
Citation: Bai, Y.; Li, X.; Wu, X.; Zhou,

Z. Dynamic Computation Offloading

with Deep Reinforcement Learning in

Edge Network. Appl. Sci. 2023, 13,

2010. https://doi.org/10.3390/

app13032010

Academic Editor: Gianluigi Ferrari

Received: 8 January 2023

Revised: 29 January 2023

Accepted: 31 January 2023

Published: 3 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Dynamic Computation Offloading with Deep Reinforcement
Learning in Edge Network
Yang Bai 1, Xiaocui Li 1, Xinfan Wu 1 and Zhangbing Zhou 1,2,*

1 School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China
2 Computer Science Department, TELECOM SudParis, 91000 Evry, France
* Correspondence: zbzhou@cugb.edu.cn

Abstract: With the booming proliferation of user requests in the Internet of Things (IoT) network,
Edge Computing (EC) is emerging as a promising paradigm for the provision of flexible and reliable
services. Considering the resource constraints of IoT devices, for some delay-aware user requests, a
heavy-workload IoT device may not respond on time. EC has sparked a popular wave of offloading
user requests to edge servers at the edge of the network. The orchestration of user-requested of-
floading schemes creates a remarkable challenge regarding the delay in user requests and the energy
consumption of IoT devices in edge networks. To solve this challenge, we propose a dynamic com-
putation offloading strategy consisting of the following: (i) we propose the concept of intermediate
nodes, which can minimize the delay in user requests and the energy consumption of the current tasks
handled by IoT devices by dynamically combining task-offloading and service migration strategies;
(ii) based on the workload of the current network, the intermediate node selection problem is modeled
as a multi-dimensional Markov Decision Process (MDP) space, and a deep reinforcement learning
algorithm is implemented to reduce the large MDP space and make a fast decision. Experimental
results show that this strategy is superior to the existing baseline methods to reduce delays in user
requests and the energy consumption of IoT devices.

Keywords: computation offloading; service migration; deep reinforcement learning

1. Introduction

With the booming development of the Internet of Things (IoT), millions of sensors
and devices are being deployed at the network’s edge [1], generating vast amounts of data.
Due to the limited storage and computing resources, these IoT devices face significant
challenges [2] in storing and processing the data. An effective solution is to offload complex
tasks to the remote cloud. By making use of the rich computing resources of the cloud-
computing platform, the task response time and energy consumption of IoT devices can be
reduced. However, for some delay-sensitive applications, such as real-time video stream-
ing [3] and real-time face recognition [4], cloud computing may not be able to respond in
time, due to the high communication overhead and limited network bandwidth. To resolve
the above contradictions, CISCO proposed an Edge Computing (EC) paradigm [5]. In the
EC paradigm, spatially distributed resource servers, called edge servers, form a large-scale
computing network [6]. Using these edge servers, data storage and processing is carried
out outside the data generation device, reducing the storage and data processing overhead.
Thus, the EC paradigm efficiently increases the network capacity [7] and reduces the energy
consumption of IoT devices. Moreover, geographically, due to the edge server’s proximity
to the users, the EC paradigm significantly improves the Quality of Service (QoS). However,
due to the proliferation of computation-intensive tasks and edge servers’ limited resources,
the edge server cannot process all task requests in a timely manner. Thus, computation
offloading was proposed to relieve the heavy workload of the edge servers.

Many researches are focused on reducing network energy consumption and service
response delays by computation offloading. For example, an alternating minimizing

Appl. Sci. 2023, 13, 2010. https://doi.org/10.3390/app13032010 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13032010
https://doi.org/10.3390/app13032010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13032010
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13032010?type=check_update&version=2

Appl. Sci. 2023, 13, 2010 2 of 20

algorithm is proposed to achieve energy-optimal computation offloading [8]. To minimize
the overall offloading time, the authors designed a delay-dependent, priority-aware, task-
offloading strategy in [9], which assigns priority to each task according to its deadline. These
papers concentrate on partial offloading strategies or the joint optimization of offloading
decisions and resource allocation [10–14]. However, most of the related research only
focuses on task offloading to tackle the problems of service response latency and the limited
energy consumption of IoT devices, ignoring the fact that the users’ service requests are
highly dynamic in practice. Edge servers may not configure the services required by the
task, which will constrain the task offloading strategy. Service migration from the cloud
to the network’s edge is introduced in [15] to resolve the conflict between the diversity
of service requests and the limited number of services on the edge server. However, the
communication time and energy cost regarding communication between cloud servers
and edge servers are high. As a result, the frequent migration of services from the cloud
to edge servers will lead to an increased user response latency and increased energy
consumption by IoT devices. One possible solution to this problem is to migrate services
between edge servers, bringing available services closer to the user devices, and thereby
reducing the service migration’s extra cost [16]. To achieve the best balance between QoS
and migration costs, and bring services closer to users, when and where [17] to migrate
services must be determined. These works aim to achieve low-latency service migration
and seamless computation in a dynamic traffic environment in [18–21]. An autonomous
bandwidth allocation approach is proposed to suppor low-latency service migration [22].
The authors used an algorithm based on decision theory to find an optimal service migration
path [23]. Most of the existing works concentrated on finding an optimal algorithm to
lower the delay in task offloading or service migration. However, the decision time of
the algorithm itself is ignored. For delay-sensitive applications and the unstable network
environments, the complexity and robustness of decision-making algorithms are key to
fast decision-making [24]. In general, the problem of task-offloading and service migration
can be expressed as a Markov Decision Process (MDP) [25]. The use of reinforcement
learning algorithms to find the optimal MDP strategy [26] is a great choice. Among the
various reinforcement learning algorithms, the Q-learning algorithm has the advantage of
allowing for fast decision-making [27]. Nevertheless, for large sets of states and actions, the
traditional Q-learning algorithm cannot solve large-scale MDP problems. Deep learning
can use Deep Neural Networks (DNNs) to learn very complex functions and deal with
high-dimensional data samples. By combining q-learning with deep learning, a Deep
Q-leaning Network (DQN) reinforcement learning model is proposed, which inspired our
work [28]. Collaboration among edge servers, such as task offloading and service migration,
essentially improves the QoS and reduces energy consumption in the EC paradigm. Most of
the related works consider the two collaboration strategies separately, and do not efficiently
combine the two strategies.

To meet this challenge, this paper proposes an effective computational offloading strat-
egy, which minimizes the task-processing cost by dynamically combining task-offloading
and service migration strategies. Our main contributions can be summarized as follows:

• We propose a novel dynamic computation offloading strategy, where the computation
offloading and service migration are combined to select intermediate nodes with suffi-
cient resources. This strategy can minimize the cost of task processing user requests.

• We model this kind of optimal intermediate node selection problem as an MDP and
implement deep reinforcement learning algorithms to reduce the large MDP space
and achieve fast decision-making.

• A large number of simulations are carried out to verify the effectiveness of this strategy
in reducing both the delay and the energy consumption.

The rest of this paper is organized as follows. Section 2 reviews and discusses relevant
works. Section 3 presents the three-tier system model, delay model, energy consumption
model and problem formulation. Section 4 presents a detailed description of our dynamic

Appl. Sci. 2023, 13, 2010 3 of 20

computation strategy and deep reinforcement learning-based algorithm. Section 5 conducts
extensive simulations to validate this algorithm’s efficiency. Section 6 concludes this work.

