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Abstract: In autonomous manufacturing lines, it is very important to detect the faulty operation
of robot manipulators to prevent potential damage. In this paper, the application of a genetic
programming algorithm (symbolic classifier) with a random selection of hyperparameter values
and trained using a 5-fold cross-validation process is proposed to determine expressions for fault
detection during robotic manipulator operation, using a dataset that was made publicly available
by the original researchers. The original dataset was reduced to a binary dataset (fault vs. normal
operation); however, due to the class imbalance random oversampling, and SMOTE methods were
applied. The quality of best symbolic expressions (SEs) was based on the highest mean values

of accuracy (ACC), area under receiving operating characteristics curve (AUC), Precision, Recall,
and F1 — Score. The best results were obtained on the SMOTE dataset with ACC, AUC, Precision,
Recall, and F1 — Score equal to 0.99, 0.99, 0.992, 0.9893, and 0.99, respectively. Finally, the best set
of mathematical equations obtained using the GPSC algorithm was evaluated on the initial dataset
where the mean values of ACC, AUC, Precision, Recall, and F1 — Score are equal to 0.9978, 0.998,
1.0, 0.997, and 0.998, respectively. The investigation showed that using the described procedure,

symbolically expressed models of a high classification performance are obtained for the purpose of
detecting faults in the operation of robotic manipulators.

Keywords: genetic programming; oversampling methods; robot fault operation; random oversam-
pling; symbolic classifier; SMOTE

1. Introduction

The main mode of operation for industrial robotic manipulators is unsupervised
automatic operation. In modern production facilities, the industrial robots will perform the
set tasks completely autonomously, either repeating the same series of operations [1] or
adjusting the movement according to sensor inputs [2]. One of the issues that can arise with
such an operation is faults. For this paper, faults are in this instance catastrophic faults that
occur when the industrial manipulator hits an object which existed in its surroundings [3].
Such a failure requires an immediate ceasement of operation—as further movement can
cause significant damage to the equipment or, crucially, a more serious injury to the human
operator. One of the ideas to achieve a timely stopping is to utilize machine learning
(ML) methods.

ML methods have a wide application in the area of fault detection. In [4], the authors
discuss the application of ML algorithms in the Internet of Things (IoT) systems to detect
possible faults in photovoltaic systems. Authors conclude wide applicability of such
techniques can lead to promising results. The authors in [5], have utilized Long short-
term memory (LSTM) networks on the time series data relating to the faults in power
transmission. The developed models are tested and demonstrate high resiliency despite
varying operating conditions. In [6], the authors demonstrate the use of ML in a maritime
application—namely, for the detection of faults and operation optimization. The one-
dimensional convolutional neural networks (CNN) authors use show promising results.
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Dang et al. [7] demonstrate the application of multiple algorithms on the problem of arcing
fault detection in DC systems. The authors compare long short-term memory (LSTM), gated
recurrent unit (GRU), and deep neural network (DNN) algorithms, concluding that all
have satisfying performance. Another application in electrical engineering is demonstrated
in [8]. The authors demonstrate an application of private reinforcement learning to achieve
a precise detection that is above the stated baseline. In [9], the ANN and k-nearest neighbor
approaches were applied to the problem of spiral bevel gear fault detection. In [10], the
method was proposed for effective connection between users and providers. The method
can discover users’ suitable queries and understand their preferences. The proposed system
anticipates the connections among various technical fields and helps personnel discover
useful technical knowledge. A combination of MC-SIOT with deep learning algorithms
can better maintain the functionality system state. In [11], chaotic back propagation (BP)
neural network was utilized for the prediction of smart manufacturing information system
reliability. The results showed that when SMIS fails, the failure behavior can easily lead
SMIS into chaos through the propagation of an interdependent network.

In the previous literature overview, it is shown that different algorithms outperform
others depending on operating conditions, indicating the need for testing novel algorithms
on fault detection problems. From the previously presented literature, it is obvious that
such methods may be easily applicable to robotic fault detection.

