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Abstract: The performance of classic radar geometry based on the line-of-sight (LOS) signal transmit-
ted from radar to the target in the free space is affected by multipath echoes in urban areas, where
non-line-of-sight (NLOS) signals reflected by obstacles are received by the radar. Based on prior
information of the urban situation, this article proposes a novel two-stage localization algorithm with
multipath exploitation in a dense clutter environment. In the offline stage, multipath propagation
parameters of uniformly distributed samples in the radar field of view are predicted by the ray-tracing
technique. In the online stage, a rough location of the target is estimated by the maximum similarity
between measurements and the predicted parameters of reference samples at different locations.
The similarity is described by the likelihood between measurements and the predicted multipath
parameters with respect to all possible associated hypotheses. A gating threshold is derived to
exclude less likely hypotheses and reduce the computational burden. The accurate target location is
acquired by a non-linear least squares (NLS) optimization of the associated multipath components.
Simulation results in various noise conditions show that the proposed method provides robust and
accurate target localization results under dense clutter conditions, and the offline pre-calculation of
ray-tracing ensures the real-time performance of the proposed localization algorithm. The root mean
square error (RMSE) of simulation results shows the advantage of the proposed method over the
existing method. The presented results suggest that the proposed method can be applied to NLOS
target localization applications in complex environments.

Keywords: multipath exploitation; non-line-of-sight (NLOS); target localization; data association;
non-linear least squares (NLS) localization; dense clutter

1. Introduction

Target localization in urban areas is an important requirement for both military and
civilian applications, such as emergency rescue, security surveillance and intelligent trans-
portation. A variety of techniques has been developed to detect and locate targets, including
vision cameras, sonars, lidars and radars [1]. The all-time and all-weather advantages
make radar an irreplaceable part of these techniques. However, dense buildings become
obstacles to radar electromagnetic (EM) waves, which make EM waves propagate through
not only the line-of-sight (LOS) path but also non-line-of-sight (NLOS) paths, such as
reflection, diffraction and transmission. Radar systems commonly acquire range and angle
measurements from time-of-arrival (TOA) [2,3] and direction-of-arrival (DOA) [4,5] of echo
signals as LOS path returns. However, the lengths of received NLOS signals are longer than
the range of the direct path from radar to the target in multipath propagations, and the re-
ceived DOA of NLOS signals are different from the DOA of LOS path. Therefore the NLOS
propagations lead to considerable errors in range and angle measurements in multipath
scenarios [6]. The performances of classic radar target localization methods based on LOS
geometry of free space propagation degrade significantly in such multipath environments.

To mitigate the multipath effect, multiple techniques have been proposed. Conven-
tional researchers consider multipath signals as clutter and attempt to separate multipath
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signals from the received signal so that only the LOS signal is applied for further pro-
cessing [7,8]. However, multipath signals propagated through NLOS paths provide extra
spatial information that can be utilized to detect and locate targets. Early studies in con-
strained multipath scenarios demonstrated the possibility and effectiveness of multipath
exploitation where the fixed multipath propagation can be modeled via analytical geometry
methods [9–12]. A typical application is the over-the-horizon radar (OHTR) where EM
waves are reflected by ionosphere layers at different heights. Classic data association meth-
ods (e.g., joint probabilistic data association filter (JPDAF), probabilistic multi-hypothesis
tracker (PMHT) and probability hypothesis density (PHD) filter) combined the analytical
geometry reflection model with unknown height have been proposed to improve the per-
formance of OHTR target tracking problem [13–17]. Through-the-wall radar is another
application that exploits the transmission of EM waves to detect and locate targets behind
the wall [18–20].