2. Related Work

With the growth of computation-intensive tasks and the diversification of service
requests, computation offloading and service migration in EC have attracted increased
attention. Many researchers are committed to designing effective algorithms to improve
QoS and reduce costs. The relevant algorithms and models are discussed in the following.

2.1. Task Offloading in Edge Computing (EC)

The decision-making factor in task offloading plays a key role in edge networks. Plenty
of works have designed efficient algorithms or models. The authors of [8] designed an
Energy-optimal Dynamic Computation Offloading (EDCO) scheme by jointly optimizing
various parameters. The research has proposed a novel Delay-dependent Priority-aware
Task-Offloading (DPTO) strategy for task scheduling [9]. A socially aware dynamic com-
putation offloading scheme was proposed in [10]. Some researchers considered each fog
node’s time–energy-efficiency and priority to propose a task-offloading scheme called
Fair Task-Offloading (FTO) [11]. Some studies have focused on the partial offloading
approach to achieve a trade-off between the energy consumption of IoT devices [12] and
task-processing delays [13,14]. The authors introduced a new dynamic edge-computing
model and designed an online primal-dual algorithm to offload the task when it arrives [29].
In reference [30], a new optimization model to maximize the expected unloading rate of
agents is proposed, using the game-theory method. A novel task-offloading method
based on meta-reinforcement learning is proposed to improve the generalization ability
of the offloading algorithm [31]. Based on a fog resource, a Fog Resource-aware Adaptive
Task-Offloading (FRATO) framework is proposed to flexibly select the optimal offloading
policy [32]. The authors proposed a computation offloading and resource allocation strat-
egy named Deep Deterministic Policy Gradient (DDPG), based on the deep reinforcement
learning presented in [33].

However, these works did not consider the service that was requested by users, and
may not be configured on the execution node. In this work, we introduce a dynamic
computation offloading strategy, which takes the intermediate nodes with rich computing
resources as the execution nodes in the task. If the execution node does not configure
the corresponding service, the service migration process will occur in parallel. The deep
reinforcement learning algorithm is used to help the optimal intermediate node make a
quick decision.

2.2. Service Migration in Edge Computing (EC)

The limited services of edge servers and the users’ mobility bring more challenges
to the EC paradigm. Service migration between edge servies has attracted attention as a
means of achieving low-latency and seamless computation. A service migration strategy
based on user mobility was proposed [34]. As the user device moves, the service migrates
to another edge server. The literature [35] developed an optimal iterative relaxation-
and-rounding-based solution approach to minimize the migration cost. Considering the
high mobility of vehicles, the authors transform the service migration problem into an
uncertain decision optimization problem and designed a Latency-aware Service Migration
method with Decision theory (LSMD) [23]. However, it is difficult to achieve fast algorithm
convergence due to the traditional heuristic algorithm’s high time complexity. The decision
process of service migration is modeled as a one-dimensional MDP [36]. Therefore, it is
appropriate to use the reinforcement learning algorithm for service migration decisions.
Reinforcement learning is emerging as a promising approach to optimize service migration
strategies in academics. The migration strategy was optimized based on reinforcement
learning, with the service migration delay as the objective function [37]. In addition, some
researchers proposed a novel service migration algorithm and architecture to support

Appl. Sci. 2023, 13, 2010 4 of 20

mobility tasks based on reinforcement learning, which can efficiently reduce the extra
delay and energy costs of the migration process [38]. The literature [39] modeled the
service migration problem as a complex optimization and implemented deep reinforcement
learning to approximate the optimal policy.

Our work also adopted deep reinforcement learning to achieve quick decision-making,
and we dynamically combined the service migration with the task-offloading. Decisions
regarding when and where to migrate the task’s corresponding service were related to our
dynamic computation offloading strategy.

3. Modeling And Problem Formulation
3.1. System Model

As shown in Figure 1, the system’s architecture has three layers: the user layer, edge
server layer, and the cloud layer [40]. The user layer includes IoT devices. IoT devices
collect the data needed for various services and transmit them to the nearest edge server
through wireless communication for further processing. These IoT devices can send service
requests and broadcast them to all edge servers. These service requests will be received and
processed by the nearest edge server. They can also be offloaded to other idle edge servers
via access networks [41]. In the edge server layer, a service can respond to requests from
multiple IoT devices. Each task generated by devices is served by a corresponding service,
which shares its physical resources with other services on the same edge server [42]. Edge
servers not only provide computational resources for task processing, but also determine
the computation offloading strategy [43]. The cloud layer is far from IoT devices and
edge servers. The cloud is mainly responsible for data replication and load-balancing,
not computing.

Migration

Edge server

Task data

Service

Data flow

IoT device

Figure 1. System architecture.

Based on the system model described above, we present some of the notations used
in this paper. F = {F1, F2, . . . , Fn}, representing the set of edge servers described by the
following attributes: the unique identifier of each server Fi.id, the geographic location
Fi.loc = (Lx, Ly), the processing capacity of edge server Fi.cap, the list of services currently
hosted by the edge server Fi.hostLst, and the list of tasks currently being processed by the
edge server Fi.pt. The main purpose of this paper is to find a better way to reduce the
delays in task processing and the energy consumption of the edge networks, instead of
studying the edge server heterogeneity. Therefore, we assume that all edge servers have the

Appl. Sci. 2023, 13, 2010 5 of 20

same physical resources, which include CPU processing capacity, bandwidth, memory, and
storage. In the realistic setting, services are highly diverse. Without loss of generality, we
assume that the edge server layer includes m types of services for simplicity, labeled as a set
H = {H1, H2, . . . , Hm}, which is described as having the following attributes: the unique
identifier of the service Hi.id; the service capacity Hi.bytes. Dividing the time period T
evenly into time slots, the time slot set can be represented by T = {T1, T2, . . . , Tt}. In each
time slot, the IoT devices at the user layer are assumed to issue k task requests, labelled
as C = {C1, C2, . . . , Ck}, which can be described by the following attributes: the unique
identifier of the task Ci.id, the geographic location Ci.loc = (Lx, Ly), the service type of the
task Ci.Hj, the capacity of the task data Ci.bytes and the number of CPU cycles required for
task processing Ci.cir.

3.2. Delay Model

In this paper, the delay model includes the task-offloading delay, the task queuing
delay, the task processing delay and the service migration delay. Detailed definitions and
formulas for these involved delay models are as follows.

3.2.1. Task-Offloading Delay

The task-offloading delay is defined as the time taken for data transmission between
the local edge server and target edge server. The time needed for task offloading is related
to the data capacity and the transmission speed. Therefore, the data transmission delay
from user Ci to the edge server Fj at time slot Tt can be expressed as follows:

di,j,t
to =

Ci.bytes

Vi,j,t
tr

(1)

where Ci.bytes is the capacity of the task data; Vi,j,t
tr is the data transmission speed and can

be defined as:

Vi,j,t
tr = Blog2(1 +

Pi
txGi,j,t

Nnoise
) (2)

where B represents the channel bandwidth; Pi
tx represents the transmission power of user

device Ci; Gi,j,t represents the channel gain between the user device Ci and edge server Fj;
Nnoise is the background noise.

3.2.2. Task Processing Delay

The task request needs to process on the edge server, which requires computing re-
sources. Therefore, the processing delay is mainly related to the edge server’s computation
speed. In the scenario in this article, the physical resources of all edge servers are the same
as those for simplicity. Therefore, the processing delay in the task request can be formulated
as follows:

di,j,t
pr =

Ci.cir
Fj.cap

(3)

where Ci.cir represents the number of CPU cycles required for the task and Fj.cap is the
CPU frequency that denotes the edge server’s processing capacity.