In [12], the experimental investigation on a robot manipulator is presented in which
the neural network was used to analyze the vibration condition on joints. In this research,
two different types of neural networks were used, i.e., self-organizing map neural network
(SOMNN) and radial basis neural network (RBNN). The investigation showed that at both
running speeds, the RBNN outperforms the SOMNN with a RMSE value of 0.0004. The
fault diagnosis approach of robotic manipulators was investigated in [13] using support
vector machines (SVM). Using the radial basis function (RBF) network the interpolation
of unknown actuator faults was achieved. The interpolation of unknown actuator faults
was achieved using a radial basis function (RBF) network and was successfully tested
experimentally. A neural-network fault diagnosis module and a reinforcement learning-
based fault-tolerant control module were used in [14] as fault-tolerant control frameworks
for robotic manipulators that are subjected to joint actuator faults. After the actuator fault
is detected and diagnosed, the additive reinforcement learning controller will produce
compensation torques to achieve system safety and maintain control. Using the proposed
method an average accuracy of 97% was achieved. The SVM was used in [15] for fault
detection of the robot manipulator and the results were compared with results obtained
with ANN. The results showed that the recognition rate was higher in the case of SVM
(99.6%). An adaptive neural network model for diagnosing faults (FD) in combination
with adaptive, fuzzy, backstepping, variable control (FC) was proposed and used in [16]
for fault-tolerant control. The variable structure observer (VSO) was used for the FD
technique of the robot manipulator while higher-order VSO (HVSO) was used to solve
the chattering phenomenon of VSO. The estimation performance of HVSO was improved
by the implementation of a neural network in the FD pipeline. The improvement of FC
was achieved using adaptive higher-order variable structure observer (AHVSO) and the
results showed 27% to 29% improvement in faults detection when compared to HVSO and
VSO methods.

The faults in sensors and actuators of the scara robot were detected using ANN and
fuzzy logic in [17]. The proposed approach successfully detects and isolates the actuator
and sensor faults.

The scientific papers in which the same dataset [18] was used as in this research
are listed and described below. The self-organizing map (SOM), and genetic algorithm
with SOM (GA-SOM) have been used in [19] to detect the fault operation of the robot
manipulator. The GA-SOM outperforms the SOM with an achieved classification accuracy
of 91.95%. In [20], the performance of base-level and meta-level classifiers were compared
on [18]. The ML classifiers that have been used were Naive Bayes, boosted Naive Bayes,



Appl. Sci. 2023,13, 1962

30f23

bagged Naive Bayes, SVM, boosted SVM, bagged SVM, decision table (DT), boosted DT,
bagged DT, decision tree (DTr), boosted (DTr), bagged DTr, plurality voting, stacking meta
decision trees, and stacking ordinary decision trees. The bagged Naive Bayes method
achieved the highest classification accuracy of 95.24%. The deep convolutional neural
networks (DCNN) are used in [21] to detect robot manipulator execution failures using
sensor data from force and torque sensors. The best classification accuracy of 98.82% was
achieved with one-dimensional CNN followed by two-dimensional CNN with 98.77%
classification accuracy. In [22], 24 neural network (NN) architectures with seven learning
algorithms were used to predict execution failures. The 10-8-5-4 NN architecture with
the Bayesian regularization algorithm achieved a classification accuracy of 95.45%. The
multi-layer perceptron (MLP) was used in [23] to predict robot execution failures. The
highest classification accuracy with MLP was 90.45%. The deep-belief neural network
(DBN) for detection of the robotic manipulator’s failure execution was investigated in [24].
The performance of DBN was compared with other standard ML classifiers (C-support
vector classifier, logistic regression, decision tree classifier, K-Nearest Neighbor Classifier,
MLP, AdaBoost Classifier, random forrest classifier, bagging classifier, voting classifier) and
results showed that the approach has a higher detection accuracy (80.486%) than other
algorithms. In [3], the MLP, SVM, CNN, and Siamese neural network (SNN) were utilized
for the detection of faults during the operation of the robotic manipulator. The highest
F1 — Score value (1.0) was achieved with SNN.

The representation of all research papers that used the dataset [18] in their investigation
with various ML algorithms and achieved classification accuracy (ACC, F1 — score) values
are presented in Table 1.

Table 1. The list of research papers, with described ML methods and achieved results in fault
operation obtained using dataset [18].