In urban environments, a common task is indoor positioning which locates a target
in the presence of both LOS and NLOS signals [21,22]. In this case, the NLOS signal
reflected by obstacle walls is equivalent to the bistatic radar geometry model where a signal
is transmitted from the radar tothe target and received by a virtual radar mirrored on
the reflecting wall with the original radar. Therefore, target localization can be derived
from the LOS path combined with the NLOS paths using the bistatic radar geometry
without extra radar sources. In [23], the propagation path and wall association algorithm is
proposed to associate multipath TOA signals to their corresponding reflecting obstacles,
and target localization is derived by a non-linear least squares (NLS) optimization. The
Cramer–Rao bound of the TOA-based multipath localization method is given in [24] to
analyze the localization performance of radar at different places and obtain the optimal
radar position setup in the given scenario. In [25], directional constraints are introduced
to ultra-wideband radar for indoor positioning tasks to improve location accuracy in the
absence of some NLOS paths. Liu et al. [26] proposed a multi-target location method
based on target association hypothesis and consistency checking. Another typical task in
urban areas is to detect targets behind the corner, where the LOS path does not exist and
only reflected signals can be obtained [27,28]. Considering at least two NLOS paths are
required to locate targets behind the corner, the multipath returns with the two largest echo
amplitudes are selected to obtain candidate target positions, and the target true position
is further derived by a correlation coefficient function [29,30]. Researchers also attempted
to solve the NLOS target localization problem under real-world conditions with the latest
deep learning methods [31–33].

The studies above based on analytical geometry modeling of multipath propagation
implied prior information of the propagation model determined by the specific scenario,
while the propagation model mismatching leads to significant localization error in the
actual complex scene, especially in dense clutter environments. A widely used solution
to predict EM wave propagation characteristics precisely is the ray-tracing technique
based on physical optics (PO) which approximates the EM wave propagation in terms of
rays [34,35]. The reflection, diffraction and transmission paths from the radar to the target
can be computed with known scene information. A sequential Monte Carlo PHD filter
based on real-time ray-tracing prediction is implemented to track mobile terminals in a
large-scale urban scene [36]. For simple scenarios, validation of a 2D ray-tracer has been
proved by comparison with measured data [37]. The ray-tracing technique is also used to
generate multipath fingerprints for localization methods based on DOA, time difference of
arrival or received signal strength [38–40]. However, real-time ray-tracing calculation is
time-consuming in complex environments because of its high computational complexity.
This paper concentrates on a preliminary offline calculation for ray-tracing prediction
of multipath signals combined with high-accuracy real-time online localization in dense
clutter environments. The main contributions of this paper are summarised as follows:
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1. Derivation of the likelihood of cluttered multipath measurement with respect to
the reference multipath parameters predicted by the ray-tracing technique and the
approximation of multipath likelihood;

2. Proposal of an accurate target localization method based on NLS optimizations of
associated multipath measurements;

3. Simulation results in various conditions validating the robustness and performance
of the proposed method.

The remainder of this paper is organized as follows. Section 2 introduces the multipath
propagation model and the multipath measurement model used in this paper. Section 3
describes the proposed localization algorithm in detail. In Section 4, simulations are carried
out in different conditions to analyze the performance of the proposed method. Finally,
conclusions are given in Section 5.

2. Model

In this section, we describe the multipath propagation model generated through the
ray-tracing technique and the measurement model used by the proposed algorithm in
Section 3.

2.1. Multipath Propagation Model via Ray-Tracing

Computational electromagnetics is widely used to simulate the propagation of EM
waves in the field of communication, chip design and radar. The ray-tracing technique
provides an effective approximation of EM waves when the wavelength is small compared
to the size of structures in large-scale scenes, where the full-wave numerical method, such
as a finite-difference time-domain (FDTD) method, cannot be applied because of the high
computational complexity. The ray-tracing method describes the reflection, diffraction, and
transmission of EM waves based on PO theory by representing EM waves radiated from
the source as rays [41]. Since the implementation of the ray-tracing method is beyond the
scope of our paper, details of the ray-tracing technique are not described further. In this
paper, reflection paths from a given radar position to the target position are calculated by
a commercial software Wireless Insite [42], with environmental information supposed to
be prior knowledge. The diffraction paths are not included in the simulation because the
irregular propagation geometry of diffraction paths is usually not applicable to localization
algorithms. Let us denote the radar position by

r = [xr, yr]
T , (1)

and the target position is
x = [xd, yd]

T . (2)

Then the detections of multipath propagation parameters can be abstracted into a
non-linear function related to radar and target position as

H(r, x) = Hx = {hk
x}

Np
k=1, (3)

where Np is the number of propagation paths. and hx is the measurement vector for each
path composed of corresponding TOA τ and DOA φ given by

hk
x = [τk

x , φk
x]

T . (4)

Note that Np varies when the target location changes, so the set representation Hx is
used instead of vector representation, indicating that the number of elements is not fixed.

