheduling in cloud environment using nested PSO framework. Procedia Comput. Sci. 2015, 57,
1219–1227. [CrossRef]

17. Huang, C.L.; Jiang, Y.Z.; Yin, Y.; Yeh, W.C.; Chung, V.Y.Y.; Lai, C.M. Multi Objective Scheduling in Cloud Computing Using
MOSSO. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018.
[CrossRef]

18. Yeh, W.C. A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in
series systems. Expert Syst. Appl. 2009, 36, 9192–9200. [CrossRef]

19. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

20. Yeh, W.C.; Zhu, W.; Yin, Y.; Huang, C.L. Cloud computing task scheduling problem by Nondominated Sorting Genetic Algorithm
II (NSGA-II). In Proceedings of the First Australian Conference on Industrial Engineering and Operations Management, Sydney,
Australia, 20–22 December 2022.

21. Houssein, E.H.; Gad, A.G.; Wazery, Y.M.; Suganthan, P.N. Task Scheduling in Cloud Computing based on Meta-heuristics: Review,
Taxonomy, Open Challenges, and Future Trends. Swarm Evol. Comput. 2021, 62, 100841. [CrossRef]

22. Arunarani, A.R.; Manjul, D.; Sugumaran, V. Task scheduling techniques in cloud computing: A literature survey. Future Gener.
Comput. Syst. 2019, 91, 407–415. [CrossRef]

23. Kumar, M.; Sharma, S.C.; Goel, A.; Singh, S.P. A comprehensive survey for scheduling techniques in cloud computing. J. Netw.
Comput. Appl. 2019, 143, 1–33. [CrossRef]

24. Chen, X.; Cheng, L.; Liu, C.; Liu, Q.; Liu, J.; Mao, Y.; Murphy, J. A WOA-Based Optimization Approach for Task Scheduling in
Cloud Computing Systems. IEEE Syst. J. 2020, 14, 3117–3128. [CrossRef]

25. Attiya, I.; Elaziz, M.A.; Xiong, S. Job Scheduling in Cloud Computing Using a Modified Harris Hawks Optimization and
Simulated Annealing Algorithm. Comput. Intell. Neurosci. 2020, 2020, 3504642. [CrossRef]

26. Gąsior, J.; Seredyński, F. Security-Aware Distributed Job Scheduling in Cloud Computing Systems: A Game-Theoretic Cellular
Automata-Based Approach. In Proceedings of the International Conference on Computational Science ICCS 2019: Computational
Science—ICCS, 2019; pp. 449–462.

27. Mansouri, N.; Javidi, M.M. Cost-based job scheduling strategy in cloud computing environments. Distrib. Parallel Databases 2020,
38, 365–400. [CrossRef]

28. Cheng, F.; Huang, Y.; Tanpure, B.; Sawalani, P.; Cheng, L.; Liu, C. Cost-aware job scheduling for cloud instances using deep
reinforcement learning. Clust. Comput. 2022, 25, 619–631. [CrossRef]

29. Shukri, S.E.; Al-Sayyed, R.; Hudaib, A.; Mirjalili, S. Enhanced multi-verse optimizer for task scheduling in cloud computing
environments. Expert Syst. Appl. 2021, 168, 114230. [CrossRef]

30. Jacob, T.P.; Pradeep, K. A Multi-objective Optimal Task Scheduling in Cloud Environment Using Cuckoo Particle Swarm
Optimization. Wirel. Pers. Commun. 2019, 109, 315–331. [CrossRef]

31. Abualigah, L.; Diabat, A. A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud
computing environments. Clust. Comput. 2021, 24, 205–223. [CrossRef]

32. Sanaj, M.S.; Prathap, P.M.J. Nature inspired chaotic squirrel search algorithm (CSSA) for multi objective task scheduling in an
IAAS cloud computing atmosphere. Eng. Sci. Technol. Int. J. 2020, 23, 891–902. [CrossRef]

33. Abualigah, L.; Alkhrabsheh, M. Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling
problem in cloud computing. J. Supercomput. 2022, 78, 740–765. [CrossRef]

34. Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: London, UK, 1998.
35. Yeh, W.C. Orthogonal simplified swarm optimization for the series–parallel redundancy allocation problem with a mix of

components. Knowl.-Based Syst. 2014, 64, 1–12. [CrossRef]
36. Yeh, W.C. A New Exact Solution Algorithm for a Novel Generalized Redundancy Allocation Problem. Inf. Sci. 2017, 408, 182–197.