Reference Methods Results
[19] GA-SOM, SOM ACC :91.95%

Naive Bayes, Boosted Naive Bayes,
Bagged Naive Bayes, SVM,
Boosted SVM, Bagged SVM,
Decision Table (DT), Boosted DT,
[20] Bagged DT, Decision Tree (DTr), ACC :95.24%
Boosted (DTr), Bagged DTr,
Plurality Voting,
Stacking Meta Decision Trees,
Stacking Ordinary Decision Trees

[21] DCNN ACC :98.82%

[22] NN with o ACC : 95.45%
Bayesian regularization

[23] MLP ACC :90.45%

DBN, C-support vector classifier,
logistic regression, decision tree classifier,
K-Nearest Neighbor Classifier,

[24] MLP, AdaBoost Classifier, ACC : 80.486%
Random Forrest Classifier,
Bagging Classifier, Voting Classifier

[3] SNN F1 — Score : 1.00

It can be seen from Table 1 that in none of the research papers was the genetic
programming-symbolic classifier (GPSC) used.
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The Description of Research Novelty, Investigation Hypotheses with Overall Scientific Contribution

It can be noticed from the previously presented state of the art, that there are a few
papers in which ML algorithms were used for fault operation analysis and detection. The
main disadvantage which can be noticed in the previous literature overview is that these
ML models are computationally intensive, i.e., they require large computational resources,
especially the CNN or DNN. After these algorithms are trained on a specific dataset they
have to be stored to be used in the future for processing new data. Storing and re-using
these models requires a lot of computational resources so their usage in systems that control
the robot manipulators is questionable. Another problem with the previously mentioned
algorithms is that it is nearly impossible to express the complex models obtained by them
as comparatively simple mathematical expressions which are understandable to scientists
and engineers.

The research novelty is to present the process of the GPSC algorithm implementation to
obtain symbolic expressions (SEs) which can detect fault operation with high classification
performance. The SEs are easier to implement in existing control systems of robotic
manipulators since they have lower computation-wise performance requirements when
compared to complex models such as CNN or DNN. The main idea of this research is the
procedure presentation of the GPSC algorithm application to generate SEs which will be
utilized as high-performance detection models of robot manipulator faults.

The algorithm used in this paper [25] begins its process by creating the population
members of the initial population that are not able to solve a particular task. However,
through the predefined number of generations with the application of evolutionary comput-
ing operations (recombining and mutating), they adapt as the solution for a particular task.

From state-of-the-art, defined novelty, and research ideas, the following hypotheses
will be investigated in this paper:

¢ Is there a possibility to use the GPSC algorithm to generate SEs for the detection of
fault operation of a robotic manipulator with high classification performance?

¢  Can the proposed algorithm achieve high classification performance on datasets that
are balanced using various oversampling methods?

e Isitpossible to use the GPSC algorithm with a random selection of hyperparameter
values (RSHV) method, validated with 5-fold cross-validation (5FCV) to obtain SEs
for the detection of fault operation of a robotic manipulator with high classification
accuracy?

*  Can the high performance of SEs that consist of a reduced number of input parameters
be achieved?

The scientific contributions are:

e Investigates the possibility of obtaining a SE for robot manipulator fault operation
using GPSC algorithm.

* Investigates the influence of dataset oversampling methods (OMs) on (SEs) classifica-
tion performance.

* Investigates if using the GPSC algorithm with an RSHV method, validated using a
5FCV process can generate a set of robust SEs with a high detection accuracy of robot
manipulator fault operation.

The outline of this paper consists of four sections. Firstly, the Materials and Methods
section where research methodology, dataset, OMs, GPSC, RSHV, 5FCV procedure, and
resources are described. Afterward, in the Results section, the SEs obtained using the
GPSC algorithm with RSHV validated with 5FCV are presented. In the Discussion section,
the results are discussed and justified in detail. Lastly, in the Conclusions section, the
conclusions of the conducted investigation are provided.
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2. Materials and Methods

The approach used in this investigation is described here, starting with the Dataset
description and accompanying statistical analysis, oversampling methods, GSPC algorithm,
model evaluation, and finally the computational resources used during the research.