Since the multipath propagation H(r, x) has no closed form, an intuitive idea is to sam-
ple Hx with a numerical method. Randomly distributed particles on the target state space
sampled by a real-time ray-tracing method in previous studies revealed high-precision
positioning results, while real-time ray-tracing calculation is time-consuming for the high
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computational complexity [43]. Instead, this paper uses fixed uniformly distributed sam-
ples which can be computed offline in advance. The position of uniformly distributed
samples are indexed as

s(i, j) = sij = [i · ∆x, j · ∆y]T , 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, (5)

where ∆x and ∆y are the interval of samples in the x and y direction, and Nx and Ny
are the corresponding number of samples. Figure 1 illustrates an example of a 3D ray-
tracing result from Wireless Insite software and a 2D simplification ray-tracing result which
ignored the altitude in elevation. For ease of simulation and illustration, the paper makes
some simplifications, and 2D ray-tracing is adopted for subsequent simulation verification.
Meanwhile, the method can be extended easily to 3D scenarios without modifying the
localization algorithm. The parameters of single-trip multipath propagation from the
radar to the sampled target positions are acquired by a ray-tracing method with proper
simulation setups as

H1(i, j) = {h1(i, j)}N1
k1=1, (6)

where N1 is the number of single-trip paths. The round-trip path from the radar to the
target and back to the radar is a combination of any two single-trip paths, so the number of
round-trip paths is given as

Np = N2
1 . (7)

The TOA of the round-trip path is the sum of two single-trip paths, and the DOA of
the round-trip path is equal to the DOA of the return path; thus, the multipath parameter
set of round-trip propagation for the target located at x(i, j) is given as

Hij = {hk
i,j}

Np
k=1, (8)

where each measurement vector is given by

hk
i,j = [τk1

ij + τk2
ij , φk2

ij ], 1 ≤ k1, k2 ≤ Nl . (9)

(a) (b)

Figure 1. Ray-tracing simulation examples: (a) 3D ray-tracing; (b) 2D ray-tracing.

2.2. Measurement Model

In this subsection, we will introduce the radar measurement model. Let us denote the
measured set of multipath echo as

Z = {zj}Nm
j=1, (10)

where Nm is the number of detections, and zj is the measurement vector composed of TOA
and DOA pairs as

zj = [τ j, φj]T . (11)
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The radar detection process will produce false alarms and noise; therefore, the mea-
sured set Z is not the same as the theoretical multipath parameter set Hx of the target. The
measurement set consists of two parts denoted by

Z = C∪ Zx, (12)

where the first part C denotes false alarms generated from clutter, and the second part Zx
denotes measurements from the detected multipath components of target Hx.

The clutter C is modeled as a Poisson point process (PPP) with Poisson rate λ; thus,
the number of clutter measurements is a Poisson distribution with the probability density
function (PDF) given by

p(|C| = n) = e−λ λn

n!
, n = 0, 1, · · · (13)

Each clutter measurement c ∈ C is randomly distributed in the measurement space
independently with the PDF given by

p(c) =
1
V

, (14)

where V is the volume of the measurement space. The measurement vector z is specified
by the radar TOA and DOA range as

τ ∈ [τmin, τmax], φ ∈ [φmin, φmax], (15)

thus the volume V is derived as

V = (τmax − τmin) · (φmax − φmin). (16)

The second part Zx is detections from the target. Each path of multipath echos from
the target either generates one measurement with detection probability PD, or becomes a
missed detection with probability 1− PD. The measurement noise for each detected path is
modeled as an additive zero-mean Gaussian white noise w; therefore the detected set Zx is
the union of detections of each path expressed as

Zx = D(h1
x + w) ∪ · · · ∪ D(h

Np
x + w), (17)

where D(·) denotes for the detection process which is a Bernoulli distribution with proba-
bility parameter PD denoted as{

Pr(D(hx + w) = {hx + w}) = PD,
Pr(D(hx + w) = ∅) = 1− PD.