3.2.3. Task Queuing Delay

If the edge serve is idle when the task arrives, it will immediately start processing the
task. Otherwise, the task will be added to the queue. After all the queue tasks are processed,
the edge server loads the corresponding service to process the current task. Therefore, the
queuing time is the wait time from when the task arrives at the node to the moment it starts

Appl. Sci. 2023, 13, 2010 6 of 20

to be processed. If we assume that K tasks precede the current task, then, from Equation (3),
we can obtain:

di,j,t
tq =

K

∑
k=1

Ck.cir
Fj.cap

(4)

3.2.4. Service Migration Delay

The delay in service migration is similar to the delay in task offloading. This is
mainly related to the service capacity and the transmission speed. The migration decision
time is negligible compared to the transmission delay [44]. The migration delay can be
expressed as:

di,t
cm =

Hi.bytes

V j,j′ ,t
tr

+ dr (5)

where Hi.bytes is the service capacity, V j,j′ ,t
tr is the transmission speed between original edge

server j to the migration target edge server j′ , and dr is the service reconfiguration time.

3.3. Energy Consumption Model

Various energy consumption models were proposed for the IoT scenarios. The First-
Order Ratio Model (FORM) [45] is more widely used. In this paper, the model is adopted
and simplified to make it more suitable for the application scenario in this problem. Our
energy consumption model includes task transmission consumption, service migration
consumption and task processing consumption. The detailed definitions and formulas of
these energy consumption rates are as follows.

3.3.1. Data Transmission Energy Consumption

The data transmission energy consumption consists of two parts: the task-offloading
energy consumption, and the migration energy consumption. These are both, essentially,
the energy consumed by data transmission, so their formula definitions are the same.
Based on FORM, the task transmission energy consumption ei,j,t

to and the migration energy

consumption ej,j′ ,t
cm can be expressed as follows:

ei,j,t
to = eTx(k, d) + eRx(k) i ∈ C, j ∈ F (6)

ej,j′ ,t
cm = eTx(k, d) + eRx(k) j ∈ F, j ∈ F (7)

eTx(k, d) = eelec × k + εamp × k× dn (8)

eRx(k) = eelec × k (9)

where eTx(k, d) is the energy consumed to increase data capacity k to an edge server at
distance d; eRx(k) represents the energy that is required to receive k bits of data. The
environment strongly influences the value of the propagation fading index n. If there is
no building obstruction, the value of n can be set to 2 when transmitting data between
user devices and edge servers. Otherwise, it can be 3, 4, or 5, depending on the specific
environment. eelec and εamp represent the energy consumption constant of the transmission
and receiver electronics and the energy consumption constant of the transmit amplifier,
respectively.

3.3.2. Processing Energy Consumption

The energy consumption of an edge server is determined by a combination of storage,
memory and CPU usage. Since the CPU dominates these factors, this is the main focus of
our work. A model based on DVFS technology [46] is described as follows. An edge server
handles K computational tasks. The k-th task needs Ci.cir CPU cycles, and the CPU cycle

Appl. Sci. 2023, 13, 2010 7 of 20

frequency is Fi.cap. The total energy consumed by the CPU on the edge server, denoted by
epr, can be expressed as:

epr =
K

∑
k=1

kCi.cirFi.cap2 (10)

3.4. Problem Formulation

Our algorithm aims to reduce the delays in user requests and the energy consumption
of IoT devices in the edge networks. Based on the delay model and energy consumption
model mentioned above, from user i at time slot t, we can present the total time delay
equation and energy consumption equation as:

di,t
total = di,t

to + di,t
pr + di,t

tq + di,t
cm (11)

ei,t
total = ei,t

to + ei,t
cm + ei,t

pr (12)

Generally, the network’s delay in user requests and the energy consumption of IoT devices
can be defined as a weighted sum of all tasks’ energy consumption and delays. Hence, the
optimizing variables C can be denoted as:

C = ω1

n

∑
i=1

di,t
total + ω2

n

∑
i=1

ei,t
total ω1 ∈ (0, 1], ω2 ∈ (0, 1] (13)

where ω1 and ω2 denote the weights of dtotal and etotal in the objective function, respectively.
By adjusting the values of ω1 and ω2, the degree of influence that delays in user requests and
the energy consumption of IoT devices have on the total cost can be adjusted accordingly.
The optimization objective of this paper is to minimize the value of C.

4. Algorithm

To minimize the total cost C given in Equation (13), we proposed a novel Dynamic Com-
putation Offloading Strategy (DCOS) based on deep reinforcement learning. In Section 4.1,
we present a detailed description of this strategy. The algorithm formulation of this strategy,
based on deep reinforcement learning, is given in Section 4.2.

4.1. Dynamic Computation Offloading Strategy

Task offloading and service migration are promising strategies to meet the stringent
requirements regarding the delay in user requests and the energy consumption of IoT
devices in edge networks. There are two main causes of the task offloading strategy:

• The workload on the local edge server is heavy, which significantly increases the task
processing delay, leading to QoS reductions.

• The corresponding service for the task request is not configured on the local edge
server.

In both cases, tasks need to be offloaded to other edge servers and configured with the
related services.

In the service migration strategy, if the local edge server does not have the relevant
service, it is necessary to migrate the service from the cloud or other edge servers configured
by the service to the local edge server to process the task.

As shown in Figure 2, the processing of a single task can be split into three parts: the
transmission process, the queuing process, and the computing process. The transmission
processes in the two abovementioned strategies are the offloading and migration process,
respectively. We can also see that the tasks can only be processed at the local edge server
or the other edge servers that are configured with the related service, whether offloading
or migration tasks. These two schemes limit the processing location of the tasks to certain
network servers and do not fully exploit the potential of collaboration between edge servers.

Appl. Sci. 2023, 13, 2010 8 of 20

Offload

Migrate

Migration delay

Queuing delay

Processing delay
Time

Offloading delay

Queuing delay

Processing delay

Time

Edge server

Task data

Service

Computing process

Queue

Data flow

1

2

3

Figure 2. Task processing for migration and offloading strategies.

In our strategy, the task-processing location is extended to any server in the edge
network. More specifically, when an edge server receives a task request, if the local
workload is heavy or the corresponding service is not configured, the task will be offloaded
to another intermediate node with sufficient computing resources. It is worth noting that
the intermediate node may not be configured with the corresponding service. Therefore, it
is necessary to migrate the related service from the neighboring nodes to the intermediate
node. It is worth mentioning that this migration process is executed in parallel with the
offloading process.

As Figure 3 shows, at time slot T3, F1 receives a task request from a user. The heavy
workload of F1 means that the task has a long queuing time, and no related service is
configured at F1. Therefore, the task is offloaded to the intermediate node F2, which has
sufficient computing resources. Meanwhile, the service corresponding to the task migrates
from F3 to F2. It can be observed that the queuing time is eliminated by its execution on F2
because it is idle. Moreover, since the location of F2 is between F1 and F3, the transmission
distances for both offloading and migration are correspondingly reduced compared to the
offloading and migration process between F1 and F3 in Figure 2. Thus, the transmission
delay is reduced for both. Furthermore, since both transmission processes are executed in
parallel, there is some overlap between the offloading delay and migration delay.

Offload Migrate

Migration delay

Offloading delay

Queuing delay

Processing delay

Time

1

2

3

Edge server

Task data

Service

Computing process

Queue

Data flow

Figure 3. Task processing for dynamic computation offloading strategy.

