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Abstract: The video classification task has gained significant success in the recent years. Specifically,
the topic has gained more attention after the emergence of deep learning models as a successful
tool for automatically classifying videos. In recognition of the importance of the video classification
task and to summarize the success of deep learning models for this task, this paper presents a very
comprehensive and concise review on the topic. There are several existing reviews and survey papers
related to video classification in the scientific literature. However, the existing review papers do not
include the recent state-of-art works, and they also have some limitations. To provide an updated
and concise review, this paper highlights the key findings based on the existing deep learning models.
The key findings are also discussed in a way to provide future research directions. This review mainly
focuses on the type of network architecture used, the evaluation criteria to measure the success,
and the datasets used. To make the review self-contained, the emergence of deep learning methods
towards automatic video classification and the state-of-art deep learning methods are well explained
and summarized. Moreover, a clear insight of the newly developed deep learning architectures
and the traditional approaches is provided. The critical challenges based on the benchmarks are
highlighted for evaluating the technical progress of these methods. The paper also summarizes the
benchmark datasets and the performance evaluation matrices for video classification. Based on the
compact, complete, and concise review, the paper proposes new research directions to solve the
challenging video classification problem.

Keywords: automatic video classification; deep learning; handcrafted features; video processing

1. Introduction

The task of automatically classifying videos has become very successful recently. Par-
ticularly, the subject has drawn increased interest since deep learning models became an
effective method for automatically classifying videos. The importance of the accurate
video classification task can be realized by the large amount of video data available on-
line. People around the world generate and consume a huge amount of video content.
Currently, on YouTube only, over 1 billion hours of video are being watched by different
people every single day. In recognition to the importance of the video classification task, a
combined effort is being made by researchers for proposing an accurate video classification
framework. Companies such as Google AI are investing in different competitions to solve
the challenging problem under constrained conditions. To further advance the progress
of the automatic video classification task, Google AI has released a public dataset called
YouTube-8M with millions of video features and more than 3700 labels. All these efforts
being made demonstrate the need for a powerful video classification model.

An artificial neural network (ANN) is an algorithm based on interconnected nodes to
recognize the relationships in a set of data. Algorithms based on ANNs have shown a great
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success in modeling both the lineßar and the non-linear relationships in the underlying
data. Due to the huge success rate of these algorithms, they are extensively being used for
different real-time applications [1–4]. Moreover, with an increase in the availability of huge
datasets, the deep learning models have specifically shown a significant improvement in
the classification of videos. This paper reviews studies based on deep learning approaches
for video classification.

Contribution

There are several existing reviews and survey papers related to video classification
in the scientific literature. Some of the recent works are summarized here in Table 1.
However, these review papers do not include the recent state-of-art works, and they have
some limitations. In the following text, the limitations and highlights of these works
are discussed.

Table 1. Summary of recent related works.

Reference Year Coverage Highlights Drawbacks

A. Anusya [5] 2020 2014–2019 Video classification, tagging, and clustering. Not comprehensive and
lacks concise information.

Rani et al. [6] 2020 2001–2016 Text, audio, and visual modalities for video
classification.

Missing analysis of recent
state-of-art approaches.

Y. Li et al. [7] 2020 2012–2019 Live sport video classification. More specific to live sport
video classification.

Md Islam et al. [8] 2021 2004–2020 Machine learning approaches for video classification. Focus of review is not on
deep learning approaches.

Ullah. H. et al. [9] 2021 2015–2020 Human activity recognition using deep learning. Focus only on the human
activity recognition.

This study 2022 2000–2022 Comprehensive deep learning review for
video classification. -

1. A more recent review was done by A. Anusya [5]; this review covers very few methods
for video classification, clustering, and tagging. However, the review provided is not
comprehensive and lacks concise information, coverage of topic, datasets, analysis of
state-of-art approaches, and research limitations;

2. Rani et al. [6] also conducted a recent review on video classification methods, and
their review covered some recent video classification approaches and summary-based
description of some recent works. This review also had some limitations including
the missing analysis of recent state-of-art approaches and a very limited description
of topics covered;

3. Y. Li et al. [7] recently conducted a systematic and good review on live sport video
classification. This review covers most of the recent works in live sport video classifi-
cation, including the tools, video interaction features, and feature extraction methods.
This is a comprehensive review, but the findings are not summarized in tables for
research gaps and advantages and disadvantages of existing methods for a quick
review. Moreover, this review is more specific to live sport video classification;

4. A recent review was also done by Md Islam et al. [8]; in this review, they included
all the methods for video classification, including deep learning. However, as the
focus of review is not on deep learning approaches, these methods are therefore not
completely covered in this review;

5. Ullah. H. et al. [9] also conducted a recent systematic review; however, the focus of
their review remained on human activity recognition;

6. Z. Wu. [10] presented a concise review on video classification specific to deep learning
methods. This review provides a good description on deep learning models, feature
extraction tools, benchmark dataset, and comparison of existing methods for video
classification. However, this review was conducted in the year 2016, and it does not
cover the recent state-of-art deep learning methods;
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7. Q. Ren [11] conducted a simple review on video classification methods; however, the
techniques covered in this review are not well described, and the review also lacks in
the description of research gaps, benchmark datasets, limitations of existing methods,
and performance metrics.

