
Citation: Ndichu, S.; Ban, T.;

Takahashi, T.; Inoue, D. AI-Assisted

Security Alert Data Analysis with

Imbalanced Learning Methods. Appl.

Sci. 2023, 13, 1977. https://doi.org/

10.3390/app13031977

Academic Editors: Konstantinos

Rantos, Konstantinos Demertzis and

George Drosatos

Received: 31 December 2022

Revised: 30 January 2023

Accepted: 31 January 2023

Published: 3 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

AI-Assisted Security Alert Data Analysis with Imbalanced
Learning Methods
Samuel Ndichu * , Tao Ban , Takeshi Takahashi and Daisuke Inoue

Cybersecurity Research Institute, National Institute of Information and Communications Technology,
Tokyo 184-8795, Japan
* Correspondence: ndichu@nict.go.jp

Abstract: Intrusion analysis is essential for cybersecurity, but oftentimes, the overwhelming number
of false alerts issued by security appliances can prove to be a considerable hurdle. Machine learning
algorithms can automate a task known as security alert data analysis to facilitate faster alert triage
and incident response. This paper presents a bidirectional approach to address severe class imbalance
in security alert data analysis. The proposed method utilizes an ensemble of three oversampling
techniques to generate an augmented set of high-quality synthetic positive samples and employs a
data subsampling algorithm to identify and remove noisy negative samples. Experimental results
using an enterprise and a benchmark dataset confirm that this approach yields significantly improved
recall and false positive rates compared with conventional oversampling techniques, suggesting its
potential for more effective and efficient AI-assisted security operations.
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1. Introduction

An intrusion detection system (IDS) is a security system that monitors and detects
malicious activity in a computer network [1]. It is designed to detect viruses, worms,
Trojans, and other malicious code or software, as well as unauthorized access attempts,
denial of service attacks, and other malicious activities to detect and prevent attacks. In
addition, it alerts security analysts to suspicious activities. An IDS can be categorized as
a signature- or anomaly-based IDS [2]. A signature-based IDS uses a database of known
attacks to effectively detect malicious activity, but it cannot detect new, variant, or unknown
attacks. An anomaly-based IDS identifies threats by detecting deviations from the expected
system behavior. It is more effective at detecting new or unknown attacks, but is prone to
false positives (FPs).

An IDS can be implemented as a host, application, or network-based system. A
host-based IDS monitors the malicious activities of individual computers by analyzing
system logs, system files, and other data. An application-based IDS analyzes the network
traffic and application behavior to identify suspicious activities. These are typically used to
protect web applications, databases, and other critical systems from malicious attacks. In
addition, they can be used to detect insider threats, such as employees accessing sensitive
data without authorization. Network-based IDSs (NIDSs) monitor networks for malicious
activities and suspicious traffic. They analyze network traffic for known attack patterns
and anomalies and issue security alerts when suspicious activity or traffic is detected.

Security analysts at security operation centers (SOCs) investigate real-time events
presented as security alerts by NIDSs to identify critical incidents [3]. However, this task is
often hampered by alert fatigue caused by an immense number and constant frequency
of alerts issued by security appliances [4,5]. One effective way to deal with this problem
is to train high-accuracy machine learning (ML) algorithms to automate security alert
data analysis.
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A dataset is considered imbalanced if the number of instances in each class is sig-
nificantly disproportionate [6]. The class imbalance problem [7–12] in security alert data,
where negative alerts vastly outnumber positive alerts, is well known. This imbalance can
lead to conventional classifiers being biased towards trivial alerts, which is detrimental to
the detection of crucial alerts associated with critical incidents. Therefore, developing a
method to mitigate the class imbalance in security alert data is essential for ensuring a fast
incident response at SOCs.

Our previous work [13] addressed the class imbalance problem in security alert data
using a support vector machine synthetic minority oversampling technique (SVMSMOTE).
The experimental results showed that adding synthetic positive samples to the training data
can effectively improve the recall rate for detecting positive alerts. Nevertheless, owing
to the strong skewness in the alert dataset, an extraordinarily high oversampling rate was
chosen to generate sufficient synthetic positive alert samples to obtain a balanced training
dataset. This extremely high sampling rate resulted in a distorted distribution at the class
boundaries, resulting in an undesirable high false positive rate (FPR) in the detection.

In this study, we introduced a bidirectional approach to cope with excessive skewness
in the data. First, an ensemble of three oversampling methods was implemented to generate
an augmented set of high-quality variational synthetic positive samples. Subsequently, a
data subsampling algorithm was utilized to identify and remove ambiguous, noisy, and
redundant negative samples. Classification models obtained from the merged augmented
set (MAS), composed of synthetic positive and cleaned negative samples, could simultane-
ously yield an improved recall rate and FPR. The proposed approach was evaluated on
an enterprise dataset collected from SOC operations in a network and the UNSW-NB15
benchmark dataset. The proposed method had a recall rate of 99.519% and an FPR of
0.119% on the enterprise dataset and a recall rate of 96.772% and an FPR of 0.232% on
the benchmark dataset. Hence, it can be concluded that it outperformed conventional
oversampling approaches by a large margin. This finding casts light on solving highly
skewed class distribution problems commonly encountered in cybersecurity scenarios and
paves the way for more effective and efficient artificial-intelligence (AI)-assisted security
operations.

The main contributions of this study are summarized as follows:

• We propose a bidirectional approach to address imbalanced classification problems
with extremely high skewness in the class distribution.

• We present a highly reproducible implementation of the bidirectional approach with
conventional oversampling and data subsampling methods and a benchmark dataset.

• As proof of concept, we show the effectiveness of the proposed approach in detecting
critical alerts from security alert logs issued by multiple security appliances.

The remainder of this paper is organized as follows. Section 2 discusses the current
literature on the topic. Section 3 details the proposed methodology for the security alert
data analysis. Section 4 presents the experimental setup and comparison of the results.
Finally, Section 5 concludes the study and highlights ideas for future work.

2. Related Work

FPs are inconvenient for security analysts since they do not represent actual intruder
activities. A high FPR reduces the value of issued alerts [14,15]. Compared with con-
ventional approaches that fine-tune the rule base of NIDSs [16–18], a more sophisticated
approach to reduce the FPR for security alert data is to use an ML algorithm to adjust
the configuration of the NIDS automatically. In this section, we review recent works on
AI-based approaches for coping with imbalanced security alert data and intrusion detection
and prioritization.