It is worth noting that the intermediate node mentioned above is not a necessary
geographic intermediate. Our strategy is based on edge servers’ computing resources; even

Appl. Sci. 2023, 13, 2010 9 of 20

if a node is far from the local node, we can still target it as the processing node for the task
because it has sufficient computing resources, and can more efficiently process the task.

Based on the above description, we can classify our strategy’s transmission process in
the following three cases:

• Service migration process: the total transmission delay is the migration delay dcm.
• Task offloading process: the total transmission delay is the offloading delay dto.
• Parallel service migration process and task offloading process: the total transmission

delay is max(dcm, dto).

Therefore, we can rewrite the Equation (11) as follows:

di,t
total = max(di,t

to , di,t
cm) + di,t

pr + di,t
tq (14)

From this formula, a combination of task-offloading with service migration can effectively
reduce the transmission delay. In addition, because the strategy is based on computing
resources, processing tasks on the intermediate node can reduce the processing delay in
these tasks. Overall, this dynamic computation-offloading strategy can significantly reduce
the total delay in task processing.

As one aim is to reduce the cost C of the network, selecting the optimal intermediate
node is a key problem in this strategy. Moreover, the selection of optimal intermediate
nodes is a sequential decision-making process with no memory. Therefore, it is appropriate
to use reinforcement learning to solve this problem. In the next section, we describe the
dynamic computation-offloading algorithm based on deep reinforcement learning in.

4.2. DQN-Based Computation Offloading Algorithm
4.2.1. Reinforcement Learning Settings

For each time slot Ti in the reinforcement learning algorithm, the agent receives the
system state si and computes the reward ri−1 for the last time slot. Then, the agent selects
the action ai according to a predefined policy. After implementing this action, the system
moves to the new state, si+1, and into the next time slot. Similarly, the agent computes the
reward ri and selects the new action ai+1 according to si+1.

State: In our work, the system state is formulated by the edge servers’ operation status
Frt, edge servers’ deployed service list FhostLst , the nearest edge server Fnear to the current
task, and the service type Hservice which the current task requires. Therefore, we use the
state si during Ti as

si = {Frt, FhostLst, Fnear, Hservice} ∈ S (15)

The edge servers’ operation status Frt refers to the time cost t before the current task, which
is processed on edge server Fi(i ∈ n). Since our strategy is based on computing resources,
the time cost t is related to the decision node. If the decision node is not the nearest
edge server Fnear, then the task needs to be offloaded to the decision node. The related
service needs to migrate from a neighboring server if the decision node does not have the
corresponding service. It is noteworthy that we use one-hot coding to formulate the Fnear
and Hservice. S denotes the space of the system states.

Action: The selected action during Ti is ai = {Fdecision} ∈ A, where Fdecision is the
task’s execution node, as determined by our algorithm, and A is the set of all possible
edge servers. In DQN, DNN outputs Q-values of all actions in action space A based on the
input state si, and the execution node is the output action. The action selection is based
on the ε-greedy algorithm, a threshold ε is set in advance, and a random number φ is
generated each time. If ε > φ, the output action is the best action corresponding to the
optimal Q-value in all outputs. Otherwise, the action is randomly selected to remove local
optimization.

Reward: Since our algorithm focuses on minimizing the total cost C, if the system
completes the task and there is a reduction in cost, the reward will be positive. If the cost of

Appl. Sci. 2023, 13, 2010 10 of 20

the task is greater than the cost of performing the task locally, the action will face a negative
reward. Therefore, the reward during Ti can be expressed as:

ri = M−
CTi

local
CTi (si, ai)

(16)

where M is a constant value; CTi
local is the local execution cost at the time Ti; CTi (si, ai) is the

total cost, obtained by choosing the action ai at the state si.
In the Q-learning algorithm [27], the large scale of S and A lead to the large scale

of the Q-table. However, because the dimension of the state space S is very large, the
Q-table cannot efficiently store these states. To tackle this issue, we adopted the DQN
algorithm [28] in our work. DQN combines q-learning and deep learning, and uses a
Q-network composed of a DNN with weights θ instead of Q-table, to effectively store
Q-value information. The detailed algorithm steps of DQN are shown in Algorithm 1.

Algorithm 1 Deep Q-Learning

Input: θ
Output: ai

1: for episode = 1, N do
2: Observe s0
3: for i = 1, t do
4: /*Action Selection*/
5: Select ai according pre-defined policy
6: Observe si+1
7: Calculate ri by Equation (16)
8: /*Q-network Update*/
9: Output ai

10: end for
11: end for

4.2.2. Q-Network Update

Traditional Q-learning is a model-free reinforcement learning that solves the Bellman
equation using asynchronous iterations. In Q-learning, Q(s, a) represents the Q-value of a
state–action pair (s, a). The value of Q(s, a) can be considered as the expected payoff of the
task, which takes action at state s, i.e., an edge server is chosen as the execution location for
that task. At state s, the optimal policy can be formulated as:

π∗(s) = arg max
a∈A

Q∗(s, a) (17)

where Q∗(s, a) is the optimal Q-value of the state–action pair (s, a). Therefore, to obtain the
optimal policy for current state s, we need to calculate the Q-value for all actions a ∈ A. In
the Q-learning algorithm, each Q(s, a) can be updated with the following learning rule:

Q(s, a)=Q(s, a) + α
(

R(s, a) + γ max
a′∈A

Q
(
s′, a′

)
−Q(s, a)

)
(18)

where α ∈ (0, 1] is the learning rate and γ is the discount parameter. Meanwhile, in the
deep Q-learning algorithm, the Q-values are abstractly stored in the DNN. The system’s
state changes in each time slot, and the DNN must be adaptively updated.

Therefore, an essential part of the deep Q-learning algorithm is the DNN training
based on the historical information stored in the experience replay memoryM [47]. In the
t-th time slot, we randomly selected a batch of training data samples fromM. The DNN
with weights θ was updated by applying the Adam algorithm [48] to reduce the averaged
cross-entropy loss, as

Appl. Sci. 2023, 13, 2010 11 of 20

L(θt)=−
1
|M|∑

M
τ

(
(a∗τ)

ᵀ log fθt (sτ)+(1− a∗τ)
ᵀ log

(
1− fθt (sτ)

))
(19)

where |M| denotes the size of M. For simplicity, the detailed update procedure of the
Adam algorithm is omitted. The use of historical data can reduce the variance in θt, while
the random sampling approach reduces the correlation among the training data, thus
accelerating the convergence of L(θ). Meanwhile, as size of |M| is fixed and the memory
spaceM is updated in each iteration, the DNN learns from the latest data samples generated
by the recent strategies, which constantly improve the algorithm’s decision. Overall, the
detailed algorithm steps for the Q-network update are shown in Algorithm 2.

Algorithm 2 Q-Network Update

Input: sτ , aτ , rτ , sτ+1,M
Output: θ

1: Store (sτ , aτ , rτ , sτ+1) inM[i mod |M|]
2: SampleM� ⊂M
3: for (s(j)

τ−1, a(j)
τ−1, r(j)

τ−1, s(j)
τ) inM� do

4: Calculate Q(s(j)
τ , a(j)

τ ; θ
′
)

5: Calculate target network’s Q-value Qtarget

6: Compute the error between Q(s(j)
τ , a(j)

τ ; θ
′
) and Qtarget

7: end for
8: θ = argminθ L(θ)
9: Occasionally reset θ

′
= θ

10: Return θ

Based on the reinforcement settings and Q-network update, we present our deep
reinforcement-learning-based dynamic computation-offloading strategy (DCOS) in the
next section.