In contrast to the existing reviews on classification of videos, this paper provides a
more comprehensive, concise, and up-to-date review of deep learning approaches for video
classification. In this current review, most of the recent state-of-art contributions related to
the topic are analyzed and critically summarized. Deep learning is an emerging and vibrant
field for the analysis of videos; therefore, we hope this review will help in stimulating
future research along the line. The following are the key contributions to this review paper:

1. A summary of state-of-art, CNN-based deep learning models for image analysis;
2. An in-depth review of deep learning approaches for video classification highlighting

the notable findings;
3. A summary of breakthroughs in the automatic video classification task;
4. Analysis of research trends from past towards future;
5. Description of benchmark datasets, evaluations metrics, and comparison of recent

state-of-art deep learning approaches in terms of performance.

The rest of the paper is organized as follows: Section 2 reviews some existing CNNs
for images; Section 3 provides an in-depth review on deep learning models for video
classification; Section 4 provides a summary for benchmark datasets, evaluation metrics,
and comparison of existing state-of-art methods for the video classification task; and
Section 5 provides conclusion and future research directions.

2. Convolutional Neural Networks (CNN) for Image Analysis

Deep learning models, specifically convolutional neural networks (CNNs), are well
known for understanding images. A number of CNN architectures are proposed and
developed in the scientific literature for image analysis. Among these, the most popular
architectures are LeNet-5 [12], AlexNet [13], VGGNet [14], GoogleNet [15], ResNet [16], and
DenseNet [17]. The trend that follows from the formerly proposed architectures towards
the recently proposed architectures is to deepen the network. A summary of these popular
CNN architectures along with trend of deepening the network is shown in Figure 1, where
the depth of network increases from left-most (LeNet-5) to right-most (DenseNet). Deep
networks are believed to better approximate the target function and to generate better
feature representation with more powerful discriminatory powers [18]. Although deeper
networks are better in terms of having more discriminatory powers, the deeper networks
require more data for training and more parameters to tune [19]. Finding a professionally
labeled, huge dataset is still a big challenge faced by the research community, and therefore,
it limits the development of deeper neural networks.
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3. Video Classification

In this section, a very comprehensive and concise review for deep learning models
employed in the video classification task is provided. This section covers a description
on video data modalities, traditional handcrafted approaches, breakthroughs in video
classification, and recent state-of-art deep learning models for video classification.

3.1. Video Data Modalities

As compared to images, videos are more challenging to understand and classify due to
the complex nature of the temporal content. However, three different modalities, i.e., visual
information, audio information, and text information, might be available to classify videos
in contrast to image classification, where only a single visual modality can be utilized.
Based on the availability of different modalities in videos, the task of classification can be
categorized as a uni-modal video classification or a multi-modal video classification, as
summarized in Figure 2. The existing literature has utilized both of these models for the
video classification task, and it is generally believed that models utilizing multi-modal
data perform better than the models based on uni-modal data [20,21]. Moreover, the visual
description [22] of a video works better than the text [23] and the audio [24,25] description
for the classification purpose of a video.
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3.2. Traditional Handcrafted Features

During the earlier developments of the video classification task, the traditional hand-
crafted features were combined with state-of-art machine learning algorithms to classify
the videos. Some of the most popular handcrafted feature representation techniques
used in the literature are spatiotemporal interest points (STIPs) [26], improved dense
trajectories (iDT) [27], SIFT-3D [28], HOG3D [29], motion boundary histogram [30], action-
bank [31], cuboids [32], 3D SURF [33], and dynamic-poselets [34]. These hand-designed
representations use different feature encoding schemes such as the ones based on pyramids
and histograms. iDT is one of these handcrafted representations that is widely consid-
ered the state-of-the-art. Many recent competitive studies demonstrated that handcrafted
features [35–38] and high-level [39,40] and mid-level [41,42] video representations have
contributed towards the task of video classification with deep neural networks.

3.3. Deep Learning Frameworks

Along with the development of more powerful deep learning architectures in the
recent years, the trend for the video classification task has followed a shift from traditional
handcrafted approaches to the fully automated deep learning approaches. Among the
very common deep learning architectures used for video classification is a 3D-CNN model.
An example of 3D-CNN architecture used for video classification is given in Figure 3 [43].
In this architecture, 3D blocks are utilized to capture the video information necessary
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to classify the video content. One more very common architecture is a multi-stream
architecture, where the spatial and temporal information is separately processed, and the
features extracted from different streams are then fused to make a decision. To process the
temporal information, different methods are used, and the two most common methods
are based on (i) RNN (mainly LSTM) and (ii) optical flow. An example of a multi-stream
network model [44], where the temporal stream is processed using optical flow, is shown
in Figure 4. A high-level overview of the video classification process is shown in Figure 5,
where the stages of feature extraction and prediction are shown with the most common
type of strategies used in the literature. In the upcoming sections, the breakthroughs in
video classification and studies related to classification of videos, specifically using deep
learning frameworks, are summarized, describing the success rate of utilizing deep learning
architectures and the associated limitations.
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3.4. Breakthroughs