2.1. Combating Data Imbalance

The prevalence of benign network traffic events often causes the alert data generated
by NIDS to be imbalanced, with more benign events than malicious ones. Studies have
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investigated methods for handling imbalanced issues using resampling, cost sensitivity,
and clustering techniques.

2.1.1. Resampling

Various techniques have been proposed to address the imbalance in alert data, such
as random undersampling [8], which involves selecting and deleting samples from the
majority class, typically the negative class. Another common technique is overweighting
the minority (positive) class instances [19,20] to increase the amount of data related to
attack events by replication or duplication. The synthetic minority oversampling technique
(SMOTE), Cluster-SMOTE, adaptive synthetic (ADASYN) algorithm, and generative adver-
sarial network were adopted in [8,21–28] to present new information or variational data
samples to the ML model. In addition, related works [8,29] explored a combination of
undersampling and oversampling techniques to attain a balanced data distribution and
improve the accuracy of classifiers.

2.1.2. Cost-Sensitive Learning

Cost-sensitive approaches assign different weights to positive and negative instances.
Previous studies [8,30] investigated the use of cost-sensitive learning to combat class
imbalance through a weighted support vector machine (SVM) [31] and repeated incremental
pruning to produce error reduction algorithms [32].

2.1.3. Clustering

Clustering involves grouping samples into clusters to minimize the variance within
each cluster [33]. In [34,35], clustering techniques were combined with active learning
approaches, where random selection, k-means clustering, and k-means clustering with
bagging and aggregation of observations were integrated to provide diverse samples to
human experts. In their approach, active learning was adopted to enable human experts to
label unlabeled data efficiently.

2.2. Intrusion Detection and Prioritization

Intrusion detection and prioritization are commonly used for investigation; after alert
identification, operators will only address alerts in the top 10% of the list. A detection and
prioritization model to design an alert correlation system [19,36] based on the extended
Dempster–Shafer theory was investigated to identify the top alerts for the analysis listed
in ascending order of importance. The study in [37] leveraged a deep neural network [38]
to prioritize and respond to intrusion alerts using an automated alert-triaging process.
Important events in the logs were extracted and passed to security operators. Moreover,
in [39,40], an unsupervised learning approach for alert prioritization was studied by
adopting an isolation forest and day-forward-chaining analysis to detect anomalies and
high-priority alerts. Recently, provenance graphs [41–44] have also been used for alert
prioritization by performing automated attack triage using historical information to
assign threat scores to the alerts.

Approaches using deep learning techniques for intrusion detection [15] have been
proposed. Deep learning is a type of AI that uses multiple layers of nonlinear processing
units to learn from data with automatic feature learning and is scalable for large volumes
of data. These intrusion detection approaches are based on convolutional neural networks
(CNNs) [45–47] and CNNs with feature extraction [48] using methods such as principal com-
ponent analysis and auto-encoders for dimension reduction. Other approaches are based
on deep neural networks (DNNs) [49], few-shot learning with a combination of a CNN and
a DNN [50] for feature extraction, and DNNs with deep stacked auto-encoders [51]. Deep
learning approaches are used for network traffic classification into normal or attack classes
or multi-class classification of various network attack types.
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2.3. Limitations

Random undersampling involves discarding the majority class data, and these may
contain important information essential for constructing rule-based classifiers, potentially
leading to failure or decreased performance. However, naive oversampling by replicating
minority class samples can lead to overfitting and, thus, less effective models [6]. Other
oversampling techniques, such as SMOTE for nominal (SMOTEN), assume that the data to
be oversampled have only categorical features. We discovered that, when used for security
alert data oversampling, SMOTEN produced poor results. In addition, some oversampling
techniques do not consider neighboring examples from other classes, leading to increased
class overlap and additional noise. Moreover, they have limitations when used in extremely
imbalanced data scenarios. Cost-sensitive learning techniques are likely to fail if positive
instances are sparse, whereas clustering algorithms are prone to overfitting.

Some intrusion detection and prioritization methods encompass manual time-consuming
alert analysis procedures, where a report is sent to security operators with alerts listed in
ascending order of importance. Deep learning approaches are characterized by complex
data models, making them extremely expensive to train, and the lack of feature extraction
in some of these approaches leads to a long training time. In addition, most of these
approaches concentrate on evaluation metrics that are not well suited for highly imbalanced
datasets, such as accuracy and recall, because most benchmark datasets are not highly
imbalanced. In the proposed approach, an ensemble resampling technique is implemented
to tackle the highly skewed data issue often observed in security alert data and to improve
positive alert detection while keeping the FPR low.

3. Methodology

In this section, we describe the benchmark dataset and the proposed security alert
data analysis method, as illustrated in Figure 1. The proposed framework consists of
four modules: security alert generation, preprocessing, resampling, and classification and
analysis. First, we provide the details of the benchmark dataset, followed by a detailed
description of each module in the system framework.

Figure 1. Proposed system framework for AI-assisted security alert data analysis.

3.1. Benchmark Dataset

The UNSW-NB15 dataset was created using the IXIA PerfectStorm tool in the Cyber
Range Lab of UNSW Canberra to generate a hybrid of normal activities and attack behaviors.
The dataset has nine types of attacks: fuzzers, analysis, backdoors, DoS, exploits, generic,
reconnaissance, shellcode, and worms [52].

3.2. Security Alert Generation

In the proposed method, to generate the enterprise alert dataset, an SIEM system
integrates multiple NIDSs deployed in a network, providing a central monitoring point
to monitor the network status and detect cyber threats. Most security appliance vendors
adopt the common event format (CEF) [53], an event interoperability standard introduced
by ArcSight, Inc. Owing to the flexibility of the CEF format, alert logs issued by different
security appliances often convey different types of information, making data integration
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difficult. To address this, a data unification component synopsizes log files from different
NIDSs into a single centralized view and outputs standard JavaScript object notation
(JSON) [54] objects representing the enterprise dataset for further analysis.

3.3. Preprocessing

Preprocessing involves selecting relevant features, encoding alerts, labeling data, and
splitting data into training and testing sets. The enterprise and benchmark datasets were
preprocessed differently; the enterprise dataset went through all the preprocessing stages,
while the benchmark dataset went through alert encoding and data splitting.