[CrossRef]
37. Yeh, W.C.; Hsieh, Y.H.; Hsu, K.Y.; Huang, C.L. ANN and SSO Algorithms for a Newly Developed Flexible Grid Trading Model.

Electronics 2022, 11, 11193259. [CrossRef]
38. Yeh, W.C. Simplified swarm optimization in disassembly sequencing problems with learning effects. Comput. Oper. Res. 2012, 39,

2168–2177. [CrossRef]

http://doi.org/10.1016/j.future.2015.01.004
http://doi.org/10.1016/j.jss.2014.08.065
http://doi.org/10.1109/TEVC.2004.826067
http://doi.org/10.1016/j.aej.2021.04.051
http://doi.org/10.1016/j.procs.2015.07.419
http://doi.org/10.1109/CEC.2018.8477709
http://doi.org/10.1016/j.eswa.2008.12.024
http://doi.org/10.1109/4235.996017
http://doi.org/10.1016/j.swevo.2021.100841
http://doi.org/10.1016/j.future.2018.09.014
http://doi.org/10.1016/j.jnca.2019.06.006
http://doi.org/10.1109/JSYST.2019.2960088
http://doi.org/10.1155/2020/3504642
http://doi.org/10.1007/s10619-019-07273-y
http://doi.org/10.1007/s10586-021-03436-8
http://doi.org/10.1016/j.eswa.2020.114230
http://doi.org/10.1007/s11277-019-06566-w
http://doi.org/10.1007/s10586-020-03075-5
http://doi.org/10.1016/j.jestch.2019.11.002
http://doi.org/10.1007/s11227-021-03915-0
http://doi.org/10.1016/j.knosys.2014.03.011
http://doi.org/10.1016/j.ins.2017.04.019
http://doi.org/10.3390/electronics11193259
http://doi.org/10.1016/j.cor.2011.10.027

Appl. Sci. 2023, 13, 2077 23 of 23

39. Yeh, W.C. New parameter-free simplified swarm optimization for artificial neural network training and its application in the
prediction of time series. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 661–665. [PubMed]

40. Yeh, W.C.; Zhu, W.; Peng, Y.F.; Huang, C.L. A Hybrid Algorithm Based on Simplified Swarm Optimization for Multi-Objective
Optimizing on Combined Cooling, Heating and Power System. Appl. Sci. 2022, 12, 10595. [CrossRef]

41. Yeh, W.C.; Huang, C.L.; Lin, P.; Chen, Z.; Jiang, Y.; Sun, B. Simplex Simplified Swarm Optimization for the Efficient Optimization
of Parameter Identification for Solar Cell Models. IET Renew. Power Gener. 2018, 12, 45–51. [CrossRef]

42. Yeh, W.C.; Ke, Y.C.; Chang, P.C.; Yeh, Y.M.; Chung, V. Forecasting Wind Power in the Mai Liao Wind Farm based on the
Multi-Layer Perceptron Artificial Neural Network Model with Improved Simplified Swarm Optimization. Int. J. Electr. Power
Energy Syst. 2014, 55, 741–748. [CrossRef]

43. Yeh, W.C.; Liu, Z.; Yang, Y.C.; Tan, S.Y. Solving Dual-Channel Supply Chain Pricing Strategy Problem with Multi-Level
Programming Based on Improved Simplified Swarm Optimization. Technologies 2022, 2022, 10030073. [CrossRef]

44. Lin, H.C.S.; Huang, C.L.; Yeh, W.C. A Novel Constraints Model of Credibility-Fuzzy for Reliability Redundancy Allocation
Problem by Simplified Swarm Optimization. Appl. Sci. 2021, 11, 10765. [CrossRef]