The breakthroughs in recognition of still-images originated with the introduction of a
deep learning model called AlexNet [13]. The same concept of still-image recognition using
deep learning is also extended for videos, where individual video frames are collectively
processed as images by a deep learning model to predict the contents of a video. The
features from individual video frames are extracted, and then, temporal integration of such
features into a fixed-size descriptor using pooling is performed. The task is either done
using high-dimensional feature encoding [45,46] or through the RNN architectures [47–50].
For un-supervised spatiotemporal feature learning in 3D convolutions, restricted Boltz-
mann machines [51] and stacked ISA [52] are also studied in parallel. The 3D-CNNs using
temporal convolutions to extract temporal features automatically were first proposed by
Baccouche et al. [53] and by Ji et al. [54].

3.5. Basic Deep Learning Architectures for Video Classification

The two most widely used deep learning architectures for video classification are con-
volutional neural network (CNN) and recurrent neural network (RNN). CNNs are mostly
used to learn the spatial information from videos, whereas RNNs are used to learn the
temporal information from videos, as the main difference between these two architectures
is the ability to process temporal information or data that come in sequences. Therefore,
both these network architectures are used for completely different purposes in general.
However, the nature of video data with the presence of both the spatial and the temporal
information demands the use of both these network architectures to accurately process
the two-stream information. The architecture of a CNN applies different filters in the
convolutional layers to transform the data. RNNs, on the other hand, reuse the activation
functions to generate the next output in a series from the other data points in the sequence.
However, the use of only 2D-CNNs alone limits the understanding of video to only spatial
domain. RNNs, on the other hand, can understand the temporal content of a sequence.
Both these basic architectures and their enhanced versions are applied in several studies
for the task of video classification.

3.6. Developments in Video Classification over Time

The existing approaches for video classification are categorized based on their working
principle in Table 2. The trend observed for the classification of videos from the existing
literature is that the recently developed state-of-art deep learning models are outperforming
the earlier handcrafted classical approaches. This is mainly due to the availability of
large-scale video data for learning deep architectures of neural networks. Besides an
improvement in classification performance the recently developed models are mostly self-
learned and does not require any manual feature engineering. This added advantage makes
them more feasible for use in real applications. However, the better performing recently
developed architectures are deeper as compared to the previously developed architectures
which brings a compromise on the computational complexity of the deep architectures.

Table 2. Different categories of approaches of video classification.

Categories Working Principle References

Hand-crafted approaches

These representations are handcrafted
and employ various feature encoding

techniques, such as histograms
and pyramids.

Spatiotemporal Interest Points (STIPs)
[26], iDT [27], SIFT-3D [28], HOG3D [29],

Motion Boundary Histogram [30],
Cuboids [32], Action-Bank [31], 3D SURF

[33], Dynamic-Poselets [34].
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Table 2. Cont.

Categories Working Principle References

2D- CNNs

These are image based models where
frame level feature extraction is

performed using CNN architecture and
classification is performed using

state-of-art classification models, for
example SVM.

[55]

3D-CNNs
2D image classification extension to 3D
for video (For example the Inception 3D

(I3D) architecture).
[56]

Spatiotemporal Convolutional Networks
To aggregate the temporal and the spatial

information, these methods primarily
depend on convolution and pooling.

[54,57,58]

Recurrent Spatial Networks
To represent temporal information in

videos, recurrent neural networks such as
LSTM or GRU are used.

[47,53,59,60]

Two/multi Stream Networks
In addition to the context frame visuals,

these methods use layered optical flow to
identify movements.

[50,61–63]

Mixed convolutional models

Models built with the ResNet architecture
in mind. They are particularly interested
in models that utilize 3D convolution in
the bottom or top layers but 2D in the

remainder; these are referred to as
“mixed convolutional” models. Or the

methods based on mixed temporal
convolution with different kernel sizes.

[64,65]

Hybrid Approaches These are models based on integration of
CNN and RNN architectures. [66–68]

Among the initially developed hand-crafted representations, improved Dense Tra-
jectories (iDT) [27] is widely considered the state-of-the-art. Whereas, many recent com-
petitive studies demonstrated that hand-crafted features [35–38], high-level [39,40], and
mid-level [41,42] video representations have contributed towards the task of video classifi-
cation with deep neural networks. The hand-crafted models were among the very early
developments of video classification problem. Later, 2D-CNNs were proposed for video
classification, where image-based CNN models are used to extract frame level features and
based on the frame level CNN features, some state-of-art classification models (for example
SVM) are learned to classify videos. These 2D-CNN models do not require any manual
feature extraction and these models performed better than the competing hand-crafted
approaches. After successful development of 2D-CNN models where features are extracted
from frame level, the same concept was extended to propose 3D-CNNs to extract features
from videos. The proposed 3D-CNNs are computationally more expensive as compared
to the 2D-CNN models. However, these models consider the time variations in feature
extraction therefore these 3D-CNN models are believed to perform better as compared to
2D-CNN models for video classification [54,58,69].