2.1. Research Methodology

From the initial investigation, it was noticed that the dataset is highly imbalanced.
For that reason, it was necessary to apply balancing methods to equalize the number of
samples per class. This was achieved using random oversampling and SMOTE methods.
The aforementioned methods generated two variations of the initial dataset and were used
in the GPSC to obtain SEs. The results obtained on each modified dataset were compared,
and the one with the highest classification performance and the smallest size is considered
to be the best—as the goal is to obtain the best performing, but still relatively simple,
equations. The final validation is performed on the initial dataset. The presentation of this
process is given in Figure 1.

Random
Oversampling
Dataset

Results and
Selection of
best symbolic
expression

Application of
oversampling E —_— —_—
methods TIIII

w

GPSC (random
hyperparameter
search and 5-fold
cross-validation)

Evaluation of

best symbolic

expressions on
original dataset

— |

C

Figure 1. The methodology research flowchart.

w

SMOTE
Dataset

2.2. Dataset Description

The publicly available dataset [18] was used in this research. The dataset is well
documented in [26,27] so in this subsection, only a brief dataset description is given. The
dataset consists of a total of 463 data points and each of the data points D is shaped as:

Yy Y
Pli Fly Fli Tli le Tli
FF F F T; T, T
o O M
By P, F, T, T, T
15 15 15 15 15 15
As seen in the equation above, each of the data points consists of 90 measurements,

organized into 15 subpoints. Each of the subpoints is a measurement of force and torque in
each of the x, y, and z axes. The time difference between each point is 0.315 s, meaning that
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the entirety of the data point consists of 28.35 s. The statistical analysis and GPSC variable

representation for all dataset variables are shown in Table A1 (Appendix A.1).
It should be noted that in GPSC all input variables are represented with X; notation

where i = 0,...,89 since there are 90 input variables. The output variable in GPSC is

”, “collision”,

Za7i
7

represented with y.
The data points are split into 15 classes in total—“collision in tool”, “collision in
part”, “bottom obstruction”, “bottom collision”, “lost”, “moved”, “slightly moved”, “right
obstruction”, “front collision”,

collision”, “left collision”, “back collision
“normal”, and “ok”. The number of elements in each class is given in Figure 2.
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Figure 2. The distribution of the data points in the dataset, by class.
Out of the listed classes, “normal” and “ok” indicate a non-faulty /normal operation,

while the others indicate fault. Since for a lot of applications just knowing whether the fault
has occurred is enough, and it is not necessary to immediately discern the type of it, the
dataset can be made into a binary dataset by combining all the “faulty” data points and all

the “non-faulty” data points, as shown in the Figure 3.

350 332
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Figure 3. The distribution of the data points in the dataset, by class, after sorting for binary classification.

As can be seen from Figures 2 and 3, the classes in the dataset are not balanced.
This fact opens the possibility of applying the dataset balancing techniques which will be

described in the following section.
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In this paper, only the binary problem will be considered because even balancing
problems could not provide sufficient datasets in the case of multiple classes. In a multi-
class problem, as seen in Figure 2, there are 15 classes. The extremes in the number of
samples are lost class with only 3 samples and normal class with 109 samples. An equal
number of samples per class (14 classes in total) can be achieved using OMs. However,
even with the implementation of dataset balancing methods, each class would contain only
109 samples which is not enough for the implementation of ML methods.

One of the investigations important to statistical dataset analysis is the correlation
analysis between dataset variables. The correlation between variables could indicate if
the dataset used in the training process will produce the trained ML model with high
classification accuracy or not. In this paper, authors calculated Pearson’s coefficients of
correlation which return the values in the range of < —1.0,1.0 >. The strong correlation
ranges are in the range of =< 0.5,1.0 >. The low correlation range is considered to be
< —0.5,0.5 >, where 0 is the weakest correlation. If the value is negative, the growth
of the variables is inverse, and vice-versa. Since the dataset consists of 91 variables and
the correlation heatmap is too large for better visualization the interrelationship between
dataset variables is presented in Figure 4.

Correlation between all input variables and 'class' variable

0.10

0.0;

b

0.0

S

—0.05
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—0.20
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Variable Name
Figure 4. Correlation of the output (“Class”) variable and the inputs.