3.3.1. Feature Selection

JSON objects represent the enterprise dataset that stores event data, including the
appliance identification (ID), uniform resource locator (URL), Internet Protocol (IP) ad-
dresses, event description, event impact, downloaded file hash values, port numbers,
and timestamps. Information entropy [55] was used to divide attributes into three types:
numerical, categorical, and signature. Subsequently, security alert attributes with better
generalization performance were carefully selected and used as features to represent alerts
from the enterprise dataset.

3.3.2. Alert Encoding

Categorical features for enterprise and benchmark datasets were represented in a
binary format by encoding each alert message in a log file as a numerical vector using
one-hot encoding [56]. Subsequently, the alerts were represented by binary vectors of the
same length.

3.3.3. Data Labeling

Security experts in SOC meticulously investigated the enterprise dataset alerts with
deterministic evidence gathered to manually identify vital incidents. They examined the
content of the communications captured in archived packet capture. They determined the
criticality level of each alert after analyzing files using a sandbox, verifying the contents of
the accessed URL, and comparing them with URL blacklists, among other methods. Owing
to the alert fatigue that commonly occurs during security alert investigations, there is a
substantial chance that security experts will miss or ignore highly critical alerts. Therefore,
we hired AI experts to use visualization tools to review labeled alerts. Alerts with key
incidents were labeled as highly critical and identified as positive alerts based on the gravity
of the possible impact.

3.3.4. Data Splitting

The enterprise and benchmark alert datasets were split into training and test sets,
and subsequently, stratified k-fold cross-validation was applied. Stratified k-fold cross-
validation is an extension of standard k-fold cross-validation, which ensures that the ratio
between the target classes in each fold is the same as that in the original dataset. This
method is particularly useful when dealing with imbalanced datasets, such as security
alert data, in which the negative class is significantly larger than the positive class. Cross-
validation results in more robust models, as it evaluates the performance of the model on
unseen data, and it helps reduce the risk of overfitting by providing an estimate of the
generalization performance of the model. In addition, it ensures that the model is not
overly sensitive to small variations in the training data.

3.4. Resampling

The resampling module includes imbalanced, oversampling, and ensemble resampling
for training data generation, as illustrated in Figure 2.
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(a) Imbalanced (b) Oversampling

(c) Ensemble resampling

Figure 2. Security alert training samples generation.

3.4.1. Imbalanced Data

Figure 2a outlines the process for obtaining imbalanced security alert training samples,
which comprises preprocessed positive and negative alert samples. As a baseline setting,
the original class ratio was maintained in the dataset.

3.4.2. Oversampling

Figure 2b shows the training sample generation process, which leverages oversampling
techniques. We selected the three most-popular data augmentation algorithms [57] for
synthetic security alert data generation: SMOTE [22], ADASYN [23], and SVMSMOTE [58].
The selected algorithm was adopted to generate synthetic positive samples, which were
subsequently combined with the corresponding negative samples to prepare the training
samples. The oversampling algorithms are described in detail below:

• SMOTE utilizes the k-nearest neighbors (k-NN) algorithm to create synthetic samples.
The method begins by choosing a random sample from the minority class. Subse-
quently, synthetic samples are generated by interpolating the line segments between
the selected sample and its k nearest neighbors (NNs). It generates new synthetic
samples close to the feature space between two sample pairs based on their local
density and borders with the other class [59]. Synthetic samples were generated by
taking the difference between the selected sample and its neighbor and multiplying
this difference by a random number between 0 and 1, resulting in the random selection
of a point in the line segment. This procedure broadens the decision region of the
augmented class.

• ADASYN is a modification of SMOTE that uses a density distribution to determine
the number of synthetic samples generated for each sample. A density distribution
measure assigns more weight to samples that are more challenging to learn, forcing the
learning algorithm to focus on these samples. In contrast to SMOTE, which generates
the same number of synthetic samples for each point, ADASYN generates a different
number of synthetic samples based on an estimate of the local distribution of chosen
samples.

• SVMSMOTE is also an extension of SMOTE, which uses selective synthetic sample
generation to determine which samples should be oversampled. In SVMSMOTE, the
borderline area is approximated by support vectors after training an SVM classifier
on the original training samples [60]. Synthetic samples are randomly created along
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the lines joining each support vector in the minority class with a number of NNs [58].
This method focuses more on where the data are separated into different classes, and
more samples are synthesized away from the overlapping regions of different classes.

The important parameters of the oversampling algorithms are listed in Table 1.

Table 1. Oversampling and undersampling parameters.

Parameters Algorithms Definition

sampling_strategy SMOTE; ADASYN;
SVMSMOTE

Sampling rate used to over-
sample the dataset

k_neighbors SMOTE; SVMSMOTE Number of NNs used to gener-
ate synthetic samples

n_neighbors ADASYN Number of NNs used to gener-
ate synthetic samples

threshold_cleaning NCR Determine condensed nearest
neighbor application

ss_n_neighbors OSS; NCR Neighborhood size for a sam-
ple and its NNs

3.4.3. Ensemble Resampling

Figure 2c shows the training data generation process using ensemble resampling. First,
each oversampling method generated a subset of synthetic positive samples. Second, the
generated subsets were merged to form the MAS. Third, a data subsampling method was
employed to obtain clean negative alert samples. Finally, the training data were obtained by
combining the MAS and cleaned negative samples. MAS and data subsampling methods
are described in detail below:

• Merged Augmented Set: We selected and implemented an ensemble of three of the
most-effective data augmentation algorithms to generate synthetic security alert data:
SMOTE, ADASYN, and SVMSMOTE. The ensemble resampling technique was used
to generate an MAS of variational synthetic positive samples with high quality to
mitigate the weaknesses arising from using a high oversampling rate, resulting in an
improved FPR. The advantage of using an MAS includes a reduced sampling rate
for each oversampling technique with less possibility of ill-formed synthetic samples
and a more realistic distribution mimicking real data, as density-based methods are
engaged.

• Subsampling Negative Security Alerts: Data subsampling methods select data samples
to retain or delete [57,60]. We found that approaches that combine deletion and
retention work best for subsampling security alert data. We compared the performance
of two data subsampling methods for data deletion and retention: one-sided selection
(OSS) [6,61] and the neighborhood cleaning rule (NCR) [62]. These two algorithms
were used to identify and remove ambiguous, noisy, and redundant security alert
samples from the negative class.