The development of 3D-CNN models paved the way for fully automatic video classifi-
cation models using different deep learning architectures. Among the developments using
deep learning architectures, spatiotemporal convolutional networks are approaches based
on integration of temporal and spatial information using convolutional networks to perform
video classification. To collect temporal and spatial information, these methods primarily
rely on convolution and pooling layers. Stack optical flow is used in two/multi-stream
networks methods to identify movements in addition to context frame visuals. Recurrent
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spatial networks use recurrent neural networks (RNN) to model temporal information in
videos, such as LSTM or GRU. The ResNet architecture is used to build mixed convolu-
tional models. They are particularly interested in models that utilize 3D convolution in the
bottom or top layers but 2D in the remainder; these are referred to as “mixed convolutional”
models. These also include methods based on mixed temporal convolution with different
kernel sizes. Advanced architectures based on DenseNet have also shown promising results
for the video classification task. Some of these notable architectures based on DenseNet
include region-based CNN (R-CNN) [70,71], faster R-CNN [72,73], and YOLO [74]. Besides
these architectures, there are also hybrid approaches based on the integration of CNN and
RNN architectures. A summary of these architectures is provided in Figure 6.
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Figure 6. Summary of video classification approaches.

The different deep learning architectures described above employ different fusion
strategies. These fusion strategies are either for the fusion of different features extracted
from the video or for the fusion of different models used in the architecture. The fu-
sion strategies mainly used for the extracted features are (i) concatenation, (ii) product,
(iii) summation, (iv) maximum, and (v) weighted, where the concatenation approach sim-
ply combines all the features together, and all the features are used for classification. The
product/summation approach performs the product/summation between the features
extracted using different strategies and uses the result of product/summation to perform
classification. The maximum approach takes the maximum value of the features extracted
using different strategies and uses that for classification. The weighted approach gives
different weights to different features and performs the classification using the weighted
features. Different fusion methods are summarized in Figure 7.
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3.7. Summary of Some Notable Deep Learning Frameworks Developments

A summary of some deep learnings architectures for video classification is provided
in Table 3. These studies are summarized based on the architecture, the datasets, the evalu-
ation metrics, the fusion strategy, and the notable findings. The most common architectures
for video classification are fundamentally based on the RNN and CNN architectures; classi-
fication accuracy is one of the most common evaluation metrics; UCF-101 and Sports-1M
datasets are the choice for validation in most cases, multi-class classification problem is
considered in almost all cases, SMART blocks outperform 3D convolutions in terms of spa-
tiotemporal feature learning, and average fusion, kernel average fusion, weighted fusion,
logistic regression fusion, and MKL fusion are all proven to be inferior compared to the
multi-stream multi-class fusion technique. Moreover, a more applied form of classification
in videos is to identify/recommend tags or thumbnails in videos, and this specific task is
successfully caried out in [75–79].

3.8. Few-Shot Video Classification

FEW-SHOT learning (FSL) has received a great deal of interest in recent years. FSL
tries to identify new classes with one or a few labeled samples [80–83]. However, due to
most recent work in few-shot learning being centered on image classification, FSL in the
video domain is still hardly being explored [84,85]. Some of the notable works done in this
domain are discussed below.

A multi-saliency embedding technique was developed by Zhu et al. [85] to encode
a variable-length video stream into a fixed-size matrix. Graph neural networks (GNN)
were developed by Hu et al. [86] to enhance the video classification model’s capacity for
discrimination. The local–global link in a distributed representation space was still disre-
garded nevertheless. To categorize a previously unseen video, Cao et al. [87] introduced a
temporal alignment module (TAM) that explicitly took advantage of the temporal ordering
information in video data through temporal alignment. To combine the two-stream aspects
of videos more effectively, Fu et al. [88] developed a depth-guided adaptive instance-
normalization module (DGAdaIN). A C3D encoder was created by Zhang et al. [89] to
record close-range action patterns for spatiotemporal video blocks. Few-shot video cate-
gorization was addressed by Qi et al. [90] by learning a collection of SlowFast networks
enhanced with memory units. To comprehend realistic films of the target classes, Fu
et al. [91] presented embodied agent-based one-shot learning, which made use of synthetic
videos created in a virtual environment. For the issues of few-shot and zeroshot action
recognition, Bishay et al. [92] presented the temporal attentive relation network (TARN),
which was trained to compare representations of varying temporal length. By examining
local–global linkages and preserving the specifics of properties, Y. Feng et al. [93] recently
presented a dual-routing capsule graph neural network (DR-CapsGNN) to address the
issue of severely constrained samples in few-shot learning.

Apart from this, contrastive learning has also proved successful in recognizing human
actions. Some of the interesting works done in this regard are multi-granularity anchor-
contrastive representation learning [94] and X-invariant contrastive augmentation and
representation learning [95].

