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Abstract: The semi-active control system is widely used to reduce the seismic response of building
structures. Its control performance mainly depends on the applied control algorithms. Various semi-
active control algorithms have been developed to date. Recently, machine learning has been applied
to various engineering fields and provided successful results. Because reinforcement learning (RL)
has shown good performance for real-time decision-making problems, structural control engineers
have become interested in RL. In this study, RL was applied to the development of a semi-active
control algorithm. Among various RL methods, a Deep Q-network (DQN) was selected because of its
successful application to many control problems. A sample building structure was constructed by
using a semi-active mid-story isolation system (SMIS) with a magnetorheological damper. Artificial
ground motions were generated for numerical simulation. In this study, the sample building structure
and seismic excitation were used to make the RL environment. The reward of RL was designed to
reduce the peak story drift and the isolation story drift. Skyhook and groundhook control algorithms
were applied for comparative study. Based on numerical results, this paper shows that the proposed
control algorithm can effectively reduce the seismic responses of building structures with a SMIS.

Keywords: semi-active mid-story isolation system; control algorithm; reinforcement learning; seismic
response reduction; magnetorheological damper; deep q-network

1. Introduction

Various seismic protection systems for building structures have been developed and
used in practical engineering fields. Studies on semi-active control systems (SACS) are
being ardently performed [1–3], because SACS have the reliability of passive systems and
the controllable features of active systems. SACS are applied in various types of practical
seismic protection systems for building structures. For example, a semi-active damper
replaces a passive damper in a tuned mass damper or seismic isolation system, resulting
in a semi-active tuned mass damper [4,5] or a semi-active seismic isolation system [6,7],
respectively. When SACS are applied to building structures subjected to earthquake loads,
the seismic response reduction performance is mainly affected by the applied control
algorithms. Therefore, much research on the development of semi-active control algorithms
has been conducted to date [8–10]. Each semi-active control strategy has its own advantages
and shortcomings, depending on the applied problems and target responses. Among
various types of semi-active control algorithms, soft computing-based controllers, such
as artificial neural network, genetic algorithms, and fuzzy logic controllers, have been
successfully applied to SACS. Because soft computing-based controllers can effectively
handle nonlinear systems and uncertainties, they can consider structural parameter change
due to possible damage to the structure and provide good performance under various
types of excitation [11].

Recently, machine learning (ML), which is one of the theories of soft computing,
has been successfully incorporated into a variety of applications in various engineering
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fields. Reinforcement learning (RL) is one of the machine learning methods using an
agent that interacts with the environment for learning. Reinforcement learning is a model-
free framework for solving the control problem presented by a Markov decision process
(MDP) [12]. Such RL has been applied to various types of active control problems, such as
vehicles [13], controllable tensegrity structures [14], and robotics [15], presenting successful
control performances.

Recent advancements in reinforcement learning have attracted the attention of struc-
tural engineers. Eshkevari et al. [16] used a RL framework for an active control system
(ACS) of a five-story building. The proposed method was successful in reducing dynamic
responses in comparison with a conventional ACS. Khalatbarisoltani et al. applied rein-
forcement learning to the real-time control of an active mass driver system as a seismic
control system [17]. In their work, a control method was developed for the ACS, consider-
ing structural uncertainties. Although several studies on the application of reinforcement
learning to an ACS for seismic response reduction have been conducted, to the best of the
authors’ knowledge, application of reinforcement learning to a SACS for seismic protection
of building structures has rarely been reported. Most of the studies on the application of
reinforcement learning to SACS have focused on vehicle suspension systems [18,19].

Based on this background, the authors developed a semi-active control algorithm for
the seismic damage protection of building structures using reinforcement learning. From
among various semi-active earthquake-resisting systems for building structures, a seismic
isolation system was used in this study. While a base isolation system is successfully used
for seismic response reduction of low- and mid-rise structures, a mid-story isolation system
is applied to high-rise building structures [20,21]. An existing building structure with a mid-
story isolation system was selected as a sample structure (Shiodome Sumitomo building
in Japan [20]). The nonlinear hysteretic dampers in the isolation system of the Shiodome
Sumitomo building were replaced by magnetorheological (MR) dampers to compose a
semi-active mid-story isolation system (SMIS). Artificial earthquakes were generated for
numerical simulation. To optimize the control commands sent to the MR dampers in the
SMIS, a deep Q-network (DQN) algorithm was selected in this study. The DQN showed a
successful application to many Atari games and various problems by combining RL and
deep neural networks [22,23]. The reinforcement learning environment was constructed by
using the sample building structure with the SMIS and the generated artificial earthquakes.
Because maximum story drift is closely correlated with structural damage, it was used
to design the reward of reinforcement learning. Conventional semi-active skyhook and
groundhook control algorithms [24] were employed for comparative study.