– The OSS algorithm combines the condensed nearest neighbor algorithm [63]
and the Tomek links [64]. The condensed nearest neighbor algorithm is an
undersampling algorithm that identifies a minimal consistent set and removes
redundant and ambiguous negative samples. Tomek links remove noisy and
borderline negative samples. Data processing was performed as follows: First,
using the condensed nearest neighbor, all positive samples and one randomly
selected negative sample were added to a store. Second, the NN rule was used to
classify training samples using the alerts in the store and to compare the assigned
labels with the original ones. All misclassified samples were moved into the store,
which is consistent with the training samples, while being smaller. Finally, all the
negative samples participating in Tomek links were removed from the store to
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remove borderline and noisy negative samples. All the positive samples were
retained, and the resultant set was a set of clean samples.

– The NCR algorithm combines the condensed nearest neighbor and edited nearest
neighbor (ENN) algorithms [65]. ENN is an undersampling algorithm that uses
k NNs to identify and remove misclassified or noisy negative samples before
applying the k-NN classification algorithm. First, the algorithm selects all the
positive samples. All noisy samples in the negative class are then identified and
removed using the ENN rule. Finally, a one-step condensed nearest neighbor
removes the remaining negative samples that are misclassified against the store,
but only if the number of negative samples is larger than half the size of the
positive class.

The crucial parameters of the OSS and NCR algorithms are listed in Table 1.

3.5. Classification and Analysis

This section covers the algorithms used to classify security alert data into positive and
negative classes. We selected five classification algorithms that can efficiently handle high-
dimensional sparse data: logistic regression (LR), k-NN, decision trees (DTs) [66,67], extreme
gradient boosting (XGBoost) [68], and light gradient boosting machine (LightGBM) [69]. We
used these algorithms to build prediction models for security alert data and subsequently
evaluated them using stratified k-fold cross-validation.

LR models calculate the probability of a discrete outcome given an input variable.
This is a robust and flexible method for predicting binary outcomes or states, making it
a valuable analytical tool for classification problems. LR is particularly useful for alert
analysis, because it can determine whether a new sample fits best into a given class. The
algorithm predicts the probability that y is associated with input variable X using the
logistic function Equation (1).

P(X) =
eβ0+β1X

1 + eβ0+β1X (1)

where β0 is the bias or intercept term and β1 is the coefficient for the single input value (xi).
k-NN is a simple, easy-to-implement supervised ML algorithm. It is assumed that

similar samples exist in close proximity to each other. In a classification task, the algorithm
determines the distance between a query sample and all samples in the data and selects
the specified number of k NNs, and subsequently, the NNs define the label of the query
sample by a majority vote. k-NN classifiers have a fixed user-defined constant for the
number of neighbors that must be determined. Neighbors-based methods are known as
non-generalizing ML methods because they store all the training data. k-NN uses the
Euclidean distance method to compute the closest neighbors to a given data point, as
shown in Equation (2).

d(x, y) =

√
n

∑
i=1

(xi − yi)2 (2)

DTs are supervised ML algorithms that can predict the data class by learning simple
decision rules inferred from training data. It has a hierarchical tree structure consisting
of root nodes, branches, internal nodes, and leaf nodes. A DT starts with a root node that
does not have incoming branches. The outgoing branches from the root node feed into
the internal nodes, also known as decision nodes. Based on the available features, both
node types conduct evaluations to form homogenous subsets denoted by leaf or terminal
nodes. The leaf nodes represent all possible outcomes within the dataset. DT learning
employs a divide-and-conquer strategy by conducting a greedy search to identify optimal
split points within a tree. This process of splitting is repeated in a top-down recursive
manner until all or the majority of the samples have been classified under specific class
labels. Information gain and Gini impurity are popular splitting criteria for decision-tree
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models. These methods are used to select the best attribute at each node and help evaluate
the quality of each test condition and determine its ability to classify samples into a class.
The Gini index measures the total variance across N classes and is defined by Equation (3),
where pmk represents the proportion of training variables in the mth segment that belong
to the kth class.

G = −
k

∑
k=1

Pmk(1− Pmk) (3)

LightGBM is a distributed high-performance gradient boosting framework that uses
tree-based learning algorithms for classification tasks. The algorithm creates DTs that grow
leafwise, i.e., given a condition, only a single leaf is split, depending on the gain, and the
leaf with the maximum delta loss is chosen to grow. This is in contrast to other boosting
algorithms that grow tree-levelwise. LightGBM improves the gradient-boosting algorithm
by adding automatic feature selection and focusing on boosting examples with significant
gradients. The algorithm comprises the gradient-based one-side sampling (GOSS) and
exclusive feature bundling (EFB) techniques. In GOSS, different samples play different roles
in calculating the information gain, in which an instance with greater gradients can add
more to the information gain. GOSS retains instances with high gradients and eliminates
those with limited gradients at random to maintain the precision of information gain
estimation [69,70]. The mathematical analysis of GOSS is shown in Equation (4):

V̂j(d) =
1
n

(
(∑xi∈Al

gi +
1−a

b ∑xi∈Bl
gi)

2

nj
l(d)

+
(∑xi∈Ar gi +

1−a
b ∑xi∈Br gi)

2

nj
r(d)

)
(4)

where V̂j(d) is the estimated variance gain over the subset. A ∪ B, Al = {xi ∈ A : xij ≤ d};
Ar = {xi ∈ A : xij > d}; Bl = {xi ∈ B : xij ≤ d}; Br = {xi ∈ B : xij > d}; the coefficient
1−a

b was used to normalize the sum of the gradients over B to the size of Ac. Thus, the
estimated V̂j(d) was used over a smaller instance subset instead of the accurate V j(d) over
all instances to determine the split point. Simultaneously, the EFB technique is used by
LightGBM to minimize the model complexity by bundling exclusive features into a single
feature.