3.9. Geometric Deep Learning

Shape descriptors play a significant role in the description of manifolds for 3D shapes.
In general, a global feature descriptor is created by aggregating local descriptors to de-
scribe the geometric properties of the entire shape, for example, using the bag-of-features
paradigm. A local feature descriptor assigns a vector to each point on the shape in a
multi-dimensional descriptor space, representing the local structure of the shape around
that point. Most deep learning techniques that deal with 3D shapes essentially use the CNN
paradigm. Volumetric 2D multi-view shape representations are applied directly using stan-
dard (Euclidean) CNN architectures in neural networks via methods such as [96,97]. These
techniques are unsuited for dealing with deformable shapes because the shape descriptors
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they use are dependent on extrinsic structures that are invariant under Euclidean transfor-
mations, as demonstrated in Figure 8a [98], while some other approaches [99–103] create a
new framework by adopting the CNN feature extraction pattern to investigate the inherent
CNN versions that would enable handling shape deformations by using intrinsic filter
structure, as shown in Figure 8b [98]. Geometric deep learning deals with non-Euclidean
graph and manifold data. This type of data (irregularly arranged/distributed randomly) is
usually used to describe geometric shapes. The purpose of geometric deep learning is to
find the underlying patterns in geometric data where the traditional Euclidean distance-
based deep learning approaches are not suitable. There are basically two methods available
in the literature to apply deep learning on geometric data: (i) extrinsic methods and
(ii) intrinsic methods. The filters in extrinsic methods are applied on the 3D surfaces such
that it effects the structural deformity due to the extrinsic filter structure. The key weakness
of extrinsic approaches [96,97] is that they continue to consider geometric data as Euclidean
information. When an object’s position or shape changes, the extrinsic data representation
fails. Additionally, for these methods to support the challenging-in-practice task of attain-
ing the invariance of shape deformation, complicated models and extensive training are
required. The filters in intrinsic approaches are applied on the 3D surfaces without being
affected by the structural deformity. Rather than Euclidean realization, intrinsic methods
work on the manifold and are isometry-invariant by construction. Some of the works
based on intrinsic deep learning include (i) geodesic CNN [99], (ii) anisotropic CNN [100],
(iii) mixture model network [101], (iv) structured prediction model [102], (v) localized spec-
tral CNN [103], (vi) PointNet [104], (vii) PointNet++ [105], and (viii) RGA-MLP [106]. The
application of geometric deep learning (mostly intrinsic methods) in analyzing videos can
help in better understanding from the machine perspective, but it is still an open research
problem and needs further investigation. For further details on geometric deep learning,
readers are referred to [98,107].
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Table 3. Summary and findings of studies based on deep learning models.

Study Features Model Evaluation Dataset Problem Fusion Findings

[57]

Automatic
spatio-temporal

features/self-learning.
Temporal features

captured both locally
and globally.

Multiresolution
CNN architecture.

By the fraction of test
samples that contained

at least one of the
ground truth labels in
the top k predictions.

Sports-1M,
UCF-101. Multi-class

Single frame,
Early Fusion,
Late Fusion,
Slow Fusion.

When compared to a multilayer neural
network with rectified linear units followed
by a Softmax classifier built using histogram

features, the Softmax classifier performed
better (both local features such as texton,

HOG, cuboids, etc., and global features such
as color moments, and hue–saturation).

[108]

Visual (dense trajectory
descriptors): A 30-d

trajectory shape
descriptor, a 96-d HOG
descriptor, a 108-d HOF
descriptor, and a 108-d
MBH descriptor (local

visual descriptors). Audio
Features: MFCCs and

Spectrogram SIFT.

Deep neural network
(DNN).

Mean average precision
(mAP).

Hollywood2,
Columbia

Consumer Videos
(CCV), and

CCV+.

Multi-class Regularized fusion of
multiple features.

Found better than dense trajectory features
and classification utilizing the basic early

fusion technique.

[109]
Tensor-Train Factorization
(global representation for

the whole sequence).

Recurrent neural network
(RNN). Classification accuracy.

UCF11,
Hollywood2,

YouTube Celebrities
Face Data.

Multi-class -
Tensor-Train layer-based RNN such as LSTM
and GRU perform better than the plain RNN

architectures for video classification.

[110]

Improved Fisher vector
(iFV) and explicit feature
maps to represent features

of conv and fc layers.
Long-term

temporal information.

A multilayer and
multimodal fusion

framework of deep neural
networks based on fully

connected (FC)-RNN.

Classification accuracy. UCF101,
HMDB51. Multi-class Multilayer and multimodal

fusion framework.

When compared to enhanced dense
trajectories, which require a number of

handcrafted procedures such as dense point
tracking, camera motion estimation, person
detection, and so on, the proposed FC-RNN

obtained competitive results.

[50]

Convolutional temporal
feature pooling

architectures (conv
pooling, late pooling, slow

pooling, local pooling).
Global

video-level descriptors.

Two CNN architectures
(AlexNet and GoogleNet)

and LSTM.

By the fraction of test
samples that contained

at least one of the
ground truth labels in
the top k predictions.