2. Reinforcement Learning Framework with DQN

Machine learning generally means a computer learning from data using algorithms
to perform a task [25]. When a machine learns, an algorithm acquires skills or knowledge
from experience. There are many different types of machine learning techniques. Figure 1
presents the three main learning types in machine learning. Supervised learning makes
a model learn a mapping between input data and the output targets [26]. Unsupervised
learning develops a model that can extract relationships from input data without outputs
or target data. Unlike supervised learning, unsupervised learning does not have a teacher
and is generally used for clustering complex data. RL develops an agent that learns using
feedback with an environment. An agent learns how to map states to actions in order to
maximize a reward in RL. The agent is not guided on which action is good or bad but has
to find out which action provides the most reward [22].

State, action, and reward are the main basic concepts in RL. The state shows the current
situation in the environment. In this study, the states are the seismic responses of the sample
structure and ground motions that can explain the characteristics of the excitation. Action
means what an agent can do in each state. The semi-active control algorithm, which is
the agent in this study, decides the control command for the SMIS based on the given
state. The control command produced by the agent is the command voltage sent to the MR
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dampers in the SMIS. The MR damper used in this study has a voltage range of 0 to 5 V.
The finite actions the agent can take are determined to be eleven voltage values in the range
between 0 and 5 V with 0.5 V intervals. When an agent takes an action in a state, it receives
a reward. Generally, an agent in RL is trained to maximize the reward. Because the purpose
of the SMIS is to reduce the seismic responses of the sample structure, the maximization of
the reward should be achieved by decreasing seismic responses of the sample structure.
Therefore, it is required to use the seismic responses of the sample structure as negative
values or denominators in fractions for reward design. Figure 2 illustrates the configuration
of the environment and the agent, including the feedback data types used in this study.
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A lot of methods of RL have been proposed to date. Among them, the deep Q-network
(DQN) is widely used because it has shown good performance in various control problems.
DQN is a reinforcement learning algorithm that combines Q-learning with neural networks.
The basic idea behind DQN is to use a neural network to approximate the Q-value function
for a given state-action pair, rather than using a table as in traditional Q-learning. The DQN
algorithm methodologically involves the following steps:

1. Initialize the Q-network with random weights and a replay memory with a fixed
capacity;

2. At each time step, the agent selects an action based on the current state and the
Q-network’s estimates of the Q-values;

3. The agent then receives a reward and a new state, and the transition (state, action,
reward, next state) is stored in the replay memory;

4. Periodically, a batch of transitions is randomly sampled from the replay memory
and used to update the Q-network’s weights. This is performed by computing the
target Q-value for each transition using the Bellman equation and then minimizing
the difference between the target Q-value and the Q-network’s estimate;

5. The Q-network’s weights are also periodically updated with the weights of a fixed
target network, which helps to stabilize the learning process.
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In the DQN, deep neural networks are used for mapping between input and output
data, and it may cause to RL to be more unstable. A lot of data is required to train a deep
neural network, but even then, the network weights sometimes cannot converge [27]. To
solve this, Mnih et al. (2015) [22] introduced two main techniques, i.e., experience replay
and target network separation, into the DQN. When the training data is independent and
equally distributed, the reinforcement learning results are good. However, when the rein-
forcement learning is performed, the series of experience data can be highly correlated to
each other. For example, each dynamic response of every time step of the sample structure
subjected to an earthquake does not differ much, because the numerical integration time
step for time-history analysis is usually less than 0.01 or 0.02 s. The conventional Q-learning
method that learns from each of these sequential simulation data can be influenced by
the effects of this correlation. In the DQN algorithm, this problem was solved by using a
large buffer for storing the past experience of the agent and selecting training data from
it, instead of using the most recent experience. Figure 3 shows the concept of this replay
buffer (experience buffer) technique. As shown in the figure, past experiences are stored in
the replay buffer, and then a subset of these experiences are randomly selected to update
the Q-network.
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In Q-Learning, the Bellman equation is expressed by an artificial neural network
(ANN) as shown in Equation (1):

Qθ(s, a) = r + γmax
a′

Qθ(s′, a′) (1)

where the s, a, r, and γ mean the state, action, reward, and discount factor, respectively. The
meaning of primed θ variables is the variable’s value in the next state. The variable θ of the
action-value function Qθ(s, a) represents the parameter vectors of ANN. In Q-Learning, the
value of r + γmax

a′
Qθ(s′, a′) is considered to be the target Q value. Therefore, a predicted

value of ANN Qθ(s, a) should gradually reach the target value in the learning process. For
this purpose, the loss function of Q-Learning can be expressed by the difference between
the target value and the predicted value, as shown in Equation (2). When the learning starts,
the parameters θ of ANN for the action-value function Qθ(s, a) are updated to minimize
the loss function:

L(θ) = (r + γmax
a′

Qθ(s′, a′)−Qθ(s, a))2 (2)

In native Q-learning, a single ANN with the parameters θ is used for both the pre-
dicted value Qθ(s, a) and the target value Qθ(s′, a′). Therefore, when an update of ANN
parameters θ to make Qθ(s, a) closer to the target value is preformed, the target value
Qθ(s′, a′) is indirectly changed. It may cause the training to be unstable. To make the
training more stable, the DQN uses a target network separation, by keeping a copy of
the neural network (θ), and using it for the target value Qθ(s′, a′). In this technique, the
parameters of the target network are not changed during the main network training, but
they are periodically copied from the parameters of the trained main Q-network, as shown
in Figure 4. This idea can improve the stability of Q-learning training [28].
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3. Sample Building Structure and Seismic Excitation

As explained previously, the Shiodome Sumitomo building [20] was used in this
study as a sample building structure to construct the environment of reinforcement learn-
ing. Figure 5a presents the framing elevation of the 125.9 m tall sample building having
26 stories. A seismic insolation system is installed between the 11th and 12th stories. The
nonlinear passive hysteretic dampers in the Shiodome Sumitomo building were changed
to MR dampers in the SMIS of the sample structure. Rubber bearings were directly used
in the SMIS of the sample building. Figure 5b shows the analytical model of the sample
building with the SMIS. One horizontal degree-of-freedom (DOF) per story was used for
this analytical model. Table 1 presents the stiffnesses and masses of the sample structure
that were adopted from a previous study [20]. The damping matrix was calculated by the
conventional methods of Rayleigh damping. The damping ratio of the sample building
was set to be 2%, and that of the seismic isolation interface was 0%. The natural periods of
vibration of the first three modes were calculated as 6.04, 1.17, and 0.96 s, respectively.
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Figure 5. Sample building structure with a mid-story isolation system: (a) elevation of the Shiodome
Sumitomo building [20], (b) analytical model with SMIS.
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Table 1. Story mass and stiffness of the sample structure.

Story Mass (kg) Stiffness (kN/m) Story Mass (kg) Stiffness (kN/m)

1 3,080,514 3.18 × 106 14 3,186,563 2.32 × 106

2 2,582,900 2.68 × 106 15 3,140,676 2.63 × 106

3 1,726,352 6.34 × 106 16 3,132,518 2.65 × 106

4 1,733,490 5.92 × 106 17 3,125,381 2.59 × 106

5 1,716,155 5.71 × 106 18 3,170,247 2.59 × 106

6 1,715,135 5.36 × 106 19 3,168,208 2.48 × 106

7 1,718,195 5.20 × 106 20 3,117,223 2.49 × 106

8 1,697,801 4.95 × 106 21 3,094,790 2.34 × 106

9 1,721,254 4.79 × 106 22 3,084,593 2.24 × 106

10 3,127,420 4.45 × 106 23 3,076,435 2.17 × 106

11 3,128,440 1.08 × 106 24 3,447,606 2.11 × 106

12 4,030,874 8.07 × 105 25 3,461,882 1.73 × 106

13 3,567,930 3.11 × 106 26 5,769,463 1.51 × 106

The Bouc–Wen model [29] was used to represent the MR damper as shown in Figure 5b.
The MR damper force is calculated by the following simultaneous differential equations:

f = c0
.
x + αz (3)

.
z = −γ

∣∣ .
x
∣∣z|z|n−1 − β

.
x|z|n + A

.
x (4)

where
.
x is the velocity of the damper piston, c0 is the viscous damping of the device, and

z is the evolutionary variable that describes the history dependence of the response. The
variables γ, β, n, and A define the model shape in the unloading and the smoothness of the
hysteretic behavior, representing the transition from the pre-yield to the post-yield region.
The parameters α and c0 in Equation (3) are defined as functions of the applied voltage v
as follows:

α = αa + αbu (5)

c0 = c0a + c0bu (6)
.
u = −η(u− v) (7)

where u is the control input defined by the first-order filter that accounts for the dynamics
of the MR damper; v is the command voltage; and η is the time constant of this first-order
filter. The parameters αa, αb, c0a and c0b account for the dependence of the damper force
on command voltages applied magnetic current. The selected MR damper parameters
are as follows: αa = 5.5319 × 105 N/cm, αb = 2.5246 × 106 N/(cmV), c0a = 22.39 Ns/cm,
c0b = 223.9 Ns/(cmV), n = 1, A = 1.2, γ = 3 cm−1, β= 3 cm−1, and η = 50 s−1. These
parameters were adjusted from the parameter values of an experimental study [30] to make
the maximum force of the MR damper about 2750 kN, with a saturation voltage of 5 V. The
value of 2750 kN was determined based on a parameter study, and 10 MR dampers were
used to make the SMIS of the sample building for optimal seismic control. The control
voltage for the MR damper changes within the range of 0 and 5 V. Figure 6 shows typical
displacement–force and velocity–force hysteresis loops for this MR damper model. The
resisting force of the MR damper is proportional to the velocity and applied command
voltage as shown in the figure.