XGBoost is a supervised learning algorithm that implements gradient-boosted DTs.
Gradient boosting is a technique for predicting a target variable by combining the estimates
of a set of simpler and weaker models. The weak models are DTs trained sequentially
to minimize the loss function. New models are created that predict the residuals or
errors of prior models and are subsequently added together to make the final prediction.
The gradient descent algorithm minimizes the loss when adding new models. XGBoost
minimizes a regularized (L1 and L2) objective function that combines a convex loss function
and penalty term for model complexity. The loss function is based on the difference
between the predicted and the target outputs. Gradient boosting is a powerful technique
for achieving state-of-the-art results for several ML tasks. For a dataset with n examples,
where i represents each sample, XGBoost uses a loss function to build trees by minimizing
Equation (5):

L(φ) = ∑
i

l(ŷi, yi) + ∑
t

Ω( ft) (5)

where the first part represents the loss function that calculates the pseudo-residuals of the
predicted ŷi and the true value yi in each leaf, and the second part Ω( f ) = γT + 1

2 λ ‖ w ‖2.
γ represents the user-definable penalty, which encourages pruning, and T represents the
number of terminal nodes or leaves in a tree. λ is the regularization term intended to
reduce the insensitivity of the prediction to individual observations, and w represents the
leaf weights and output value for the leaf.
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4. Experiments

This section presents the experimental results of applying the proposed approach
to NIDS alert logs collected from the SOC operations in an existing enterprise network.
In addition, the results obtained from the benchmark dataset are presented. Three data
analysis processes were conducted in this study: imbalanced, oversampling, and ensemble
resampling. The performance of the proposed approach was compared with that of existing
state-of-the-art security alert data analysis approaches.

4.1. Dataset Preprocessing

First, experiments were conducted using an enterprise dataset comprising security
alert logs issued by six NIDSs that were used to monitor a Class B network comprising
mobile devices, servers, and personal computers with over 1000 users and 30,000 hosts.
The logs contained 131.11 million security alerts issued by the NIDSs, referred to as Ap-
pliance IDs A, B, C, D, E, and F, for security and ethical reasons, over ten months from
1 January to 31 October 2017. Table 2 presents the dataset statistics.

Table 2. Statistics of the enterprise dataset.

Appliance ID (#) Total
Negative

(#) Total
Positive

Imbalance
Rate (%)

(#) Unique
Negative

(#) Unique
Positive

Imbalance
Rate (%)

A 11.841 16443 0.139 2581 90 3.370
B 66.209 3658 0.006 2018 22 1.078
C 0.558 6782 1.201 1581 195 10.980
D 5,112 1386 21.330 101 19 15.833
E 15.792 1783 0.011 6827 26 0.379
F 36.396 280073 0.764 12863 64 0.495

Total 130.801 310125 0.237 25971 416 1.577

The overall data imbalance rates are shown in bold font.

Among all the alerts, only 310,125 were labeled as positive, while the rest were
labeled as negative, yielding an imbalance rate of 0.237%. Unique alerts that contained
distinct feature values were sampled from the dataset, and 416 positive and 25,971 negative
samples were obtained, resulting in an imbalance rate of 1.577%. This sampled dataset
can be efficiently loaded into the memory for further analysis. Figure 3 presents a sample
security alert message issued by an enterprise security appliance representing an anomalous
network interaction—an unusual port scan.

Figure 3. A security alert sample.

Second, the experiments were conducted using the UNSW-NB15 benchmark dataset.
Table 3 presents the dataset statistics. The dataset contained 257,680 records of 164,675 at-
tacks and 93,005 normal traffic. To obtain an imbalanced dataset, we sampled 37,000 and
4000 records from the normal and attack data, respectively, which resulted in an imbalance
rate of 9.756%. A sampled benchmark dataset was used to conduct the experiments.
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Table 3. Statistics of the UNSW-NB15 benchmark dataset.

Traffic (#) Records (#) Sample Imbalance Rate (%)

Attack 164,675 4000
9.756Normal 93,005 37,000

Total 257,680 41,000
The data imbalance rate is shown in bold font.

4.2. Security Alert Visualization

t-distributed stochastic neighbor embedding (t-SNE) [71] is a dimensionality reduction
technique that is particularly well suited for visualizing high-dimensional datasets. The
t-SNE algorithm measures the similarity between data points in a high-dimensional space
and projects them onto a lower-dimensional space, thereby allowing us to effectively reduce
the dimensionality of the data while preserving the local structure of the data. We mapped
the negative, positive, and synthetic security alert samples from the enterprise datasets in a
two-dimensional layout.

Figure 4 presents a t-SNE visualization of the enterprise dataset used in the experi-
ments. Disk and cross-markers represent negative and positive alert samples, respectively,
and the letters A–F indicate the appliance ID. The alerts were color coded according to the
issuing appliance, with the same color indicating positive and negative samples from the
same appliance. This figure indicates that the dataset was highly imbalanced, with most
alerts being negative. In addition, the alerts were largely clustered according to the issuing
appliance, as indicated by the letters A–F, with appliances E and F issuing the most alerts.

Figure 4. Visualizing unique security alert samples using t-SNE.

Figure 5 shows the distribution for the alert samples issued by Appliances A and B. The
blue disks represent negative alert samples, and the red crosses represent positive samples.
The figure indicates that negative samples comprise the majority class. Positive samples
formed tight clusters and were highly separable from negative ones. Synthetic samples
are shown as green crosses for SMOTE (Figure 5a), ADASYN (Figure 5b), SVMSMOTE
(Figure 5c), and MAS (Figure 5d). As shown in Table 2, appliance A had more positive
alert samples than Appliance B, resulting in more synthetic alert samples being generated
for Appliance B by each oversampling method. Each method employs a different data
generation scheme, resulting in a unique distribution of synthetic samples.

The alert distribution obtained using MAS (Figure 5d) alert samples resulted in high-
quality synthetic alert samples clustered around the positive ones characterized by reduced
class overlap. More data points were synthesized using MAS for Appliance B compared
with the other methods, indicating that the method resulted in a more balanced data
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distribution across all appliances. This suggests the potential for the improved performance
of a security alert data analysis system trained on MAS alert samples.

(a) SMOTE (b) ADASYN

(c) SVMSMOTE (d) MAS

Figure 5. Visualizing positive, negative, and synthetic samples using t-SNE.

4.3. Evaluation Metrics

The performance evaluation metrics included accuracy, recall, and precision. In addi-
tion, because the security alert data are highly imbalanced, we used the FPR, true negative
rate (TNR), F-score, and balanced classification rate (BCR) for evaluating the performance
of the proposed method. In this study, true positives (TPs) represent security alerts cor-
rectly classified as positive, FPs represent negative alerts incorrectly classified as positive,
FNs represent positive alerts incorrectly classified as negative, and true negatives (TNs)
represent correctly classified negative alerts. Precision can be more insightful than FPR
because TNs are not used in its calculation; thus, they are not affected by class imbalances.
We used precision–recall (PR) curves [72] and the PR area under the curve (PR-AUC) to
evaluate the performance of the model. The PR-AUC is a model performance metric for
binary responses appropriate for highly imbalanced datasets and is not dependent on
model specificity. The PR curve plots the precision and recall values over the possible
decision thresholds. The recall is plotted on the horizontal axis against the precision on
the vertical axis. The performance of a classifier can then be assessed by computing the
PR-AUC.