As seen in Figure 4, correlation values between the input and the target variables are
in the 0.1 to —0.21 range. However, the majority of variables (75) are weakly correlated
with the target variable (“Class” with a 0.05 to —0.1 range). Due to low correlation values
between dataset variables, all variables were used in the GPSC algorithm to obtain SEs. In
the Results section, the analysis of obtained SEs is performed, and analyzed which input
variables ended up in the best SEs.

2.3. Dataset Balancing Methods

Due to the low sample number per class even in the binary classification problem
(Figure 3) only dataset OMs were used and these are: random oversampling and SMOTE
methods. The class that contains a low number of points in the dataset is labeled as a
“minority” class. On the other hand, the opposite is referred to as the “majority” class.
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2.3.1. Random Oversampling

Oversampling data randomly is one of the simplest balancing methods in which the
minority class samples are randomly selected and copied to match the number of majority
class samples.

2.3.2. SMOTE

The Synthetic Minority Oversampling Technique (SMOTE) [28] is a technique in which
synthetic samples are generated in the following way:

*  Calculate the amount of samples N that have to be generated to obtain 1:1 class distribution;
*  Application of iterative process consisting of the following steps:

- Arandom selection of minority class sample is performed;

- Knearest neighbors (by default K = 5), are searched for;

—  The N of K samples are randomly chosen to generate new instances using the
interpolation procedure. The difference between the sample under consideration
and selected neighbors is used and increased by a factor in the range of < 0,1 >,
which is appended to the sample. Using this procedure new synthetic samples
are created.

Using the previously described procedure new synthetic samples are created along
the line segments which can be used to connect two dataset samples. The results of the
balancing dataset using different oversampling methods are listed in Table 2.

Table 2. The results of dataset balancing methods.

Dataset Balancing Number of Minority Number of Majority Total Number
Method Name Class Samples Class Samples of Samples
Random 334 334 668

Oversampling
SMOTE 334 334 668

2.4. Genetic Programming Symbolic Classifier

The GSPC algorithm is a method in which a randomly generated initial population is
unable to detect the target variable and through the evolution process makes them fit for
detection of the target variable with high classification accuracy. When GPSC execution
begins the initial population is created. This is a complex process that requires the definition
of specific GPSC hyperparameter values, i.e., NumGens, PopSize, InitDepth, InitMethod,
TourSize, ConstRange, and FunSet. To define input variables before GPSC execution the
train part of the dataset must be provided. The InitMethod used to create the initial
population in this paper was “ramped half-and-half”. This method combines the full and
grow method and to ensure population diversity the maximum depth limit (InitDepth) is
defined in a specific range. The length of the SE (population member) is measured with the
number of elements, i.e., constants, functions, and input variables. It should be noted that
in the results section, the best SEs will also be compared in terms of length.

To create one population member, input variables from the dataset are required as
well as functions and constants. The constants are numbers defined in range using the
hyperparameter ConstRange. The functions are randomly selected from the FunSet and in

+/l A A T/ ] L] ”

this case, the FunSet consists of the following functions: “+”, ST Ymin”, “max”,
“sin”, “cos”, “tan”, “In”, “logy”, “log10”, * \/”. After the creation of the initial population,
the next step is to evaluate and calculate the fitness value of population members. In this

paper the logarithmic loss fitness function was used, which is calculated as:

e  With the obtained expression, model the predicted output class for all training
data points;
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¢ Calculate the Sigmoid function of the generated output:
1
S(t) = ———, 2
( ) 1 + eit ( )

*  Thelog-loss function is calculated with the predicted and real training data points, per:

Hy(q) = — - L9 -og(p(5) + (1~ ) - og(1  p(51), ©

with y representing the real dataset output and p(S) is the output of the sigmoid function.

In GPSC two different genetic operators (GOs) are used, crossover and mutation, with
mutation split into three different subtypes: subtree mutation, hoist mutation, and point
mutation. These four genetic operations are performed on winners of tournament selection. In
the case of crossover, two winners of tournament selection are required. The hyperparameter
names, using which the probabilities of GOs are defined, are Cross, SubMute, HoistMute, and
PointMute. The sum of all genetic operation probabilities can be equal to less than 1. If it is
less than 1 then some parents enter the next generation unmodified.