45. Tan, S.Y.; Yeh, W.C. The Vehicle Routing Problem: State-of-the-Art Classification and Review. Appl. Sci. 2021, 11, 10295. [CrossRef]
46. Zhu, W.; Huang, C.L.; Yeh, W.C.; Jiang, Y.; Tan, S.Y. A Novel Bi-Tuning SSO Algorithm for Optimizing the Budget-Limited

Sensing Coverage Problem in Wireless Sensor Networks. Appl. Sci. 2021, 11, 10197. [CrossRef]
47. Yeh, W.C.; Jiang, Y.; Tan, S.Y.; Yeh, C.Y. A New Support Vector Machine Based on Convolution Product. Complexity 2021, 2021, 9932292.

[CrossRef]
48. Wu, T.Y.; Jiang, Y.Z.; Su, Y.Z.; Yeh, W.C. Using Simplified Swarm Optimization on Multiloop Fuzzy PID Controller Tuning Design

for Flow and Temperature Control System. Appl. Sci. 2020, 10, 8472. [CrossRef]
49. Yeh, W.C.; Jiang, Y.; Huang, C.L.; Xiong, N.N.; Hu, C.F.; Yeh, Y.H. Improve Energy Consumption and Signal Transmission Quality

of Routings in Wireless Sensor Networks. IEEE Access 2020, 8, 198254–198264. [CrossRef]
50. Yeh, W.C. A new harmonic continuous simplified swarm optimization. Appl. Soft Comput. 2019, 85, 105544. [CrossRef]
51. Yeh, W.C.; Lai, C.M.; Tseng, K.C. Fog computing task scheduling optimization based on multi-objective simplified swarm

optimization. J. Phys. Conf. Ser. 2019, 1411, 012007. [CrossRef]
52. Yeh, W.C. Solving cold-standby reliability redundancy allocation problems using a new swarm intelligence algorithm. Appl. Soft

Comput. 2019, 83, 105582. [CrossRef]
53. Veldhuizen, V.D.A.; Lamont, G.B. Multiobjective evolutionary algorithm research: A history and analysis. Evol. Comput. 1999, 8,

125–147. [CrossRef]
54. Schott, J.R. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. 1995. Available online:

http://hdl.handle.net/1721.1/11582 (accessed on 11 January 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.ncbi.nlm.nih.gov/pubmed/24808385
http://doi.org/10.3390/app122010595
http://doi.org/10.1049/iet-rpg.2017.0308
http://doi.org/10.1016/j.ijepes.2013.10.001
http://doi.org/10.3390/technologies10030073
http://doi.org/10.3390/app112210765
http://doi.org/10.3390/app112110295
http://doi.org/10.3390/app112110197
http://doi.org/10.1155/2021/9932292
http://doi.org/10.3390/app10238472
http://doi.org/10.1109/ACCESS.2020.3030629
http://doi.org/10.1016/j.asoc.2019.105544
http://doi.org/10.1088/1742-6596/1411/1/012007
http://doi.org/10.1016/j.asoc.2019.105582
http://doi.org/10.1162/106365600568158
http://hdl.handle.net/1721.1/11582

	Introduction
	Literature Review
	A Review of Job Scheduling in Cloud-Computing
	Algorithm Research for Solving the Single-Objective Problem for Job Scheduling in Cloud-Computing
	Algorithm Research for Solving the Multi-Objective Problem for Job Scheduling in Cloud-Computing

	Assumptions, and Mathematical Problem Description
	Assumptions
	The Mathematical Model

	SSO, Crowding Distance, and Elite Selection
	Simplified Swarm Optimization
	Crowding Distance
	The Elite Selection

	Proposed Algorithm
	Purpose of tSSO
	Solution Structure
	Novel Update Mechanism
	Hybrid Elite Selection
	Group Comparison
	Proposed tSSO

	Simulation Results and Discussion
	Parameter-Settings
	Experimental Environments
	Performance Metrics
	Numerical Results

	Conclusions
	References