4.2.3. DCOS

The DQN-based dynamic computation offloading algorithm DCOS is proposed in
Algorithm 3. Algorithm 3 includes two parts, reinforcement settings and Q-network
updates. A detailed description of the reinforcement settings and Q-network update is
given in Algorithms 1 and 2.

Algorithm 3 DCOS

Input: θ,M
Output: ai

1: for episode = 1, N do
2: Observe s0
3: M = ∅
4: InitializeM
5: for i = 1, t do
6: /*Action Selection*/
7: Select ai according pre-defined policy
8: Observe si+1
9: Calculate ri by Equation (16)

10: /*Call Algorithm 2*/
11: θ = QNetworkUpdate(si, ai, ri, si+1,M)
12: Output ai
13: end for
14: end for

In view of the computational complexity of Algorithm 3, the basic elements of the
network model are defined in Section 3.1: the network contains n edge servers and m

Appl. Sci. 2023, 13, 2010 12 of 20

types of services, and k task requests are issued in each time slot. The time complexity
of Algorithm 3 mainly focuses on reinforcement learning settings and the Q-network
update. As shown in Section 4.2.1, the main steps in reinforcement learning settings include
obtaining the system status, action selection and reward calculation. For obtaining system,
the time complexity is related to the size of the state, which is O(2n + 3m). The time
complexity of reward calculation is O(n + m + k). Regarding the choice of actions, there
are two cases, according to the value of φ. Considering these two cases simultaneously, the
time complexity is O(n). In the Q-network update, the time complexity is related to the
size of the experience replay memoryM, which depends on the size of the state space S
and action space A. Therefore, the time complexity of this step is approximately O(n2). All
steps are executed sequentially, so Algorithm 3 has polynomial time complexity.

5. Experiments

In this section, we first introduce relevant settings for the experiments in Section 5.1.
The simulation experiments for the dynamic computation offloading algorithm proposed
in this paper will be performed in Section 5.2.

5.1. Experimental Settings

In system model simulation settings, to illustrate the performance of the proposed
strategy, we set an area of 500× 500 m2, which includes 50 randomly deployed edge servers.
The time slot value was random in 20–30 ms, and the IoT device issue k task requests at
each time slot. For all simulation parameters, we simplified some parameters, but kept
key parameters directly involved in our algorithm’s decision-making process. The key
parameters are described in Table 1.

Table 1. Simulation parameters.

Parameters Simulation Value Description
F.cap 2 GHz The processing capability of edge server

Ti random in [20, 30] ms The i-th time slot
n 50 The number of edge servers
k 30 The max number of task requests at each time slot
m 50 The number of service classes

H.bytes random in [0.2, 5] MB The capacity of service
C.cir uniform in [2, 12] cycles/bit The number of CPU circles required by the task

C.bytes random in [0.5, 5] MB The task capacity
B 500 MHz The channel bandwidth

Nnoise −100 dBm The background noise
ω1 0.8 Weight of delay in total cost C
ω2 0.2 Weight of energy consumption in total cost C

εamp 0.1 nJ/(bit ×m2) The energy consumption constant of the transmit amplifier
eelec 50nj/bit The energy consumption constant of the transmission and receiver electronics

In the DQN algorithm, a deep neural network structure will significantly affect the
efficiency of the algorithm. Our work shows that a simple four-layer network architecture,
with one input layer, two hidden layers and one output layer, can achieve a better con-
vergence performance. There were 100 and 60 hidden neurons, respectively, in these two
hidden layers. The hidden layer used Relu as the activation function, and the sigmoid acti-
vation function was employed in the output layer to output the optimal action. The DQN
parameters were configured as follows. The learning rate α equalled 0.01, the discount
parameter γ was set to 0.9, and the training batch size and the size of experience replay
memory were set to 100 and 200, respectively.

To illustrate and validate the effectiveness of our proposed DCOS algorithm, we focus
on the following two metrics.

• The time delay for task-offloading, service migration, and task-processing.
• The energy consumption for task-offloading, service migration and task-processing.

Appl. Sci. 2023, 13, 2010 13 of 20

To show the superiority of the proposed DCOS algorithm in terms of its delay and
energy metrics, we compare it with two baseline schemes, as follows:

• Deep Deterministic Policy Gradient (DDPG) [33]: Task scheduling is only based on
the task-offloading strategy, and the optimal offloading target node is output by the
DQN network.

• Extensive Service Migration Model (ESM) [39]: The task is processed on the local node.
If the node has not configured the related service, the system model performs the
service migration according to the optimal policy related to the migration costs.

5.2. Performance Evaluation

In this section, to evaluate the effectiveness of the DCOS algorithm, we evaluate
the algorithm’s performance in terms of both task density and number of services. With
the change in task density, Section 5.2.1 analyzes the performance of user request delays,
device energy consumption and total consumption. As the number of services changes,
Section 5.2.2 analyzes the performance of user request delays, device energy consumption
and total consumption.

5.2.1. Influence of Task Density

We ran our experiments on several task densities—10, 25, 40, 55 tasks each second—to
analyze the influence of different task densities on different algorithms. The task density
varied from 10 to 55, representing a range from a low- to high-workload network state. In
Figures 4 and 5, we plot a comparison of the energy consumption and delay for several
task densities. A comparison of the total cost is shown in Figure 6.

10 25 40 55
Task Density(tasks/1s)

0

10000

20000

30000

40000

50000

D
el

ay
(m

s)

DCOS
DDPG
ESM

Figure 4. Delay comparison on different task densities.

As shown in Figure 4, when the task density is 15, due to the low task density, the
current task is processed before the next task reaches the edge server. The computing
resources of a single edge server can satisfy most of the task requests, and the necessity of
collaboration is greatly reduced. Hence, the gap in the delay between the three collaboration
strategies is not large. When the task density is 25, the computing resources of a single
edge server cannot meet the requirements of the task requests. A collaboration strategy
is needed to reduce the processing delay in tasks at this situation. We can observe that
the performance of DCOS and ESM are closer because the ESM algorithm restricts the
task execution location to local execution. In the long-term, the workload of each edge
server is balanced, so there is little difference in the performance of the two algorithms
under a low workload. The performance of the DDPG algorithm is worse because it cannot
dynamically reconfigure the service. With the increase in task density and workload, the
difference between the the time costs of both DDPG and ESM algorithms and those of
DCOS gradually increases. When the network reaches saturation, the DCOS algorithm can

Appl. Sci. 2023, 13, 2010 14 of 20

offload tasks to intermediate nodes with sufficient computing resources to reduce queuing
delays. The parallel migration and offloading process enables the algorithm to complete
the transmission of tasks and services at the most considerable time cost. When the task
density reaches 55, the performance of DCOS clearly improves. Compared with DDPG,
the delays in user requests decrease by 32.18%.The relative ESM delay in user requests is
reduced by 27.16%.

10 25 40 55
Task Density(tasks/1s)

0

25

50

75

100

125

150

175

200

E
ne

rg
y

C
os

t(
J)

DCOS
DDPG
ESM

Figure 5. Energy consumption comparison for different task densities.

10 25 40 55
Task Density(tasks/1s)

0

10000

20000

30000

40000

50000

T
ot

al
 C

os
t

DCOS
DDPG
ESM

Figure 6. Total cost comparison for different task densities.