(18)

3. Method

In this section, the proposed two-stage localization algorithm is introduced. Figure 2
illustrates the framework of target detection and the localization algorithm. The overall
structure of the proposed algorithm contains an offline stage and an online stage. In
the offline stage, multipath propagation parameters of uniformly distributed targets are
simulated by the ray-tracing technique introduced in Section 2.1. In the online stage, a
two-step localization algorithm with multipath exploitation is proposed to locate targets
with dense clutter. The first step is to obtain the multipath propagation model and a
rough location by the maximum likelihood estimation (MLE) of measurement set Z and the
sampled target multipath parameters Hij. In the second step, the accurate target location
is estimated by an NLS method to eliminate off-grid errors originating from samples.
A detailed discussion of the proposed likelihood function and localization algorithm is
presented in the following subsections.
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Figure 2. Framework of the proposed target localization algorithm.

3.1. Likelihood Function with Multi-Measurement

The classic likelihood function describes the probability between target state and mea-
surement, assuming that a target generates at most one measurement in one observation.
However, this is not the case in multipath scenarios where a target may generate more
than one measurement. Therefore, finite-set statistics (FISST) theory [44] is introduced to
describe both the uncertainty of target location and the uncertainty of multipath propaga-
tion simultaneously. This subsection derives the likelihood function f (Z|Hx) to describe
the conditional probability density that the measurement set Z is generated by a potential
target multipath propagation Hx.

We introduce a multipath measurement association hypothesis variable θ = [θ1, · · · , θNp ]

to interpret whether each path hk
x is detected in the measurement set Z as

θk =

{
j ∈ {1, · · · , Nm}, if zj is the detection of hk

x,
0, if hk

x is not detected.
(19)

So the measurements generated from multipath component detections are given as

zθk
x = hk

x + w, k = 1, · · · , Np. (20)

With the assumption that all measurements, including false alarms from clutter and
detections from target multipath returns, are independent of each other, the conditional
probability density of detected set Zx with the given association hypothesis is derived as

p(Zx|Hx, θ) = ∏
θk=0

(1− Pd) ∏
θk>0

Pd · p(zθk |hk
x), (21)

where the first product component denotes the probability of undetected paths, and the
second component denotes the probability of detected paths, and the conditional proba-
bility density of each measurement given the associated path parameter is modeled as a
Gaussian distribution

p(z|hx) =
1

(2π)
N
2 det

1
2 (Σ)

exp
[
−1

2
(z− hx)

TΣ−1(z− hx)

]
, (22)
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where N is the dimension of vector hx, and Σ is the covariance of measurement noise w.
Measurements unassociated with target multipath echos in the hypothesis are false

alarms generated from clutter, which can be expressed as

C = {zj|@θk = j, k = 1, · · · , Np}. (23)

Then, the probability function of clutter conditioned on an association hypothesis is
given as

pc(C|θ) = e−λ(
λ

V
)|C|, (24)

where |C| denotes the cardinality of the set.
The measurement likelihood conditioned on an association hypothesis is given as

p(Z|Hx, θ) = pc(C|θ)p(Zx|Hx, θ). (25)

Finally, the likelihood function of measurement set Z given target state set Hx is
derived by summing up all association hypotheses as

p(Z|Hx) = ∑
θ∈Θ

p(Z|Hx, θ), (26)

where Θ denotes the space of all possible association hypotheses.

3.2. Approximation of Likelihood

Let us consider the number of all possible hypotheses in Θ. The association variable θ
is an Np-dimensional vector; therefore, the number of nonzero values of θ does not exceed
Np. In addition, each measurement z in the measurement set is associated with the target
propagation path at most once; thus, the number of nonzero values of θ does not exceed Nm.
Considering the case where θ contains k nonzero values, then the number of associations is
expressed as (

Nm

k

)(
Np

k

)
k!, (27)

where (Nm
k ) denotes the number of ways to select k measurements from Z, (Np

k ) denotes the
number of ways to select k paths from Hx, and k! denotes the number of ways to assign the
selected k elements. Therefore, the number of hypotheses in Θ is given as

N(Nm, Np) =
min(Nm ,Np)

∑
k=0

(
Nm

k

)(
Np

k

)
k!. (28)

Since N(Nm, Np) increases exponentially with the number of measurements and target
paths, the O(n!) level time complexity of p(Z|Hx) is practically impossible to compute.
Hence, appropriate approximation and complexity reduction techniques are introduced to
reduce the numerical burden.