UCF101,
Sports 1 million. Multi-class Late fusion

(i) UCF-101 necessitates the utilization of
optical flow. (ii) Optical flow is not always
beneficial, especially when the videos are
captured in the wild, such as Sports-1M.
(iii) To make use of optical flow, a more

advanced sequence processing architecture
such as LSTM is required. (iv) The maximum

documented performance is achieved by
using LSTMs on both image frames and

optical flow for the Sports-1M benchmark.
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Table 3. Cont.

Study Features Model Evaluation Dataset Problem Fusion Findings

[111]

Spatiotemporal feature
learning:

a SMART block and
ARTNet for short-term
spatiotemporal feature

learning with a possibility
to explore

long-term learning.

ARTNet by integrating
the SMART block into the

C3D-ResNet18
architecture, where

SMART block architecture
is composed of

appearance branch and
relationship branch.

Top-1 and Top-5
accuracy.

Kinetics, UCF101,
and HMDB51. Multi-class Concatenation and

reduction operation.

(i) In terms of spatiotemporal feature
learning, SMART blocks outperform 3D

convolutions (3D-CNN). (ii) In the case of
ARTNet, supplementing RGB input with

optical flow improves performance. (iii) The
optical flow modality can give additional

information. (iv) Optical flow’s high
computing cost prevents it from being used

in real-world systems.

[112]

Spatial, short-term motion
and audio clues using

CNN. Long-term
temporal dynamics.

(Multimodal features).

CNNs-LSTM model with
multi-stream multi-class

fusion process to
adaptively determine the
optimal fusion weights for
generating the final scores

of each class.

Classification accuracy.
UCF-101,
Columbia

Consumer Videos.
Multi-class Multi-Stream

Multi-Class Fusion.

Average fusion, kernel average fusion,
weighted fusion, logistic regression fusion,

and MKL fusion are all proven to be inferior
to the proposed multi-stream multi-class

fusion technique.

[113]

Two distinct layers:
1 × 1 × 1 conventional

convolutions for channel
interaction (but no local

interaction) and k × k × k
depth-wise convolutions
for local spatiotemporal

interactions (but not
channel interaction).

Global spatiotemporal
average pooling layer.

Channel-separated
convolutional network

(CSN).
Two models:

interaction-preserved
channel-separated

network (ip-CSN) and
interaction-reduced
channel-separated
network (ir-CSN).

Classification accuracy. Sports1M and
Kinetics. Multi-class -

(i) In 3D group convolutional networks, the
number of channel interactions has a

significant impact on accuracy.
(ii) Separating channel interactions from

spatiotemporal interactions in 3D
convolutions improves accuracy and reduces

computing cost. (iii) Three-dimensional
channel-separated convolutions offer
regularization and avoid overfitting.

[114]

The 3D network is
optimized with three loss

functions: (i)
cross-entropy (CE) loss,
(ii) pseudo-CE loss, and

(iii) soft CE loss. 2D Image
and 3D video model

capture short and long
visual descriptors.

Semi-supervised learning
(VideoSSL) with 3D

ResNet-18.
Top-1 UCF101, HMDB51,

and Kinetics. Multi-class -

(i) For 3D video classification, a direct
application of current semi-supervised

algorithms (which were initially designed for
2D imagery) cannot yield adequate results.

(ii) The accuracy of 3D-CNN models is much
improved by a calibrated use of object

appearance indicators for
semi-supervised learning.
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Table 3. Cont.

Study Features Model Evaluation Dataset Problem Fusion Findings

[115] Modal- and channel-wise
attentions.

Expansion-squeeze
excitation fusion network

Accuracy, confusion
matrix

ETRI-ACTIVITY3D,
NUT RGB+D Multi-class Multi-modal

(i) Modal-fusion nets (M-Nets) and
channel-fusion nets (C-Nets) are capable of

capturing the modal and channel-wise
dependencies between features in order to

improve the discriminative power of features
via modal and channel-wise ESEs. (ii) By

adding the penalty of the difference between
the minimum prediction losses on the single

modalities and the prediction loss on the
fused modality, multi-modal loss (ML) can
further enforce the consistency between the

single-modal features and the fused
multi-modal features.
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4. Benchmark Datasets, Evaluation Metrics, and Comparison of Existing
State-of-the-Art for Video Classification
4.1. Benchmark Datasets for Video Classification

There are several benchmark datasets being utilized for classification of videos, AND
some of these notable datasets are summarized in Table 4. The details related to these
datasets, such as total number of videos contained in the dataset, number of classes present
in the dataset, the year of publication of dataset, and the background of videos in the
dataset, are included in the summary.

Table 4. Benchmark datasets.