As shown in Figure 5, the energy consumption of the three algorithms increases
with the increase in task density in a near-linear correlation, which is because all three
algorithms inevitably need to transmit data, and the energy consumed by the transmission
is independent of the operating status of the edge servers. It is worth mentioning that
the task-processing delay is related to the operating status of the edge servers. When the
workload of the edge network is over-saturated, the task-processing appears congested,
so the delay is greater than the increase in energy consumption. In addition, since most
of the tasks in this experiment are data-intensive, the amount of data transmitted during
task offloading is larger than that during service migration, so the energy consumption of
DDPG is larger than that of ESM. The DCOS algorithm combines the advantages of both
algorithms and can flexibly adjust the decision according to the cost. Therefore it performs
better than DDPG and ESM in terms of energy consumption. When the task density reaches
40, the energy consumption performance of DCOS is significantly improved compared
with that of ESM, decreasing by 18.67%. When the task density reaches 40, the energy

Appl. Sci. 2023, 13, 2010 15 of 20

consumption performance of DCOS is significantly improved compared with that of DDPG,
decreasing by 28.21%.

The observation made in Figure 6 shows that the DDPG and ESM algorithms perform
only within a very small range of task densities. However, our proposed DCOS algorithm
remains stable when the task density increases. The results demonstrate that the DCOS
algorithm can perform cost-effective computation-offloading in various situations. Due to
the weight of the heavy delays in user requests, the trend in the data in Figures 4 and 6 is
basically the same. The higher the task density, the better the DCOS performance.

5.2.2. Influence of Number of Services

On the edge networks, the types of services requested by tasks are diverse. However,
due to the restricted resources of edge servers, only a limited number of services can be
hosted. Therefore, we ran our experiments on several service numbers—10, 40, 70, 100—to
analyze the influence of the different number of services on different algorithms. In this
experiment, we set the task density to 55 to diversify the types of services requested by the
task. In Figures 7 and 8, we plotted a comparison of the energy consumption and delay for
several service numbers. A comparison of the total cost is shown in Figure 9.

10 25 40 55
Number of Services

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

D
el

ay
(m

s)

DCOS
DDPG
ESM

Figure 7. Comparison of delays in different service numbers.

10 25 40 55
Number of services

0

50

100

150

200

250

300

350

400

E
ne

rg
y

C
os

t(
J)

DCOS
DDPG
ESM

Figure 8. Comparison of energy consumption of different service numbers.

Appl. Sci. 2023, 13, 2010 16 of 20

10 25 40 55
Number of services

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

T
ot

al
 C

os
t

DCOS
DDPG
ESM

Figure 9. Total cost comparison for different service numbers.

As shown in Figure 7, the increase in the number of services results in a reduction in
the probability of configuring the corresponding services in adjacent servers. This means
that services need to be transmitted from a more distant server, and the increase in the
transmission distance leads to an increase in the delay in user requests. When the service
types are 10 and 40, the edge network can configure that number of services, so there is
little difference in the delay between the three algorithms. When the number of services
is 70, the probability that the neighboring servers are configured with the related services
further decreases; therefore, the increase in delay becomes larger. When the number of
services is 100, not all services can be fully configured, due to the resource constraints of the
edge servers. When the service requested by the task is not configured in the edge network,
the task cannot be processed, i.e., an off-target situation occurs, leading to a spike in delays.
However, benefiting from our strategy, we are able to significantly reduce the delay when
collaborating among edge servers, so the delay in the performance of user requests is still
better than that of the other two algorithms.

As shown in Figure 8, when the number of services is 10 and 40, the performance of
the three algorithms in terms of the energy consumption of IoT devices is similar to that of
the delay performance. However, with the increase in the number of services, because the
decision of the DCOS algorithm pays more attention to the reduction in delay, the increase
in the energy consumption of IoT devices is more significant than the increase in user
request delays. Our strategy can efficiently reduce the delay, but the energy consumption
of offloading tasks and the migration of services to intermediate nodes is inevitable. In
terms of energy consumption, our strategy is not significantly better than that of DDPG
and ESM.

Limited by the resources of the edge servers, the edge network can only host a certain
number of services; if the number of services exceeds the threshold, this will lead to off-
target situations, which cause delays in user requests and the energy consumption of IoT
devices to become larger. Through Figure 9, we can observe that the DCOS algorithm still
outperforms DDPG and ESM in terms of the total cost, because our algorithm is more
concerned with reducing textcolorbluethe delays in user requests, and can make flexible
decisions that allow for better collaboration between edge servers, reducing the total cost.
This demonstrates the effectiveness and flexibility of the DCOS algorithm.

6. Conclusions and Future Works

This paper mainly studies the problem of computation offloading in edge networks. To
fully exploit the potential of collaboration edge servers, a dynamic computation offloading
strategy based on deep reinforcement learning is proposed. By selecting intermediate nodes
with sufficient computing resources as task execution locations, the processing delays in
the task are significantly reduced and data transmission is completed at the lowest possible

Appl. Sci. 2023, 13, 2010 17 of 20

cost through parallel migration and offloading processes. Then, we designed an algorithm
based on deep reinforcement learning to efficiently select the optimal intermediate nodes.
Simulation experiments show that our approach can fully utilize the computing resources
of edge servers, allowing them to make better decisions, and leading to a lower energy
consumption by IoT devices and delays in user requests under the same experimental
settings. In addition, the stability and flexibility of our algorithm are demonstrated by
comparison with two baseline algorithms. However, there is still a challenge that needs to
be overcome in future work. Since our algorithm pays more attention to reducing the the
delay in user requests, it does not perform well in terms of the energy consumption of IoT
devices. In particular, when deviations from the target occur in the network, our algorithm
does not significantly reduce the delay in user requests or the energy consumption of IoT
devices. To overcome this challenge, our next work will focus on how to initialize the
service configuration of the network to further improve the effectiveness of the algorithm.

Author Contributions: All authors listed in this paper contributed equally, as follows. Y.B. con-
tributed significantly to analysis and manuscript preparation. X.L. was responsible for the method-
ology design. X.W. was responsible for visualization/data presentation. Z.Z. was responsible for
ensuring that the descriptions are accurate and agreed by all authors. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program
of China (2019YFB2101803), and by the National Natural Science Foundation of China (61772479
and 42050103).

Acknowledgments: I would like to give my heartfelt thanks to all the people who have ever helped
me in this paper.

Conflicts of Interest: We declare that we have no competing fnancial interest or personal relationship
that could have appeared to infuence the work reported in this paper.