No threshold is set in the previous formula indicating that the measurement can be
associated with any target path parameter hx. However, when the measurement is far away
from hx, the conditional probability density p(z|hx) becomes small and can be ignored.
Hence, we introduce a distance matrix D to describe the distance between each predicted
path and measurement, where the normalized scale-invariant metric Mahalanobis distance
is applied to obtain the distance between the k-th predicted path and j-th measurement as

dj,k =
√
(zj − hk

x)
TΣ−1(zj − hk

x) (29)
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Then, only measurements within a gate around the predicted target path are consid-
ered valid, and the association matrix G is acquired by a gating threshold T as

Gj,k =

{
1, if d2

j,k < T,

0, otherwise.
(30)

Without losing generality, we consider two hypotheses θ and θ′ that differ only in the
K-th association expressed as{

θk = θ′k, k = 1, · · · , Np, k 6= K,
θk > 0, θ′k = 0, k = K.

(31)

The threshold T should satisfy that the probability of a valid association between zθK

and hK
x is larger than the probability that they are not associated with; therefore, we obtain

the inequality as
p(Zx|Hx, θ) > p(Zx|Hx, θ′). (32)

By substituting (21) and (24) into (32), we obtain

Pd · p(zθK |hK
x ) >

λ

V
(1− Pd). (33)

Therefore, the threshold T is given by substituting (22) as

T = −2 log
(

2π
√

det(Σ)
λ

V
1− Pd

Pd

)
. (34)

The number of hypotheses decreases significantly after the gating step. All valid
hypotheses are enumerated by the recursive method proposed in the next step. Considering
the case where two multipath components are associated with three measurements by an
association matrix

G =

 1 1
0 1
0 0

, (35)

we extend the matrix by appending an Nm-dimentional identity matrix to the right as

G′ =

 1 1
0 1
0 0

∣∣∣∣∣
1 0 0
0 1 0
0 0 1

, (36)

where the left part denotes the associations with the target multipath, and the right part
denotes the associations with clutter.

A valid assignment hypothesis under the extended association matrix expression is
defined as a Nm × (Np + Nm) matrix A with the elements satisfying

Ajk ∈ {0, 1}, ∀j, k,

∑j Ajk = 1, ∀k,

∑k Ajk ∈ {0, 1}, ∀j.

(37)

The first constraint denotes that the j-th measurement and the k-th target path are
assigned. The second constraint denotes that each measurement must be assigned to a
target path or clutter. The third constraint denotes that each target path or clutter is assigned
at most once.

Considering that G′ is a sparse matrix, it is feasible to enumerate all possible assign-
ment matrices A by a recursive enumeration method. Assume that m nonzero values are
found in the first row of G′. We have m valid assignment matrices initialized with A1K1 = 1
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separately, where K1 is the corresponding column of the nonzero value. We then remove
the first row and the K1-th column in G′, and G′ is reduced to a (Nm − 1)× (Np + Nm − 1)
association matrix. The procedure is repeated with the search and remove steps in the
reduced association matrix until it is empty. The column of the nonzero value in the j-th
recursion is recorded as Kj, therefore AjKj is set to 1 recursively. The result of all valid
assignment matrices for the example association matrix in (36) is given by

A1 =

 1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

,

A2 =

 1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

,

A3 =

 0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

,

A4 =

 0 0 1 0 0
0 1 0 0 0
0 0 0 0 1

,

A5 =

 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

,

(38)

where each assignment matrix can be converted into an association vector as

θk =

{
j, ∃Ajk = 1, k = [1, · · · , Np],
0, otherwise.

(39)

Therefore, the corresponding valid association vectors are given as

θ1 = [1, 2],

θ2 = [1, 0],

θ3 = [2, 0],

θ4 = [0, 2],

θ5 = [0, 0].

(40)

3.3. Target Localization Algorithm

In this subsection, we proposed a two-step localization algorithm based on the like-
lihood function derived in the previous subsection. In the first step, the target multipath
propagation model is estimated by traversal of the maximum likelihood between measure-
ment set Z and all predicted samples Hij as

Ĥ = arg max
1≤i≤Nx ,1≤j≤Ny

p(Z|Hij). (41)

The sample location corresponding to the multipath propagation model Ĥ obtained
by MLE can be regarded as a rough estimation of the target location, while the uniformly
distributed samples lead to off-grid errors. Hence, in the second step, an NLS-based
localization algorithm is proposed to obtain the accurate target location based on the
roughly estimated target location x̂.