The ground acceleration was modeled as an excitation by a filtered Gaussian process.
The Kanai–Tajimi shaping filter is widely used to make an artificial ground motion because
it can successfully describe features of seismic ground motions [31]. The Kanai–Tajimi
shaping filter [32] shown in Equation (8) was employed to make the artificial earthquake:

F(s) =
2ζgωgs + ω2

g

s2 + 2ζgωgs + ω2
g

(8)
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where the parameters ωg and ζg mean the frequency and damping ratio of the soil, and
they are set to be 17 rad/s and 0.3, respectively.
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Gaussian white noise having a time-step of 0.005 s was filtered by using the shaping
filter in Equation (8). The PGA of the artificial earthquake was set to be 0.7 g, and the
envelope introduced in a previous study [33] was applied to the generated signals for a
more practical ground motion. Through this procedure, three artificial earthquakes were
developed for training and evaluation of the DQN-based semi-active controller, respectively.
Figure 7 shows three developed artificial earthquakes.
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4. Configuration of DQN Agent and Environment

The sample building structure with the SMIS and the artificial ground motion de-
veloped in the previous section were used to construct the environment of reinforcement
learning. When the time history analyses of the sample structure subjected to the artificial
earthquake are performed for numerical simulation in the environment, a lot of dynamic
responses of the sample structure can be obtained. Among them, the essential dynamic
responses should be selected as the states for the agent to take the appropriate action for
optimal semi-active control. In this study, four structural responses and a series of ground
accelerations were selected for the states, as shown in Figure 8.
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First, the roof story dynamic responses, i.e., displacement and acceleration that can
represent the overall structural behavior of the sample building, were selected. Because the
inter-story drift is directly related to the structural damage of the building, the 11th-story
drift where the peak story drift occurs and the isolation story drift were also selected
as the states to check if the maximum story and isolator drifts exceed their limit or not.
Because the ground acceleration is one of the major causes of structural responses, it will
give the agent good information to find the appropriate action to decrease the seismic
responses of the sample structure. However, one ground acceleration value at a specific
step is not enough to predict the seismic responses of the sample structure at that moment.
The responses of the specific ground acceleration value are not identical all the time. For
example, even if the ground acceleration is 0.2 g, the seismic responses at that moment vary,
depending on whether the acceleration is increasing or decreasing. Therefore, not only
the ground acceleration value at the current step, but also a series of ground acceleration
values of the previous four steps, were selected as the states to give the agent sufficient
information to select the optimal control command. As explained previously, the command
voltage for the MR damper in the SMIS is determined by one of eleven voltage values,
i.e., the voltage range between 0 and 5 V with a step of 0.5 V. Therefore, the agent selects
one of the finite actions (command voltage) based on the input state.

When the agent selects the control command for the SMIS, its control forces are
transmitted to the sample structure, and the seismic responses are changed. Because the
goal of this reinforcement learning is to minimize the seismic responses of the sample
structure, the reward should be designed to reflect this goal. The inter-story drift is one
of the most critical seismic responses related to building failure. Therefore, the 11th-story
drift and the isolation story drift were used to calculate the reward, as shown in Equation
(9). Because the agent in reinforcement learning is trained to maximize the reward, the drift
responses of the 11th story and the isolation story are expressed as denominators in the
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fraction in Equation (9). By squaring these drift responses, the reward decreases quickly as
the drift values increase:

reward = 1/{(11th story drift)2+(Isolation story drift)2
}

(9)

In the DQN, the agent is modeled by an artificial neural network. Figure 9 shows
that the structure of the agent neural network used for the DQN implementation in this
study has two hidden layers. The neural network of the agent maps the input state to the
output action. As explained previously, four seismic responses (roof story displacement
and acceleration, and the 11th story and the isolation story drifts) and five steps of the
ground acceleration are used for the input state, and thus, the input size of the agent is
nine. The output size of the agent neural network is eleven, because one hot encoding is
used for the agent’s action determined by one of eleven voltage values.
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Control performance of the DQN agent is significantly affected by the number of
hidden layers and nodes (neurons) in hidden layers in the agent neural network. Generally,
the more hidden layers and neurons are used, the better the control performance of the
agent that can be obtained. However, the use of networks that are too complex can induce
overfitting, resulting in poor control performance of the agent for unlearned data. The
number of hidden layers and neurons in the agent neural network were determined to
be two and thirty, respectively, based on a parameter study. A hidden layer usually has
an activation function for introduction of non-linearity into the outputs of a network.
Therefore, the rectified linear unit (ReLU) activation function was applied to each hidden
layer as shown in Figure 9, because it is simple to apply and effective compared to other
activation functions [34].