The GPSC has two termination criteria, i.e., StopCrit (lowest predefined value of
the fitness function) and NumGens (maximum number of generations). The MaxSamp
hyperparameter defines how much of the training dataset will be used to evaluate the
population members from generation to generation.

To prevent the bloat phenomenon the parsimony pressure method is used. The bloat
occurs during GPSC algorithm execution when the population members’ size rapidly
increases from generations without benefiting fitness function. When this method is used,
the value of ParsCoef must be defined. This method is introduced during the tournament
selection process when very large population members are found. To make them less
favorable for winning tournament selection their fitness value is modified. This is achieved
by using the equation:

fp(x) = f(x) = el(x), )

where [(x) is the size of the unit’s expression, ¢ is the parsimony pressure coefficient and
I(x) is the total length of the population member.

2.5. Training Procedure of the GPSC Algorithm

To develop an RSHVs method the initial tuning of the GPSC hyperparameters had to
be performed. The hyperparameter ranges are listed in Table 3.

The ranges in Table 3 were defined through the initial tuning of the GPSC algorithm.
The PopSize was set to the 100-1000 range that was propagated for 100-300 NumGens.
The StopCrit range values are very low to prevent early termination of GPSC algorithm
execution. The GO coefficients have the same ranges from which the values are randomly
selected. The idea is to see which one of the genetic operations will be most influential in
case of obtaining the set of best SEs. The MaxSamp was set to the 0.99-1 range, i.e., the
entire training dataset was used to evaluate each population member in each generation.
The initial investigation showed that the best range for this research is the one shown
in Table 3 since it will prevent the bloat phenomenon while enabling stable growth of
population members while lowering the fitness function value.

The modeling using the described algorithm consists of:

*  Random hyperparameter selection;

¢ Training the GPSC algorithm with the randomly selected hyperparameters;

¢  Evaluating obtained SEs and testing if all EMs are above 0.99. If they are above 0.99
the process is terminated, otherwise, the process is repeated.
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Table 3. The range of GPSC hyperparameters.

GPSC Hyperparameter Range
PopSize 100-1000
NumGens 100-300
TourSize 100-300
InitDepth 3-12
Cross 0.001-1
SubMute 0.001-1
HoistMute 0.001-1
PointMute 0.001-1
StopCrit 1x1077-1 x 107®
MaxSamp 0.99-1
ConstRange —10,000-10,000
ParsCoef 1x 10722 x107*

Some successful implementations of this process are well documented in [29-31].
Initially, the dataset is split in a 70:30 training/testing data split, because of faster execution.
Then, the obtained models are tested using a 5FCV procedure on 70% of the dataset. The
training procedure is repeated until it yields a score higher than 0.99. If that fails, the
random hyperparameter choice, along the entire process, is repeated.

2.6. GPSC Evaluation Methods

In this subsection, the evaluation metrics (EMs) are described, as well as the process of
evaluation methodology (EMT).

2.6.1. Evaluation Metrics

The accuracy, area under received operating characteristics curve (AUC), recall and
precision values, and F1-score were used to evaluate the obtained models. When discussing
classification problems, there are four types of outcomes: true positive (TP), true negative
(TN), false positive (FP), and false negatives (FN). The TP is an outcome where the ML
model correctly predicts the positive class. In the case of binary classification, there are two
classes defined as positive (class labeled as 1) and negative class (class labeled as 0 or —1).
The TN is an outcome where the ML model correctly predicts the negative class. The FP
is an outcome where the ML model incorrectly predicts the positive class. The FN is the
outcome where the ML model incorrectly predicts the negative class.