By law of reflection, the reflection path from radar to the target is equivalent to the path
propagated to the target from a virtual radar mirroring the real radar with respect to the
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reflection obstacle as illustrated in Figure 3. We denote the normal vector of the reflecting
surface as n = [n1, n2, n3]

T ; therefore, the reflecting plane equation can be expressed as

nT · [x− x0, y− y0, z− z0]
T = 0, (42)

where t = [x0, y0, z0]
T is a point on the plane. Then, the distance from the radar r = [xr, yr, zr]T

to the plane is given as

d =
nT(r− t)
‖n‖ , (43)

where ‖n‖ =
√

n2
1 + n2

2 + n2
3 is the length of the vector. The virtual radar position with the

same distance as r in the opposite direction is derived as

r1 = r− 2d
n
‖n‖ . (44)

We assume that n is a unit normal vector; thus, the mirrored virtual radar position can
be rewritten into a matrix form as xr1

yr1

zr1

 =

 1− 2n1n1 −2n2n1 −2n3n1
−2n1n2 1− 2n2n2 −2n3n2
−2n1n3 −2n2n3 1− 2n3n3

 xr
yr
zr

+ 2nTt

 n1
n2
n3

. (45)

Therefore, the mirroring of a radar point r with respect to a plane p is a linear transfor-
mation denoted as

r1 = Sp(r). (46)

The virtual radar position of multi-bounce reflection can be derived by the cascade of
multiple single-bounce reflections. Let us denote the single-trip multi-bounce reflection
path from target to the target as R−O1 − · · · −On − T, where O1, · · · , On are reflection
points with corresponding reflection planes p1, · · · , pn. The virtual radar with respect to
p1 is given as r1 = Sp1(r), and the equivalent path starting from virtual radar is given
as R1 −O2 − · · · −On − T. By recursion, the equivalent virtual radar of the single-trip
multi-bounce reflection is obtained by

rn = Spn(r
n−1) = Spn(Spn−1(r

n−2)) · · · ≡ S(r). (47)

As described in the previous subsection, measurements and predicted paths of x̂
are associated by the assignment matrices. Let us denote one of the predicted paths px̂
is associated with measurement z. The round-trip signal received by the radar consists
of single-trip paths, the transmitted path and the received path. The two virtual radars
r1 = [xr1 , yr1 ]

T and r2 = [xr2 , yr2 ]
T of the transmitted path and the received path can be

obtained by (47). If the transmitted path and the received path are the same, the radar
geometry is equivalent to a monostatic radar geometry from virtual radar to the target
directly. If the two paths are different, the radar geometry is equivalent to a bistatic radar
geometry where the signal is transmitted from virtual radar r1 to the target and received by
virtual radar r2. Therefore, the length of the received round-trip path is derived as

h1 =
√
(xr1 − xd)2 + (yr1 − yd)2 +

√
(xr2 − xd)2 + (yr2 − yd)2, (48)

where x = [xd, yd]
T is the target location, and the received DOA is given as

h2 = arcsin

 yr2 − yd√
(xr2 − xd)2 + (yr2 − yd)2

. (49)
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The path parameter is expressed as a non-linear function of the target location by

h(x) = [h1, h2]
T . (50)

The conditional probability function of the measurement z with respect to the associ-
ated path is given as

p(z|h(x)) = 1

2π det
1
2 (Σ)

exp
[
−1

2
(z− h(x))T

Σ−1(z− h(x))
]

, (51)

where h = [h1, h2]
T . Therefore, the probability of the assignment θ̂ is derived as

p(Z|x) = pc(C|θ̂) ∏
θ̂k=0

(1− Pd) ∏
θ̂k>0

Pd · p(zθ̂k |hk(x)), (52)

where θ̂ is the most significant association hypothesis selected from all valid hypotheses by

θ̂ = arg max
θ

p(Z|Hx, θ). (53)

By maximizing the logarithmic likelihood function, the target localization problem is
converted into an NLS optimization problem as

x̂ = arg min ∑
θ̂k>0

(
zθ̂k − hk(x)

)T
Σ−1

(
zθ̂k − hk(x)

)
. (54)

The NLS optimization problem can be solved by numerical methods initialized with
the target location estimated in the first step.