Determination of hyperparameter values and proper function for learning are not
easy to develop for the DQN model for the semi-active control algorithm. Table 2 lists the
hyperparameter values and functions selected for the DQN training. An Adam (Adaptive
Moment Estimation) optimizer with the learning rate of 0.001 was employed as an opti-
mization algorithm. The Adam optimizer is popularly used in the field of deep learning
and has shown stable and good performance. Overfitting is a critical issue to be considered
with DQN learning. Because the dropout method is known as an effective regularization
technique to decrease overfitting and improve deep learning performance, it was used in
this study. The dropout rate means the rate of nodes used for network output calculation.
A dropout rate of 1.0 implies that there is no dropout node, and it is generally used for the
verification process. An appropriate dropout value is known to be in the range between
0.5 and 0.8. The dropout rate of 0.8 was selected in the DQN training.
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Table 2. Default hyperparameter values and function.

Item Value

Learning rate 0.001
Target update frequency 4

Discount factor 0.99
Mini batch size 256

Activation function ReLU
Optimizer Adam

Gradient threshold 1
Max. episode 10,000

In reinforcement learning, the agent usually discovers which action provides the most
valuable reward by trial and error. When an agent always takes the known action that
provides a big reward and does not explore any other actions, i.e., greedy behavior or
exploration, the agent cannot improve its knowledge and may fall into sub-optimal results.
Therefore, the agent requires enough exploration to find a global optimal solution. However,
if the exploration rate is too high, the known high-value actions are not effectively used,
and thus, the improvement speed of the agent’s performance is decreased in the RL training
process. When the agent explores, it gets closer to global optimal solutions, and when it
exploits, it could obtain more reward. Because there is a trade-off between exploration and
exploitation, they cannot be selected simultaneously [35]. In this study, the epsilon-greedy
method was used to balance exploration and exploitation. In the epsilon-greedy method,
epsilon means the probability of exploration with random command voltage. Because the
epsilon is calculated by Equation (10) in this study, the probability of exploration decreases
as the episode increases, resulting in the decreased range of fluctuation of the DQN model
control performance.

ε = 1/(episode/10) (10)

The Adam optimization algorithm that is a training algorithm for deep neural net-
works in DQN uses the idea of moving averages of the gradients and squared gradients
to adapt the learning rate for each parameter. It also uses bias-correction to ensure that
the algorithm starts with a fair estimate of the moving averages. The update rule for the
weights is a combination of the gradient with respect to the loss and the bias-corrected
moving averages of the gradients and squared gradients. The Adam algorithm uses two
different moving averages of the gradients and the squared gradients, denoted as m(t)
and v(t), respectively. The moving averages are initialized with 0 and are updated at each
iteration by the following formulas:

m(t) = β1 ×m(t− 1) + (1− β1)∆L(t) (11)

v(t) = β2 × v(t− 1) + (1− β2)∆L(t)2 (12)

where L is the loss function; ∆L(t) is the gradient of the loss function at iteration t; and β1
and β2 are hyperparameters that control the decay rate of the moving averages. In order to
prevent bias in the initialization, the Adam uses bias-corrected versions of m(t) and v(t)
denoted as m̂(t) and v̂(t), respectively:

m̂(t) = m(t)/(1− β1
t) (13)

v̂(t) = v(t)/(1− β2
t) (14)

The update rule for the weights is then defined as follows:

ω(t + 1) = ω(t)− α× (m̂(t)/
√

v̂(t) + ε) (15)
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where ω(t) is the weight at iteration t, α is the learning rate, and ε is a small value added to
the denominator to prevent division by zero.

The training Q-network and the target Q-network provide eleven Q-values corre-
sponding to eleven command voltages, respectively. The DQN agent selects the command
voltage corresponding to the maximum Q-values to control the MR damper. The purpose
of DQN learning is to make the Q-values of the target network and those of the training
network the same. To this end, the training Q-network’s weights are updated by mini-
mizing the mean-squared error (MSE) loss between the predicted Q-values and the target
Q-values as presented in Figure 10. This minimization process is conducted based on
the Adam optimization algorithm described above. The variation of the MSE loss value
according to the episode is shown in Figure 11. The flat part of the graph showing the early
episodes means Not a Number (NaN), representing an undefined number in floating-point
operations. Figure 11 shows that the MSE loss value decreased rapidly up to 1000 episodes
and then gradually decreased to 8000 episodes. After that, the MSE loss value remained
almost unchanged. This variation tendency of the MSE loss value indicates that the network
training was well done.
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5. Control Performance Evaluation of the DQN Model