Notations

Symbol Description
F Edge server set
n Number of edge servers
Fi.id The unique identifier of edge server i
Fi.loc The location of edge server i
Fi.cap The processing capability of edge server i
Fi.pt The task list processed on edge server
H Service set
m Number of service classes
Hi.id The unique identifier of service i
Hi.bytes The capacity of service i
T Time period
Ti The i-th time slot in T
C Task request set
k Number of task requests
Ci.id The unique identifier of task i
Ci.loc The location of task i
Ci.bytes The capacity of task i
Ci.Hj The service type required by the task i
Ci.cir The number of CPU circles required by the task i.
B Channel bandwidth
Nnoise The background noise
eelec The energy consumption constant of the transmission and receiver electronics
εamp The energy consumption constant of the transmit amplifier
dtotal Total delay
etotal Total energy consumption

Appl. Sci. 2023, 13, 2010 18 of 20

C Total cost
ω1 Weight of delay in C
ω2 Weight of energy consumption in C
si System state during Ti
ai The best action to output after observing state si
ri Reward during Ti
S State space
A Action space
Q(s, a) The Q-value of state-action pair (s, a)
M Experience replay memory space
α Learning rate
γ Discount parameter
L(θ) Loss function of the DNN
θ Weights of the DNN

References
1. Wang, K.; Yang, Z.; Liang, B.; Ji, W. An intelligence optimization method based on crowd intelligence for IoT devices. Int. J. Crowd

Sci. 2021, 5, 218–227. [CrossRef]
2. Tang, J.; Wu, S.; Wei, L.; Liu, W.; Qin, T.; Zhou, Z.; Gu, J. Energy-Efficient Sensory Data Collection Based on Spatiotemporal

Correlation in IoT Networks. Int. J. Crowd Sci. 2022, 6, 34–43. [CrossRef]
3. Ma, X.; Li, Q.; Zou, L.; Peng, J.; Zhou, J.; Chai, J.; Jiang, Y.; Muntean, G.M. QAVA: QoE-Aware Adaptive Video Bitrate Aggregation

for HTTP Live Streaming Based on Smart Edge Computing. Trans. Broadcast. 2022, 68, 661–676. [CrossRef]
4. Lee, S.H. Real-time edge computing on multi-processes and multi-threading architectures for deep learning applications.

Microprocess. Microsyst. 2022, 92, 104554. [CrossRef]
5. Bonomi, F. Connected vehicles, the internet of things, and fog computing. In Proceedings of the The Eighth ACM International

Workshop on Vehicular Inter-Networking (VANET), Las Vegas, NV, USA, 19–23 September 2011; pp. 13–15.
6. Shakarami, A.; Shahidinejad, A.; Ghobaei-Arani, M. An autonomous computation offloading strategy in Mobile Edge Computing:

A deep learning-based hybrid approach. J. Netw. Comput. Appl. 2021, 178, 102974. [CrossRef]
7. Osei-Mensah, E.; Thabet, S.K.S.; Luo, C.; Asiedu-Ayeh, E.; Bamisile, O.; Nyantakyi, I.O.; Adun, H. A Novel Distributed Media

Caching Technique for Seamless Video Streaming in Multi-Access Edge Computing Networks. Appl. Sci. 2022, 12, 4205. [CrossRef]
8. Chen, S.; Zheng, Y.; Lu, W.; Varadarajan, V.; Wang, K. Energy-optimal dynamic computation offloading for industrial iot in fog

computing. Trans. Green Commun. Netw. 2019, 4, 566–576. [CrossRef]
9. Adhikari, M.; Mukherjee, M.; Srirama, S.N. DPTO: A deadline and priority-aware task offloading in fog computing framework

leveraging multilevel feedback queueing. Internet Things J. 2019, 7, 5773–5782. [CrossRef]
10. Liu, L.; Chang, Z.; Guo, X. Socially aware dynamic computation offloading scheme for fog computing system with energy

harvesting devices. Internet Things J. 2018, 5, 1869–1879. [CrossRef]
11. Zhang, G.; Shen, F.; Yang, Y.; Qian, H.; Yao, W. Fair task offloading among fog nodes in fog computing networks. In Proceedings

of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6.
12. Qin, M.; Cheng, N.; Jing, Z.; Yang, T.; Xu, W.; Yang, Q.; Rao, R.R. Service-oriented energy-latency tradeoff for iot task partial

offloading in mec-enhanced multi-rat networks. Internet Things J. 2020, 8, 1896–1907. [CrossRef]
13. Bozorgchenani, A.; Tarchi, D.; Corazza, G.E. Centralized and distributed architectures for energy and delay efficient fog network-

based edge computing services. Trans. Green Commun. Netw. 2018, 3, 250–263. [CrossRef]
14. Yuan, X.; Xie, Z.; Tan, X. Computation Offloading in UAV-Enabled Edge Computing: A Stackelberg Game Approach. Sensors

2022, 22, 3854. [CrossRef] [PubMed]
15. Shamsadini, A.; Entezari-Maleki, R. Time-aware MDP-based Service Migration in 5G Mobile Edge Computing. In Proceedings of

the 2022 27th International Computer Conference, Computer Society of Iran (CSICC), Tehran, Iran, 23–24 February 2022; pp. 1–5.
16. Chen, X.; Bi, Y.; Chen, X.; Zhao, H.; Cheng, N.; Li, F.; Cheng, W. Dynamic Service Migration and Request Routing for Microservice

in Multi-cell Mobile Edge Computing. Internet Things J. 2022, 9, 13126–13143. [CrossRef]
17. Xu, M.; Zhou, Q.; Wu, H.; Lin, W.; Ye, K.; Xu, C. PDMA: Probabilistic service migration approach for delay-aware and mobility-

aware mobile edge computing. Softw. Pract. Exp. 2022, 52, 394–414. [CrossRef]
18. Xu, J.; Ma, X.; Zhou, A.; Duan, Q.; Wang, S. Path selection for seamless service migration in vehicular edge computing. Internet

Things J. 2020, 7, 9040–9049. [CrossRef]
19. Labriji, I.; Meneghello, F.; Cecchinato, D.; Sesia, S.; Perraud, E.; Strinati, E.C.; Rossi, M. Mobility aware and dynamic migration of

mec services for the internet of vehicles. Trans. Netw. Serv. Manag. 2021, 18, 570–584. [CrossRef]

http://doi.org/10.1108/IJCS-03-2021-0007
http://dx.doi.org/10.26599/IJCS.2022.9100007
http://dx.doi.org/10.1109/TBC.2022.3171131
http://dx.doi.org/10.1016/j.micpro.2022.104554
http://dx.doi.org/10.1016/j.jnca.2021.102974
http://dx.doi.org/10.3390/app12094205
http://dx.doi.org/10.1109/TGCN.2019.2960767
http://dx.doi.org/10.1109/JIOT.2019.2946426
http://dx.doi.org/10.1109/JIOT.2018.2816682
http://dx.doi.org/10.1109/JIOT.2020.3015970
http://dx.doi.org/10.1109/TGCN.2018.2885443
http://dx.doi.org/10.3390/s22103854
http://www.ncbi.nlm.nih.gov/pubmed/35632262
http://dx.doi.org/10.1109/JIOT.2022.3140183
http://dx.doi.org/10.1002/spe.3014
http://dx.doi.org/10.1109/JIOT.2020.3000300
http://dx.doi.org/10.1109/TNSM.2021.3052808

Appl. Sci. 2023, 13, 2010 19 of 20

20. Li, C.; Zhu, L.; Li, W.; Luo, Y. Joint edge caching and dynamic service migration in SDN based mobile edge computing. J. Netw.
Comput. Appl. 2021, 177, 102966. [CrossRef]

21. Yuan, Q.; Li, J.; Zhou, H.; Lin, T.; Luo, G.; Shen, X. A joint service migration and mobility optimization approach for vehicular
edge computing. Trans. Veh. Technol. 2020, 69, 9041–9052. [CrossRef]

22. Li, J.; Chen, L.; Chen, J. Enabling technologies for low-latency service migration in 5G transport networks. J. Opt. Commun. Netw.
2021, 13, A200–A210. [CrossRef]

23. Liu, Z.; Xu, X. Latency-aware service migration with decision theory for Internet of Vehicles in mobile edge computing. Wirel.
Netw. 2022. [CrossRef]

24. Chen, S.; Tang, B.; Wang, K. Twin delayed deep deterministic policy gradient-based intelligent computation offloading for IoT.
Digit. Commun. Netw. 2022, in press. [CrossRef]