Accuracy is the percentage of security alert data samples correctly classified by a
classifier, as shown in Equation (6).

Accuracy =
TP + TN

n
(6)

The recall provides the proportion of correctly classified positive samples, as shown in
Equation (7).

Recall =
TP

TP + FN
(7)
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Precision provides the proportion of correct positive class predictions, as shown in
Equation (8).

Precision =
TP

TP + FP
(8)

The FPR is the number of FPs divided by the total number of actual negatives, as
expressed using Equation (9).

FPR =
FP

FP + TN
(9)

The TNR is the number of correctly classified negative alerts divided by the total
number of negative alerts, as expressed using Equation (10).

TNR =
TN

FP + TN
(10)

The F-score can be interpreted as the weighted harmonic mean of the precision and
recall, as shown in Equation (11).

F-score = 2
Precision× Recall
Precision + Recall

(11)

BCR is the average of the recall and TNR, as shown in Equation (12).

BCR =
Recall + TNR

2
(12)

4.4. Performance Evaluation

A security alert data analysis system should be evaluated based on its recall and
FPR to ensure that it can effectively detect positive alert samples associated with critical
events, ensuring that no malicious activity goes undetected while minimizing FPs [73]. A
high recall is essential to guarantee the effectiveness of the model, whereas a low FPR is
necessary to prevent alert fatigue.

The classifier algorithms mentioned in Section 3.5 were used for the performance
evaluation. The experimental results for the evaluation metrics presented in this section
were obtained using a stratified 10-fold cross-validation to validate the performance of
the algorithms. The data were split into ten equally sized subsets, each containing an
approximately equal proportion of the target class. Subsequently, the model was trained
and tested on each of the ten subsets, and each subset was used as a testing set once and as
a training set nine times. This process was repeated until all ten subsets were used as the
testing set.

Next, the performance of the proposed system was evaluated. First, using the enter-
prise dataset, the baseline performance of the algorithms is presented using imbalanced
data, followed by the results obtained with oversampled data. The results obtained us-
ing the ensemble resampled data are then provided. To validate the performance of the
proposed approach, we present the evaluation results of the algorithms on the benchmark
dataset for imbalanced, oversampled, and ensemble resampled data. In addition, the PR
curves and their mean PR-AUC were calculated to assess the robustness of the algorithms.
Finally, a performance comparison with existing state-of-the-art security data analysis
approaches was conducted, the results of which are discussed in detail.

4.4.1. Imbalanced Data

Table 4 shows the results obtained using imbalanced security alert data samples from
the enterprise dataset. All classifiers achieved an accuracy rate of >99.341%. However,
accuracy is not a reliable metric for measuring model performance when dealing with
highly imbalanced datasets, as a model tends to be biased towards majority class samples.
Therefore, metrics that are more appropriate for skewed data scenarios, such as recall,
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FPR, and BCR, were adopted. LightGBM achieved the best recall and BCR of 98.317% and
99.095%, respectively, whereas XGBoost achieved the best FPR of 0.054%. Table 5 shows the
results obtained using imbalanced data samples from the benchmark dataset. XGBoost had
the best recall and BCR values of 95.940% and 97.881%, respectively, whereas LightGBM
yielded the best FPR of 0.176%. Further performance improvement is desired to ensure that
the system can accurately detect positive alert samples, thereby minimizing the risk of FNs
while avoiding alert fatigue.

Table 4. Performance evaluation with different sampling settings on enterprise dataset.

Algorithms Accuracy (%) Recall (%) Precision
(%) FPR (%) TNR (%) F-Score (%) BCR (%)

Imbalanced security alert data

LR 99.504 77.404 89.694 0.142 99.858 83.097 88.631
k-NN 99.341 91.346 73.359 0.531 99.469 81.370 95.407

DT 99.822 96.154 92.807 0.119 99.881 94.451 98.017
LightGBM 99.848 98.317 92.534 0.127 99.873 95.338 99.095
XGBoost 99.913 97.837 96.675 0.054 99.946 97.252 98.891

Oversampled security alert data

SMOTE

LR 98.950 99.760 60.058 1.063 98.937 74.977 99.348
k-NN 98.753 99.279 55.886 1.255 98.745 71.515 99.012

DT 99.538 99.519 77.528 0.462 99.538 87.158 99.529
LightGBM 99.883 98.798 94.050 0.100 99.900 96.366 99.349
XGBoost 99.814 99.519 89.805 0.181 99.819 94.413 99.669

ADASYN

LR 99.000 92.067 62.378 0.889 99.111 74.369 95.589
k-NN 98.837 99.279 57.601 1.171 98.829 72.904 99.054

DT 99.860 99.279 92.394 0.131 99.869 95.713 99.574
LightGBM 99.841 98.798 91.741 0.142 99.858 95.139 99.328
XGBoost 99.818 99.279 90.175 0.173 99.827 94.508 99.553

SVMSMOTE

LR 98.924 99.760 59.456 1.090 98.910 74.506 99.335
k-NN 98.833 98.077 57.627 1.155 98.845 72.598 98.461

DT 99.602 99.519 80.077 0.397 99.603 88.746 99.561
LightGBM 99.886 99.038 94.064 0.100 99.900 96.487 99.469
XGBoost 99.822 99.519 90.196 0.173 99.827 94.629 99.673

Ensemble resampled security alert data

MAS-NCR

LR 99.189 99.519 66.134 0.816 99.184 79.463 99.351
k-NN 99.208 98.558 66.884 0.782 99.218 79.689 98.888

DT 99.792 99.038 88.985 0.196 99.804 93.743 99.421
LightGBM 99.833 99.519 90.789 0.162 99.838 94.954 99.679
XGBoost 99.848 99.519 91.593 0.146 99.854 95.392 99.686

MAS-OSS

LR 99.090 99.279 63.538 0.913 99.087 77.486 99.183
k-NN 99.420 98.317 73.694 0.562 99.438 84.243 98.878

DT 99.826 99.038 90.749 0.162 99.838 94.713 99.438
LightGBM 99.867 99.279 92.809 0.123 99.877 95.935 99.578
XGBoost 99.875 99.519 93.034 0.119 99.881 96.167 99.700

LR, k-NN, DT, LightGBM, and XGBoost stand for logistic regression, k-nearest neighbors, decision trees, light
gradient boosting machine, and extreme gradient boosting algorithms, respectively. The highest evaluation
performance scores are shown in bold font.
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Table 5. Performance evaluation with different sampling settings on the UNSW-NB15 dataset.