Dataset # of Videos # of Classes Year Background

KTH 600 6 2004 Static
Weizmann 81 9 2005 Static

Kodak 1358 25 2007 Dynamic
Hollywood 430 8 2008 Dynamic

Hollywood2 1787 12 2009 Dynamic
MCG-WEBV 234,414 15 2009 Dynamic

Olympic Sports 800 16 2010 Dynamic
HMDB51 6766 51 2011 Dynamic

CCV 9317 20 2011 Dynamic
UCF-101 13,320 101 2012 Dynamic

THUMOS-2014 18,394 101 2014 Dynamic
MED-2014 (Dev. set) 31,000 20 2014 Dynamic

Sports-1M 1,133,158 487 2014 Dynamic
ActivityNet 27,901 203 2015 Dynamic

EventNet 95,321 500 2015 Dynamic
MPII Human Pose 20,943 410 2014 Dynamic

FCVID 91,223 239 2015 Dynamic
UCF11 1600 11 2009 Dynamic

YouTube Celebrities Face 1910 47 2008 Dynamic
Kinetics 300,000 400 2017 Dynamic

YouTube-8M 6.1 M 3862 2018 Dynamic
JHMDB 928 21 2011 Dynamic

Something-something 110,000 174 2017 Dynamic

4.2. Performance Evaluation Metrics for Video Classification

The evaluation of video classification models is performed using different performance
measures. The most common measures utilized to evaluate the models are accuracy,
precision, recall, F1 score, micro F1, and K-fold [8]. Some of the recent studies using these
measures are listed in Table 5.

Table 5. Commonly used evaluation metrics for video classification.

Evaluation Metric Year of Publication Reference

Accuracy 2020–2021 [116–120]
Precision 2020–2021 [116,118,119]

Recall 2020–2021 [116,118,119]
F1 Score 2020–2021 [116,118,119]
Micro F1 2020 [121,122]
K-Fold 2019 [123]
Top-k 2018,2021 [111,114]

4.3. Comparison of Some Existing Approaches on UCF-101 Dataset

UCF-101 is a benchmark action recognition dataset published by the researchers of
University of Central Florida in the year 2012 [124], and the videos in the dataset were
collected from YouTube. The total videos in the dataset are 13,320, with 101 action categories.
The dataset is challenging because of the uncontrolled environment in the captured videos,
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and it is widely being used by researchers working on the video classification problem.
Therefore, it is easy to compare most of the existing literature based on this dataset. The
existing works employing UCF-101 are compared in Table 6, where the methods are
arranged in ascending order based on the performance. The results reported in Table 6 are
taken from the existing studies in the literature.

Table 6. Comparison of video classification method on UCF-101.

Method Accuracy

LRCN [48] 82.9
DT + MVSV [125] 83.5

LSTM–Composite [49] 84.3
FSTCN [126] 88.1

C3D [127] 85.2
iDT + HSV [128] 87.9
Two-Stream [61] 88.0
RNN-FV [129] 88.0

LSTM [50] 88.6
MultiSource CNN [130] 89.1

Image-Based [55] 89.6
TDD [35] 90.3

Multilayer and Multimodal Fusion [110] 91.6
Transformation CNN [131] 92.4

Multi-Stream [112] 92.6
Key Volume Mining [132] 92.7

Convolutional Two-Stream [62] 93.5
Temporal Segment Networks [39] 94.2

4.4. Comparison of Different Deep Learning Architectures

In Table 7, some important deep learning architectures are compared in terms of per-
formance and computational requirement. These architectures are the basis of development
of different deep learning models for video classification, and from this comparison, an
estimation of the requirement of computational cost for each of these architectures can
be drawn.

Table 7. Performance comparison of different deep architectures [127].

Architecture Name Parameters Error Rate Depth Category Year

LeNet 0.060 M [dist]MNIST: 0.8
MNIST: 0.95 5 Spatial exploitation 1998

AlexNet 60 M ImageNet: 16.4 8 Spatial exploitation 2012

ZfNet 60 M ImageNet: 11.7 8 Spatial exploitation 2014

VGG 138 M ImageNet: 7.3 19 Spatial exploitation 2014

GoogLeNet 4 M ImageNet: 6.7 22 Spatial exploitation 2015

Inception-V3 23.6 M
ImageNet: 3.5

multi-crop: 3.58
Single-Crop: 5.6

159 Depth + width 2015

Highway networks 2.3 M CIFAR-10: 7.76 19 Depth + multi-path 2015

Inception-V4 35 M ImageNet: 4.01 70 Depth + width 2016

Inception-ResNet 55.8 M ImageNet: 3.52 572 Depth + width +
multi-path 2016
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Table 7. Cont.