25. Wang, S.; Urgaonkar, R.; Zafer, M.; He, T.; Chan, K.; Leung, K.K. Dynamic service migration in mobile edge computing based on
markov decision process. IEEE/ACM Trans. Netw. 2019, 27, 1272–1288. [CrossRef]

26. Liu, J.; Ji, W. Evolution of Agents in the Case of a Balanced Diet. Int. J. Crowd Sci. 2022, 6, 1–6. [CrossRef]
27. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
28. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Hassabis,

D. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]
29. Wang, H.; Xu, H.; Huang, H.; Chen, M.; Chen, S. Robust task offloading in dynamic edge computing. Trans. Mob. Comput. 2021,

22, 500–514. [CrossRef]
30. Zhou, J.; Tian, D.; Sheng, Z.; Duan, X.; Shen, X. Distributed task offloading optimization with queueing dynamics in multi-agent

mobile-edge computing networks. Internet Things J. 2021, 8, 12311–12328. [CrossRef]
31. Wang, J.; Hu, J.; Min, G.; Zomaya, A.Y.; Georgalas, N. Fast adaptive task offloading in edge computing based on meta

reinforcement learning. Trans. Parallel Distrib. Syst. 2020, 32, 242–253. [CrossRef]
32. Tran-Dang, H.; Kim, D.S. Frato: Fog resource based adaptive task offloading for delay-minimizing iot service provisioning. Trans.

Parallel Distrib. Syst. 2021, 32, 2491–2508. [CrossRef]
33. Qinghua, Z.; Ying, C.; Jingya, Z.; Yong, L. Computation offloading Optimization in Edge Computing based on Deep Reinforcement

Learning. In Proceedings of the 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE),
Harbin, China, 25–27 December 2020; pp. 1552–1558.

34. Kim, T.; Sathyanarayana, S.D.; Chen, S.; Im, Y.; Zhang, X.; Ha, S.; Joe-Wong, C. Modems: Optimizing edge computing migrations
for user mobility. J. Sel. Areas Commun. 2022. [CrossRef]

35. Liang, Z.; Liu, Y.; Lok, T.M.; Huang, K. Multi-cell mobile edge computing: Joint service migration and resource allocation. Trans.
Wirel. Commun. 2021, 20, 5898–5912. [CrossRef]

36. Li, C.; Zhang, Y.; Gao, X.; Luo, Y. Energy-latency tradeoffs for edge caching and dynamic service migration based on DQN in
mobile edge computing. J. Parallel Distrib. Comput. 2022, 166, 15–31. [CrossRef]

37. Zhang, C.; Liu, Z.; Gu, B.; Yamori, K.; Tanaka, Y. A deep reinforcement learning based approach for cost-and energy-aware
multi-flow mobile data offloading. IEICE Trans. Commun. 2018, 101, 1625–1634. [CrossRef]

38. Tang, Z.; Zhou, X.; Zhang, F.; Jia, W.; Zhao, W. Migration modeling and learning algorithms for containers in fog computing.
Trans. Serv. Comput. 2018, 12, 712–725. [CrossRef]

39. Park, S.W.; Boukerche, A.; Guan, S. A novel deep reinforcement learning based service migration model for mobile edge
computing. In Proceedings of the 2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time
Applications (DS-RT), Prague, Czech Republic, 14–16 September 2020; pp. 1–8.

40. Jiao, Y.; Wang, C. A Blockchain-Based Trusted Upload Scheme for the Internet of Things Nodes. Int. J. Crowd Sci. 2022, 6, 92–97.
[CrossRef]

41. Dinh, H.T.; Lee, C.; Niyato, D.; Wang, P. A survey of mobile cloud computing: Architecture, applications, and approaches.
Wireless communications and mobile computing. Wirel. Commun. Mob. Comput. 2013, 13, 1587–1611. [CrossRef]

42. Willis, D.; Dasgupta, A.; Banerjee, S. Paradrop: A multi-tenant platform to dynamically install third party services on wireless
gateways. In Proceedings of the 9th ACM Workshop on Mobility in the Evolving Internet Architecture, Maui, HI, USA,
11 September 2014; pp. 43–48.

43. Bittencourt, L.F.; Lopes, M.M.; Petri, I.; Rana, O.F. Towards virtual machine migration in fog computing. In Proceedings of
the 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Krakow, Poland, 4–6
November 2015; pp. 1–8.

44. Wang, S.; Urgaonkar, R.; Zafer, M.; He, T.; Chan, K.; Leung, K.K. Dynamic service migration in mobile edge-clouds. In Proceedings
of the 2015 IFIP Networking Conference (IFIP Networking), Toulouse, France, 20–22 May 2015; pp. 1–9.

45. Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol for wireless microsensor
networks. Wireless communications and mobile computing. In Proceedings of the 33rd Annual Hawaii International Conference
on System Sciences, Maui, HI, USA, 4–7 January 2000; p. 10.

46. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective.
Commun. Surv. Tutorials 2017, 19, 2322–2358. [CrossRef]

http://dx.doi.org/10.1016/j.jnca.2020.102966
http://dx.doi.org/10.1109/TVT.2020.2999617
http://dx.doi.org/10.1364/JOCN.400772
http://dx.doi.org/10.1007/s11276-022-02978-y
http://dx.doi.org/10.1016/j.dcan.2022.06.008
http://dx.doi.org/10.1109/TNET.2019.2916577
http://dx.doi.org/10.26599/IJCS.2022.9100005
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1109/TMC.2021.3068748
http://dx.doi.org/10.1109/JIOT.2021.3063509
http://dx.doi.org/10.1109/TPDS.2020.3014896
http://dx.doi.org/10.1109/TPDS.2021.3067654
http://dx.doi.org/10.1109/JSAC.2022.3229425
http://dx.doi.org/10.1109/TWC.2021.3070974
http://dx.doi.org/10.1016/j.jpdc.2022.03.001
http://dx.doi.org/10.1587/transcom.2017CQP0014
http://dx.doi.org/10.1109/TSC.2018.2827070
http://dx.doi.org/10.26599/IJCS.2022.9100010
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1109/COMST.2017.2745201

Appl. Sci. 2023, 13, 2010 20 of 20

47. Rouzbahani, H.M.; Karimipour, H.; Lei, L. Optimizing scheduling policy in smart grids using probabilistic Delayed Double Deep
Q-Learning (P3DQL) algorithm. Sustain. Energy Technol. Assessments 2022, 53, 102712. [CrossRef]

48. Reddi, S.J.; Kale, S.; Kumar, S. On the convergence of adam and beyond. arXiv 2019, arXiv:1904.09237.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.seta.2022.102712

	Introduction
	Related Work
	Task Offloading in Edge Computing (EC)
	Service Migration in Edge Computing (EC)

	Modeling And Problem Formulation
	System Model
	Delay Model
	Task-Offloading Delay
	Task Processing Delay
	Task Queuing Delay
	Service Migration Delay

	Energy Consumption Model
	Data Transmission Energy Consumption
	Processing Energy Consumption

	Problem Formulation

	Algorithm
	Dynamic Computation Offloading Strategy
	DQN-Based Computation Offloading Algorithm
	Reinforcement Learning Settings
	Q-Network Update
	DCOS

	Experiments
	Experimental Settings
	Performance Evaluation
	Influence of Task Density
	Influence of Number of Services

	Conclusions and Future Works
	References