Algorithms Accuracy (%) Recall (%) Precision
(%) FPR (%) TNR (%) F-Score (%) BCR (%)

Imbalanced security alert data

LR 90.545 7.704 73.944 0.300 99.700 13.953 53.702
k-NN 96.753 71.313 94.768 0.435 99.565 81.384 85.439

DT 98.895 94.180 94.689 0.584 99.416 94.434 96.798
LightGBM 99.426 95.818 98.368 0.176 99.824 97.076 97.821
XGBoost 99.435 95.940 98.345 0.178 99.822 97.128 97.881

Oversampled security alert data

SMOTE

LR 85.205 73.955 37.621 13.551 86.449 49.872 80.202
k-NN 88.868 79.384 46.524 10.084 89.916 58.666 84.650

DT 98.866 95.158 93.556 0.724 99.276 94.350 97.217
LightGBM 99.392 96.674 97.197 0.308 99.692 96.935 98.183
XGBoost 99.438 96.625 97.700 0.251 99.749 97.160 98.187

ADASYN

LR 44.725 96.209 14.850 60.965 39.035 25.729 67.622
k-NN 82.302 83.639 34.122 17.846 82.154 48.469 82.897

DT 98.642 95.500 91.260 1.011 98.989 93.332 97.245
LightGBM 99.323 97.188 96.060 0.441 99.559 96.620 98.374
XGBoost 99.384 96.870 96.941 0.338 99.662 96.905 98.266

SVMSMOTE

LR 83.713 75.079 35.114 15.332 84.668 47.849 79.874
k-NN 89.289 77.867 47.665 9.449 90.551 59.133 84.209

DT 98.698 95.133 92.049 0.908 99.092 93.566 97.113
LightGBM 99.333 96.698 96.604 0.376 99.624 96.651 98.161
XGBoost 99.384 96.723 97.079 0.322 99.678 96.901 98.201

Ensemble resampled security alert data

MAS-NCR

LR 89.459 58.547 47.594 7.124 92.876 52.506 75.711
k-NN 90.883 78.234 52.832 7.719 92.281 63.072 85.258

DT 98.644 96.014 90.880 1.065 98.935 93.376 97.474
LightGBM 99.413 96.992 97.111 0.319 99.681 97.051 98.337
XGBoost 99.440 96.698 97.654 0.257 99.743 97.174 98.221

MAS-OSS

LR 89.503 58.596 47.767 7.081 92.919 52.630 75.758
k-NN 92.716 76.889 60.555 5.535 94.465 67.751 85.677

DT 98.747 95.525 92.166 0.897 99.103 93.815 97.314
LightGBM 99.409 96.552 97.481 0.276 99.724 97.014 98.138
XGBoost 99.469 96.772 97.873 0.232 99.768 97.319 98.270

LR, k-NN, DT, LightGBM, and XGBoost stand for logistic regression, k-nearest neighbors, decision trees, light
gradient boosting machine, and extreme gradient boosting algorithms, respectively. The highest evaluation
performance scores are shown in bold font.

4.4.2. Oversampled Data

To reduce the impact of the majority class on the detection performance of the security
alert data analysis system, minority class data augmentation algorithms were implemented
to balance the data distribution and improve the performance. Table 4 presents the re-
sults of applying the SMOTE, ADASYN, and SVMSMOTE oversampling techniques to the
enterprise dataset. The positive alert detection performance was improved for all algo-
rithms, with LR yielding the highest recall of 99.760% when SMOTE and SVMSMOTE were
used for oversampling, but it had a high FPR of 1.063% and 1.090%, respectively. When
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ADASYN was used for oversampling, LR achieved a recall of 92.067%. Meanwhile, when
the data were left imbalanced, the algorithm achieved a recall of 77.404%. Two good models
with high recall and low FPR were obtained using the LightGBM and XGBoost algorithms
using SVMSMOTE oversampled security alert data. LightGBM yielded the best FPR of
0.100%. However, XGBoost outperformed it in terms of recall and BCR, achieving values
of 99.519% and 99.673%, respectively. When imbalanced data were used, the XGBoost
algorithm yielded an FPR of 0.054%. However, when a high oversampling rate of >40%
was chosen to generate sufficient synthetic positive alert samples to combat data imbalance,
the FPR degraded to 0.173%. Similar degradation in performance of the FPR was observed
in the LR, k-NN, and DT algorithms.

Table 5 presents the results of applying SMOTE, ADASYN, and SVMSMOTE over-
sampling techniques to the benchmark dataset. Similar to the previous case, all algorithms
achieved a performance improvement in the recall metric with LightGBM yielding the high-
est recall of 97.188% when ADASYN was used for oversampling. However, the algorithm
exhibited a high FPR of 0.441%. For a security alert data analysis system to be effective,
it is essential to maintain a low FPR such that security operators are not inundated with
non-critical security alerts.

4.4.3. Ensemble Resampled Data

The proposed approach leveraged MAS and a data-subsampling algorithm to maintain
a positive alert detection performance while simultaneously improving the FPR. A low
sampling rate for minority class data augmentation algorithms was selected to reduce
the FPR caused by distorted distributions at the class boundaries. The sampling rate,
represented by the sampling_strategy parameter, is considered high when it surpasses 40%
and low when it is less than 40%. The sampling_strategy for each oversampling method was
set to 30% to ensure a low sampling rate.

The results presented in Table 4 demonstrate that the proposed approach enhances
the FPR reduction capabilities of the algorithms while maintaining positive alert detection
performance. The improved FPR was reflected in most algorithms tested. XGBoost yielded
the best FPR of 0.119% when using MAS-OSS. Table 5 presents the results on the ensemble
resampled benchmark dataset, which further validates the improvement in the FPR per-
formance brought about by the proposed approach. The FPR of XGBoost of 0.251% when
using SMOTE oversampled data improved to 0.232% when using MAS-OSS. XGBoost
excels because of its ability to leverage the power of ensembles of DTs to create more
accurate and robust models with improved generalization performance. XGBoost-MAS-
OSS was adopted in the proposed system, resulting in superior performance on all seven
evaluation metrics for the enterprise and benchmark datasets. Notably, the high recall
rate of the system indicates its effectiveness in detecting positive alerts. Simultaneously,
the improved FPR suggests that the number of non-critical security alerts investigated
by security analysts in the SOC has been reduced, thus addressing the alert fatigue issue,
which has been a persistent challenge in the security industry for several years.