Comparative control algorithms were used to verify the effectiveness of the DQN
model (controller). Skyhook and groundhook control algorithms were selected as com-
parative control algorithms, because they have typically been used for semi-active control
problems and have shown good performance. A skyhook controller provides effective per-
formance for dynamic-response reduction of the mass isolated from the vibrating base, such
as in a semi-active base isolation system. A groundhook controller effectively decreases
dynamic responses of the structure with the auxiliary mass, such as with a semi-active
tuned mass damper [36]. Figure 12 shows the ideal configurations of the skyhook and
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groundhook controllers. These conceptual arrangement of an ideal skyhook and ground-
hook cannot be constructed in practice, because the damper cannot be connected to the
sky or an absolute fixed base. The purpose of skyhook or groundhook controllers is to
imitate the ideal structural configuration in Figure 12 using the practical SMIS shown in
Figure 5b. Koo et al. showed that the displacement-based on–off controller can provide the
best performance for the benchmark problem among various versions of the skyhook and
groundhook control algorithms [37].
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The relative velocity between the roof story and the 11th story, i.e., v1− v2 in Figure 12,
is an important value for the development of the skyhook and groundhook controllers.
The displacement-based skyhook algorithm is formulated by the relative velocity and the
absolute displacement of the upper isolated structure (x2). The on–off skyhook control
algorithm selects the minimum or the maximum command voltage. This calculation is
performed by using Equation (16):

V =

{
Vmax
Vmin

if x2(v1 − v2) ≤ 0
if x2(v1 − v2) > 0

(16)

where V is the control command voltage; Vmax is the maximum voltage, 5 V; and Vmin is
the minimum voltage, 0 V. The displacement-based on–off groundhook control algorithm
can be obtained by changing x2 to x1 in the skyhook controller. The groundhook controller
can be expressed by:

V =

{
Vmax if x1(v1 − v2) ≥ 0
Vmin if x1(v1 − v2) < 0

(17)

After 10,000 episodes of reinforcement learning training, the DQN model was obtained
to control the SMIS. Python 3.5.0 was employed to program the DQN model and environ-
ment generation codes, with Tensorflow 1.6.0 as a machine learning library. Time history
analyses of the sample building structure with the SMIS were performed to investigate the
seismic response control performance of the DQN model. An artificial ground acceleration
not used for training was used for dynamic time history analysis.

Figures 13–16 compare the sample structure’s seismic response time histories using the
SMIS controlled by the DQN model versus the skyhook and groundhook control algorithms.
Figure 13 shows the inter-story drift time histories of three control cases at the 11th story,
where the peak story drift occurs. In this figure, the 11th-story drift controlled by the
groundhook controller is generally greater than those of the other controllers. The DQN
model developed in this study provided much better control performance, in comparison
with the two typical semi-active controllers. In particular, the 11th-story drift between



Appl. Sci. 2023, 13, 2053 13 of 19

about 7 and 10 s, when the response amplitude is significant for both the EV1 and EV2
earthquakes, was effectively reduced by the DQN model. Figure 14 presents isolation story
drift time histories of the three controllers. Two comparative semi-active control algorithms
present contradictory performance in the decrease of the isolation story drift versus the
11th-story drift. The isolation story drift controlled by the skyhook controller is the greatest
among the three controllers, and the peak response occurs at around 8 s for both the EV1
and EV2 earthquakes. The peak isolation story drift of the DQN model is smaller than
those of the two comparative controllers, as in the case of the previous 11th-story drift.
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Figures 15 and 16 compare the roof story displacement and acceleration time histories
of the three controllers. It seems that the peak roof story displacement of the groundhook
controller is similar to that of the skyhook controller for EV1, but that of the groundhook
controller is larger than that of the skyhook controller for EV2. The DQN model can
effectively reduce roof story displacement, compared to the two comparative controllers
for both EV1 and EV2 cases. In contrast to the displacement control performance, the
peak roof story acceleration controlled by the DQN model is greater than that of the
two comparative controllers for EV1. However, the DQN model controlled the peak
roof story acceleration better than that of the two comparative controllers in case of EV2.
The skyhook controller can effectively reduce the peak roof story acceleration compared
to the groundhook controller. The control performance of the DQN model for seismic
responses of the roof story is not consistent, compared to that for the story drift response
reduction. This may be because the reward equation of the DQN model includes not the
roof story responses but the story drift responses. In multi-purpose optimization, the
optimization efficiency of each purpose generally decreases as the number of purposes
increases. Therefore, if too many structural responses are included in the reward equation,
the control performance of the DQN model may be disrupted.