Normal

T

O

R R1

Figure 3. A single-bounce path from radar R to the target T reflected at position O and the equivalent
path from virtual radar R1 to the target directly.

4. Simulation Results

Simulations are presented to evaluate the proposed algorithm in this section. The
scenario setup is illustrated in Figure 4, where the dark blocks represent the obstacles
in the scenario. A radar locates at (60, 40) with the main lobe direction facing north. A
total of 100 targets distributed from (35.5, 125.5) to (134.5, 125.5) along the x-axis direction
at intervals of 1 m are simulated to study the robustness of the proposed localization
algorithm in different multipath propagation conditions. The sampled locations computed
offline are located at grids from (0, 0) to (160, 180) with intervals of 1 m along the x and y
directions. Therefore, the off-grid error of localization caused by the distance between the
targets and their nearest sample is

√
2/2 m.
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Figure 4. Simulation scenario setup.

Figure 5 illustrates the number of round-trip multipath components in the study area
restricted by a rectangle with length of 160 m and width of 180 m, where the times of
bounces for a simulated single-trip path in Figure 5a,b is limited to less than one and two,
respectively. The increase in reflection times complicates the multipath propagation model
not only in the maximum received multipath components but also in the heterogeneity of
multipath components. As is shown in Figure 5, the maximum number of round-trip paths
is 25 for the single-bounce case, while the number increases to 144 for the double-bounce
case. Moreover, the propagation model varies quickly and becomes more sensitive to target
locations as the reflection times increase. However, the increased paths do not contribute
to the localization area because they still cannot reach the shadow regions compared to
the single-bounce case. Considering the requirement of radar signal receiving energy, the
times of bounces are limited to less than one in the following simulations, and single-trip
reflection paths of more than one bounce are considered undetectable.

The ground truth of target multipath measurements as well as the cluttered measure-
ments are illustrated in Figure 6. In the simulation, the probability of each path being
detected PD is set to 0.8. Since the measurement of distance and angle are independent, zero-
mean Gaussian noises are added to the distance and angle measurements separately with
the corresponding standard deviation (STD) of the noises as std(τ) and std(φ). Therefore,
the covariance of measurement is given as

Σ =

[
std2(τ) 0

0 std2(φ)

]
. (55)

We assume the Poisson rate λ equals 20, which means that each radar scan produces
20 cluttered measurements on average. Each cluttered measurement c = [τ, φ] is generated
by two uniform distributions as

τ ∼ U(0, 350),

φ ∼ U(0, 180),
(56)

where [0, 350] and [0, 180] are distance and angle range of radar, respectively.
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Figure 5. Number of round-trip multipaths in the study area: (a) Reflection is limited to single-bounce;
(b) reflection is limited to double-bounce.
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Figure 6. Ground truth and measurements with clutter: (a) target trajectory in the measurement
space; (b) measurements versus target index.

The localization results of the proposed algorithm are illustrated in Figure 7, where
the dotted lines denote the grid-based localization error of the first step, and the solid
lines denote the NLS-based localization error of the second step. Results from index 38 to
48 are excluded because no path of the target behind the obstacle propagates to the radar
as shown in Figure 6b. Localization error is defined as the Euclidean distance between
the estimated target location and the ground truth by ‖x̂− x‖. The red lines present the
simulation results that the STD of distance and angle measurement equals one. In the
case of low noise level, the grid-based method results are accurate, and the off-grid error
is the main cause of localization error. Therefore, the NLS-based method can improve
the localization accuracy based on the correct estimation of the multipath propagation
model. However, in the case of high noise levels displayed in the blue lines, the NLS-based
approach shows little improvement due to the incorrect multipath propagation model
estimated in the first step.