Architecture Name Parameters Error Rate Depth Category Year

ResNet 25.6 M
1.7 M

ImageNet: 3.6
CIFAR-10: 6.43

152
110 Depth + multi-path 2016

DelugeNet 20.2 M CIFAR-10: 3.76
CIFAR-100: 19.02 146 Multi-path 2016

FractalNet 38.6 M

CIFAR-10: 7.27
CIFAR-10 +: 4.60

CIFAR-10 ++: 4.59
CIFAR-100: 28.20

CIFAR-100 +: 22.49
CIFAR100 ++: 21.49

20
40 Multi-path 2016

WideResNet 36.5 M CIFAR-10: 3.89
CIFAR-100: 18.85

28
– Width 2016

Xception 22.8 M ImageNet: 0.055 126 Width 2017

Residual attention
neural network 8.6 M

CIFAR-10: 3.90
CIFAR-100: 20.4
ImageNet: 4.8

452 Attention 2017

ResNeXt 68.1 M
CIFAR-10: 3.58

CIFAR-100: 17.31
ImageNet: 4.4

29
-

101
Width 2017

Squeeze and
excitation networks 27.5 M ImageNet: 2.3 152 Feature-map

exploitation 2017

DenseNet

25.6 M
25.6 M
15.3 M
15.3 M

CIFAR-10 +: 3.46
CIFAR100 +: 17.18

CIFAR-10: 5.19
CIFAR-100: 19.64

190
190
250
250

Multi-path 2017

PolyNet 92 M ImageNet: Single: 4.25
Multi: 3.45

–
– Width 2017

PyramidalNet
116.4 M
27.0 M
27.0 M

ImageNet: 4.7
CIFAR-10: 3.48

CIFAR-100: 17.01

200
164
164

Width 2017

Convolutional block
attention Module

(ResNeXt101
(32 × 4d) + CBAM)

48.96 M ImageNet: 5.59 101 Attention 2018

Concurrent spatial and
channel excitation mechanism – MALC: 0.12

Visceral: 0.09 – Attention 2018

Channel boosted CNN – – – Channel boosting 2018

Competitive squeeze and
excitation network
CMPE-SE-WRN-28

36.92 M
36.90 M

CIFAR-10: 3.58
CIFAR-100: 18.47

152
152

Feature-map
exploitation 2018

5. Key Findings

From the analysis of the existing literature, the following key findings are drawn for
video classification task: (i) The visual description works better than the text and the audio
description, and the combination of all modalities can contribute to better performance
with an increase in computational cost. (ii) The architectures employing CNN/RNN for
feature extraction have the ability to perform better than handcrafted features provided
that enough data are available for training. (iii) Tensor-Train layer-based RNN such as
LSTM and GRU perform better than the plain RNN architectures for video classification.
(iv) It is sometimes necessary to use optical flow for datasets such as UCF-101. (v) It is
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not always helpful to use optical flow, especially for the case of videos taken from the
wild, e.g., Sports-1 M. (vi) It is important to use a sophisticated sequence processing ar-
chitecture such as LSTM to take advantage of optical flow. (vii) LSTMs, when applied
on both the optical flow and the image frames, yield the highest performance measure
for the Sports-1M benchmark dataset. (viii) Augmenting optical flow and RGB input
helps in improving the performance. (ix) Optical flow modality provides complemen-
tary information. (x) The high computational requirement of optical flow limits its use in
real-time systems. (xi) Multi-stream multi-class fusion can perform better than average
fusion, weighted fusion, kernel average fusion, MKL fusion, and logistic regression fusion
on datasets such as UCF-101 and CCV. (xii) In 3D group convolutional networks, the
volume of channel interactions plays a vital role in achieving a high accuracy. (xiii) The
factorization of 3D convolutions by separating spatiotemporal interactions and channel in-
teractions can lead to an improvement in accuracy and a decrease in the computational cost.
(xiv) Further, 3D channel-separated convolutions results in a kind of regularization and
prevents overfitting. (xv) Popular frameworks of conventional semi-supervised algorithms
(which were originally developed for 2D images) are unable to obtain good results for 3D
video categorization. (xvi) For semi-supervised learning, a calibrated employment of the
object appearance cues keenly improves the accuracy of the 3D-CNN models.

6. Conclusions

This article reviews deep learning approaches for the task of video classification. Some
of the notable studies are summarized in detail, and the key findings in these studies are
highlighted. The key findings are reported as an effort to help the research community in
developing new deep learning models for video classification.

The latest developments in deep learning models have demonstrated the potential
of these approaches for the video classification task. However, most of the existing deep
learning architectures for video classification are basically adopted from the favored deep
learning architectures in image/speech domain. Therefore, most of the existing archi-
tectures remain insufficient to deal with the more complicated nature of video data that
contain rich information in the form of spatial, temporal, and acoustic clues. This calls for
attention towards the need for a tailored network capable of effectively modeling the spa-
tial, temporal, and acoustic information. Moreover, training CNN/RNN models requires
labeled datasets, and acquiring those datasets is usually time-consuming and expensive,
and hence, a promising research direction is to utilize the considerable amount of unlabeled
video data to derive better video representations.

Furthermore, the deep learning approaches are outperforming other state-of-the-art
approaches for video classification. The deep learning Google trend is still growing, and it
is still above the trend for some other very well-known machine learning algorithms, as
shown in Figure 9a. However, the recent developments in deep learning approaches are
still under-evaluated and require further investigations for the video classification task.
One such example is geometric deep learning approaches, and the worldwide research
interest in this specific topic is shown in Figure 9b, which describes that this topic is still
confined to some states of U.S., Europe, and India. Therefore, it has yet to be developed
and investigated further. The use of geometric deep learning in extracting rich spatial
information from videos can also be a new research direction as a future work for better
accuracy in the video classification task.
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