To quantitatively compare the control performance of each algorithm, Tables 3 and 4
list their peak responses. “Passive”, in the control algorithm item, means the seismic
responses obtained from the original Shiodome Sumitomo building with a passive mid-
story isolation system. “Passive-On” or “Passive-Off” means the command voltage applied
to the MR damper is kept constant at a maximum (5 V) or a minimum voltage (0 V),
respectively. The ratio of each controlled response to the response of the original passive
mid-story isolation system is presented in the corresponding parentheses.

Table 3. Comparison of peak responses according to control algorithms (EV1).

Control
Algorithm

Peak
11th-Story
Drift (m)

Peak Isolation
Story Drift (m)

Peak Roof
Displacement (m)

Peak Roof
Acceleration (m/s2)

Passive 1 0.0554 (1.00) 2 0.2754 (1.00) 0.6289 (1.00) 5.4558 (1.00)
Groundhook 0.0521 (0.94) 0.2152 (0.78) 0.5598 (0.89) 4.7248 (0.87)

Skyhook 0.0485 (0.88) 0.2719 (0.99) 0.5189 (0.83) 4.1149 (0.75)
Passive-On 0.0534 (0.96) 0.2183 (0.79) 0.5525 (0.88) 4.7144 (0.86)
Passive-Off 0.0467 (0.84) 0.4542 (1.65) 0.6604 (1.05) 5.7801 (1.06)

DQN 0.0387 (0.70) 0.1898 (0.69) 0.4597 (0.73) 6.1052 (1.12)
1 Original passive mid-story isolation system in Shiodome Sumitomo building. 2 Ratio of semi-active controlled
responses to responses of passive mid-story isolation system.
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Table 4. Comparison of peak responses according to control algorithms (EV2).

Control
Algorithm Peak S (m) Peak Isolation

Story Drift (m)
Peak Roof

Displacement (m)
Peak Roof

Acceleration (m/s2)

Passive 0.0861 (1.00) 0.6279 (1.00) 0.7945 (1.00) 11.2183 (1.00)
Groundhook 0.0826 (0.96) 0.5184 (0.83) 0.7205 (0.91) 9.7622 (0.87)

Skyhook 0.0741 (0.86) 0.5995 (0.95) 0.6332 (0.80) 8.5115 (0.76)
Passive-On 0.0837 (0.97) 0.4872 (0.78) 0.7166 (0.90) 9.404 (0.84)
Passive-Off 0.0645 (0.75) 0.8256 (1.31) 0.7430 (0.94) 12.3944 (1.10)

DQN 0.0630 (0.73) 0.4162 (0.66) 0.5331 (0.67) 8.5569 (0.76)

It is evident that most of the semi-active control cases provide better control perfor-
mance than the original passive mid-story isolation system. A groundhook controller can
reduce the peak isolation drift by 22% in comparison with the reference original passive
model for EV1, while decreasing the peak 11th-story drift by 6%. On the other hand, a
skyhook controller reduces the peak 11th-story drift by 12% in comparison with the original
passive, maintaining the peak isolation story drift close to the original passive. A skyhook
shows effective performance for the decrease of roof story responses in comparison with
the other control cases, because it emulates the ideal configuration of a passive damper
connected between the roof story of the structure and the sky, as shown in Figure 12a. Since
the passive-on case provides the maximum MR damper force to the isolation story, the
peak isolation-story drift is well controlled, compared to the other responses. In the passive-
off case, the peak isolation-story drift significantly increases, because the minimum MR
damper force is applied to the SMIS. However, the peak 11th-story drift of the passive-off
case is controlled better than in the other control cases, except for the DQN case. This is
because the minimum MR damper force in the SMIS allows the upper isolated structure to
move like a tuned mass damper (TMD). The isolated upper story structure’s moving like
an auxiliary mass results in the largest roof story responses, compared to all other control
cases. Tables 3 and 4 show that the DQN model can reduce both the peak 11th-story and
isolation story drifts by about 30 %, compared to the original passive case. This shows
that the DQN model is the most effective control algorithm among the five control cases.
Tables 3 and 4 reveal that the reduction of the isolation story drift is in conflict with the
decrease of the 11th-story drift. That is, a reduction of the isolation story drift cannot be
accomplished without an increase of the 11th-story drift, whereas the 11th-story drift can
be decreased with an increment of the isolation story drift. Tables 3 and 4 show that the
DQN control algorithm can effectively reduce both the peak 11th story and isolation story
drifts that are in conflict, by including them in the reward equation.