4.4.4. Precision–Recall Curve

The PR curves for the experimentally evaluated algorithms of this study are shown
in Figure 6, along with the mean PR-AUC score and standard deviation, which suggests
the robustness of the model. LightGBM and XGBoost achieved the highest performance
using imbalanced data (Figure 6a), with mean PR-AUC scores of 98.570% and 99.006%,
respectively. The performance of LightGBM was further improved when oversampled
data obtained using SVMSMOTE (Figure 6d) were used, resulting in a mean PR-AUC
of 99.342%. Moreover, XGBoost achieved performance improvement with MAS-OSS
(Figure 6f), yielding a mean PR-AUC of 99.315%. These results are consistent with the high
performance of XGBoost-MAS-OSS in simultaneously detecting positive alerts with a low
FPR, as demonstrated by other evaluation metrics.
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(a) Imbalanced (b) SMOTE

(c) ADASYN (d) SVMSMOTE

(e) MAS-NCR (f) MAS-OSS

Figure 6. Precision–recall curves for different sampling settings on enterprise dataset.

4.4.5. Performance Comparison

Table 6 presents a performance comparison of the proposed approach and the existing
state-of-the-art security alert data analysis approaches. Unsupervised learning methods
from [39,40], isolation forest (IF), and IF with day-forward chaining (IF-DC) were used for
comparison. The results from [13], obtained using DT combined with SVMSMOTE (DT-
SVMSMOTE), are also included for reference. Deep learning methods, CNN, and long short-
term memory (LSTM), combined with MAS-OSS, were also used for comparison. Deep
learning (CNN-MAS-OSS and LSTM-MAS-OSS) and unsupervised learning approaches
(IF and IF-DC) yielded high FPRs, resulting in a large number of false alerts that require
manual investigation. The proposed approach, XGBoost-MAS-OSS, yielded an FPR of
0.119%, outperforming all compared security alert analysis approaches by a large margin.
Table 7 presents a performance comparison of the proposed approach with the deep
learning approaches evaluated on the UNSW-NB15 dataset. The dataset is not highly
skewed, and therefore, most of the cited approaches do not require techniques to handle
class imbalance; hence, they did not employ such techniques. Therefore, the results are not
directly comparable, as we sampled the attack data to obtain a class distribution closely
representative of our highly skewed enterprise dataset. However, the proposed approach
achieved superior scores in all evaluation metrics. These findings highlight the potential of
the proposed approach in solving the highly skewed class distribution problems commonly
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encountered in cybersecurity scenarios, thus paving the way for more effective and efficient
AI-assisted security operations.

Table 6. Performance comparison with related work on the enterprise dataset.

Algorithms Accuracy
(%) Recall (%) Precision

(%) FPR (%) TNR (%) F-Score (%) BCR (%)

IF [39] 90.705 100.000 0.551 9.300 90.700 1.097 95.350
IF-DC [40] 94.141 95.876 0.837 5.860 94.140 1.659 95.008
DT-SVMSMOTE [13] 99.596 99.524 79.771 0.403 99.597 88.559 99.560
CNN-MAS-OSS 83.685 73.558 6.798 16.153 83.847 12.447 78.703
LSTM-MAS-OSS 99.185 95.433 66.948 0.755 99.245 78.692 97.339
XGBoost-MAS-OSS 99.875 99.519 93.034 0.119 99.881 96.167 99.700

IF, IF-DC, DT-SVMSMOTE, CNN-MAS-OSS, LSTM-MAS-OSS and XGBoost-MAS-OSS stand for isolation forest, IF
with day-forward chaining, decision tree with support vector machine synthetic minority oversampling technique,
convolutional neural network with merged augmented set and one-sided selection, long short-term memory with
MAS-OSS, and extreme gradient boosting with MAS-OSS.

Table 7. Performance comparison with related work on the UNSW-NB15 dataset.

Algorithms Accuracy (%) Recall (%) Precision (%) F-Score (%)

DNN [49] 78.400 72.500 94.400 82.000
Few-shot learning [50] 92.000 – – 92.110
Stacked autoencoder-softmax [51] 89.134 63.270 89.134 90.850
Autoencoder-CNN [47] 93.400 – – 95.290
LSTM-MAS-OSS 86.967 59.770 39.714 47.720
CNN-MAS-OSS 91.187 78.772 53.917 64.017
XGBoost-MAS-OSS 99.469 96.772 97.873 97.319

DNN, CNN, LSTM-MAS-OSS, CNN-MAS-OSS, and XGBoost-MAS-OSS stand for deep neural networks, convolu-
tional neural networks, long short-term memory with merged augmented set and one-sided selection, CNN with
MAS-OSS, and XGBoost with MAS-OSS.

5. Conclusions

This study proposed a bidirectional approach to cope with excessive skewness in
security alert data analysis scenarios. The proposed approach implemented an ensemble
of carefully selected oversampling methods to generate the MAS of variational synthetic
positive alert samples with high quality. In addition, a data subsampling algorithm was
employed to identify and remove ambiguous, noisy, and redundant negative alert sam-
ples. The results obtained using an enterprise and the UNSW-NB15 benchmark datasets
demonstrate that classification models obtained using MAS-OSS can simultaneously yield
improved recall and FPR, with the proposed system, XGBoost-MAS-OSS, achieving su-
perior performance on all evaluation metrics. Notably, the high recall rate of the system
indicates its effectiveness in detecting positive alerts. Moreover, the improved FPR suggests
that the number of non-critical security alerts investigated by security analysts in the SOC
has been reduced, thus addressing the alert fatigue issue, which has been a persistent
challenge in the security industry for several years. This study focuses on data resampling
methods to address the class imbalance problem in security alert data analysis. In future
works, other methods for imbalanced security alert data classification, such as cost-sensitive
kernel modification, active learning, and hybrid approaches, can be explored to enhance the
performance of the proposed system. In addition, recently, research on intrusion analysis
has used deep learning techniques such as CNN and DNN, where feature extraction ap-
proaches such as auto-encoders and deep stacked auto-encoders are used for data structure
improvement and model complexity reduction. These approaches should be investigated
in future studies.
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