Furthermore, the impact of measurement noise is analyzed by Monte Carlo simulation
of a target located at (110.5, 125.5). The root mean square error (RMSE) of localization is
obtained by 100 simulations as

RMSE =

√√√√ 1
100

100

∑
i=1
‖x̂i − x‖2. (57)
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Figure 8 shows the RMSE with respect to different distance and angle noise STD, where
Figure 8a is the grid-based result, and Figure 8b is the NLS-based result. The simulation
result in Figure 8a shows that the first step of the proposed algorithm is more sensitive to
distance measurement than angle measurement. Accurate localization results are obtained
regardless of angle error in the condition that the STD of distance noise is less than one.
However, the localization error increases along with the STD of distance when the STD of
angle is less than one. The reason is that nearby samples share similar received angles, while
the distance varies greatly. Therefore, if the distance measurement is precise, measurements
with large angle errors are not associated with nearby samples. However, if the angle
measurement is accurate and the distance measurement is inaccurate, the measurement
is more likely to be associated with a nearby sample with similar angles and result in a
wrong estimated location. Results illustrated in Figure 8b validate the effectiveness of the
NLS-based re-localization process when the first step estimates the correct sample location.
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Figure 7. Localization error of the proposed algorithm at different locations.
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Figure 8. RMSE of localization versus STD of the measurement: (a) grid-based results; (b) NLS-
based results.

The detailed performance of the proposed algorithm is illustrated in Figure 9. The
NLS-based method improves the localization accuracy when the STD of distance is less than
1.5. When the STD of the angle equals 0.5, the proposed algorithm can locate the target in
the high clutter environment with precision less than the off-grid error. When the STD of the
angle becomes larger, the proposed algorithm still has fairly good performance, although
the NLS-based method has no more improvement. If the radar distance measurement is
accurate while the angle measurement is inaccurate, which is often the case, the proposed
algorithm provides precise location results as shown in Figure 9b.
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Figure 9. RMSE of localization versus STD of the measurement: (a) RMSE versus distance measure-
ment; (b) RMSE versus angle measurement.

Existing multipath localization algorithms do not consider detections with clutter,
and most of them have strict restrictions on the target scene, such as in the corner of a
corridor [28] or in an urban canyon [25]. We choose an NLOS target localization algorithm
based on grid matching of TOA returns proposed in [45] to verify the performance of the
proposed algorithm. Since the original referenced algorithm does not consider measure-
ments with clutter, the performance of the referenced algorithm is evaluated by Monte
Carlo simulations with clean measurements as well as cluttered measurements. Since the
referenced TOA-only algorithm does not use angle measurements, we restrict the proposed
algorithm by fixed STD of angle measurements and analyze the performance of the two
algorithms with varying STD of distance measurement. The Monte Carlo results illustrated
in Figure 10 show that the proposed algorithm of our paper outperforms the referenced
algorithm under both conditions even if the STD of angle measurement is set up to four.
Table 1 shows the RMSE of the two localization algorithms. The proposed algorithm per-
forms well in both scenes, and the RMSEs are less than 1 m. However, the performance of
the referenced algorithm decreases significantly in the presence of cluttered measurement,
and the algorithm is not applicable in dense clutter environments.
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Figure 10. Comparison with the referenced algorithm in [45].

Table 1. RMSE of simulation results.

Proposed Algorithm Referenced Algorithm

std(τ) = 0.5 std(τ) = 1 std(τ) = 0.5 std(τ) = 1

RMSE with no clutter (m) 0.2247 0.3294 1.3969 6.3886

RMSE with dense clutter (m) 0.2370 0.3676 26.9842 40.3755
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5. Conclusions

In this work, we presented a target localization method in multipath scenarios with
high clutter. Multipath propagation is predicted by the ray-tracing technique based on prior
knowledge of the urban environment. The proposed method determines the multipath
propagation model by the likelihood function of multipath measurement and the predicted
multipath with respect to all possible association hypotheses between them. Approximation
of the proposed likelihood function is derived by excluding impossible hypotheses with
a gating threshold. Then, accurate target location is obtained by an NLS optimization
based on the estimated multipath propagation model. Simulation results showed that the
proposed method provides robust and accurate estimation of target location in a high clutter
environment. The promotion of the proposed multi-measurement likelihood function to
the classic single-measurement tracking problem can be an interesting and practical topic.
Particularly, considering the association explosion in the multi-target multi-measurement
localization problem, integration of localization and the tracking process is expected to
provide a possible solution in future work.
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