Figure 17 shows the peak inter-story drifts of each control case along the story. The
isolation story drifts of each model are excluded in this figure, because they are much larger
than the other inter-story drifts, but they are quantitatively compared in Tables 3 and 4.
The largest inter-story drift can be seen at the 11th story from every control algorithm
in Figure 17, because the 11th story stiffness of the Shiodome Sumitomo building is the
smallest. The DQN model provides good control performance not only for the 11th-story
drift, but also for all the story drifts, compared to the other control algorithms. The control
effectiveness of the DQN model is much better than that of the comparative controllers,
especially in the lower structure. Compared to the other control cases, both the DQN and
skyhook controllers can effectively decrease the inter-story drifts in the upper structure.

The action of the DQN agent is promptly determined based on the states, including the
ground motion series and the dynamic responses of the sample structure. In this study, the
action of the DQN agent is interpreted as the command voltage to control the MR damper.
Figure 18 presents the command voltage time histories of the DQN and two comparative
control algorithms for the artificial earthquake of EV1. It can be seen that the command
voltage generated from the groundhook or skyhook algorithm is similar to the output of a
simple on–off control algorithm, which provides 0 or 5 V. However, the command voltage
generated from the DQN algorithm varies irregularly between 0 and 5 V with a step of 0.5 V.
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When the isolation story drift is too big, the DQN agent increases the command voltage
resulting in an increase of the MR damper force to reduce the isolation story drift and the
movement of the isolated upper structure. On the other hand, when the 11th-story drift
increases, the DQN agent decreases the command voltage, resulting in a decrease of the MR
damper force to make the isolated upper structure move like a mass damper. Because the
DQN algorithm generates the control command minutely, its control performance is better
than that of the comparative algorithms. The MR damper stroke–force relationships of the
three control algorithms are presented as hysteretic loops in Figure 19. The area enclosed
by the hysteretic loop is considered to be the amount of seismic energy dissipated in the
SMIS. Figure 19 shows that the MR damper in the SMIS behaves properly to dissipate the
seismic energy. It can be seen that the hysteretic loops of the groundhook and skyhook
algorithms are somewhat symmetrical about the vertical axis because of their calculation
logic. Meanwhile, the hysteretic loop of the DQN algorithm shows an atypical and very
irregular shape, because the MR damper force instantly varies based on the states of the RL
environment, including the ground motion and seismic responses of the sample structure
to make an optimal control force.
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algorithm, (c) DQN algorithm. 
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6. Conclusions

A reinforcement-learning-based semi-active control algorithm was developed in this
study. The DQN was selected from among reinforcement learning methods for semi-active
control, because it has shown many successful applications to various control engineering
fields. The seismic response control performance of the DQN for the SMIS was investigated
with comparative algorithms. For more practical study, the structural properties of the
existing Shiodome Sumitomo building and the mid-story isolation system were directly
used in this study. The sample SMIS is composed of MR dampers replacing nonlinear
passive dampers in the existing building. The DQN reward was designed to reduce
the isolation story and the peak inter-story (11th story) drifts that are in conflict. The
control performance of the DQN controller was compared with typical semi-active control
algorithms, i.e., skyhook, groundhook, passive-on, and passive-off. Seismic responses
of the original passive mid-story isolation system were used as the reference values to
evaluate the control effectiveness of the SMIS controlled by five semi-active control cases.
Two artificial ground motions were generated as seismic loads for training and evaluation
of the DQN-based semi-active controller.

Numerical analyses show that groundhook and skyhook controllers show good reduc-
tion performance of the isolation story and the 11th-story drifts, respectively, in accordance
with their design concept. Passive-on and passive-off control cases also effectively reduce
the isolation story and the 11th-story drifts, respectively, like groundhook and skyhook
controllers. Because reduction of the isolation story drift is in conflict with decrease of the
11th-story drift, these two structural responses cannot be easily simultaneously controlled
by typical semi-active control policies. However, the DQN controller can effectively reduce
both the 11th story and isolation story drifts, compared to typical semi-active control algo-
rithms. This means that the DQN network can successfully map the input state (seismic
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responses and ground motions) to the output action (control command), resulting in ef-
fective semi-active control. In this study, limited artificial ground motions were used for
training and evaluation of the DQN controller. Accordingly, to increase the reliability of the
semi-active control algorithm developed by the DQN method, other artificial or historical
earthquake loads will be required for performance evaluation. Because the reward in
the reinforcement learning method mainly affects the control performance of the DQN
controller, future research will investigate the effects of various reward designs. Although
the semi-active structural control system controlled by the DQN algorithm provides better
control performance than the passive control system, the cost of the semi-active system is
higher than that of the passive system. Whether the high cost of the semi-active system is
reasonable depends on the project circumstances; thus, it is necessary to investigate the rela-
tionship between structural performance and economic feasibility in practical applications.
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