The classification accuracy [32] is the fraction of prediction the ML model got right.
The classification accuracy is defined as correct predictions and total values ratio. ACC can
be written in the following form:

TN +TP
ACC = FP+FN+TP+ TN’ ©®)

AUC is one of the EMs used in this research that computes the area under the curve
which defines the ratio of true positive and false negative predictions [33]. The precision
metric value [34] gives information on how many positive classifications were correct, The
Precision may be expressed as:

TP

Precision = TP FD’

(6)
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The recall metric value [34] provides information on how many actual members of the
positive class were identified correctly by the trained ML model. The Recall is calculated as:

TP
TP+ TN
The F1 — Score, according to [35], can be written as:

Recall = )

2 - Recall - Precision
F1 = Score = Recall + Precision ®)

All evaluation metric values are expressed in the range of [0, 1] with the higher score
representing better performance.

2.6.2. Evaluation Methodology

The process of determining the models starts with the random determination of hy-

perparameters. Then, the cross-validation is performed and after each fold, the evaluation
metric values are calculated. After the cross-validation process is performed, the EMs are
determined. If the values are higher than 0.99 then conclusive training and evaluation are
performed. If the values of EMs are below the threshold the process is repeated.
In case the system progress to the final stage the GPSC algorithm training is executed on
the training dataset part. After training is finished the results are evaluated on the training
and testing dataset. If this yields satisfactory results, the process is finished. Otherwise, the
process of repetition starts.

2.7. Computational Resources
The training and evaluation of the models are performed on the system as described below:
*  Hardware

- Intel i7-4770
- 16 GB DDR3 RAM

e  Software
- Python 3.9.13

+* imblearn 0.9.1
»  scikit.learn 1.2.0
+  gplearn 0.4.2

3. Results

In this section, the results achieved on each balanced dataset and the best SEs evaluated
on the initial dataset will be presented. In the subsection “The results obtained on balanced
datasets using the GPSC algorithm” the best results are presented and compared. In the
subsection entitled “Evaluating best models” the results of the best SEs evaluated on the
initial dataset are presented.

3.1. The Results Obtained on Balanced Datasets Using the GPSC Algorithm

The hyperparameter values used to obtain the best SEs using the GPSC algorithm on
each balanced dataset are shown in Table 4.

From Table 4, it can be seen that the best-performing model on the random over-
sampling dataset was obtained with a very small initial population (172) compared to
the SMOTE case where the initial population consisted of 850 members. The population
members in the case of random oversampling evolved for 293 (upper value of hyperpa-
rameter range) generations while in the SMOTE case the population members evolved
for 227 (lower value hyperparameter range) generations. The SMOTE case had a higher
tournament selection size, and the population members in tree form were much larger
(6,11). In the case of random oversampling, the subtree mutation (0.49) was dominating
genetic operation while in the SMOTE case the crossover (0.3) was the dominating one.
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In both cases, as planned the stopping criteria were never met since the hyperparameter
was very low. The parsimony coefficient in the SMOTE case was larger than in the random
oversampling case. Classification performances are illustrated in Figure 5.

Table 4. GSPC hyperparameters yielding the best performing models on each dataset.

Dataset Variation GPSC Hyperparameters

172,293, 161, (4, 7),
0.1,0.49, 0.36,0.032, 7.78 x 10~7,

Random

Oversampling 0.99, (—280.17, 5256.88), 6.95 x 106
850, 227, 270, (6, 11),
SMOTE 0.39,0.13,0.23,0.23, 1.4 x 107,

0.99, (—7689.72, 8984.85), 1.63 x 107°

The mean results and standard deviations, (error bars in Figure 5) are also given in Table 5.

Table 5. The evaluation metric values as well as computational time and the length of SE.
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w2 = = S VW — %5} - — b‘DU)
5‘ = <A <Q o &~ &R N — RE c
wn .
H IS
<3
Random 0.985 0.984 0.9882 0.982 0.985
Oversampling ~ -£0.0056 £0.0057 4000273 400086  -0.0058 100 729/368/78/119/159
0.99 0.99 0.992 0.9893 0.99
SMOTE £0.0089 4000888 +£0.006 400106 400084 544/430/354/387/334

Table 5 and Figure 5 show that SEs obtained in the SMOTE case have higher classifica-
tion accuracy. The average CPU time in both cases is equal to 100 min. One of the factors
that influence the CPU time to execute GPSC is the dataset size. The dataset is small in
terms of samples (668 samples); however, the number of input variables for each sample is
pretty large (90). The average CPU time to execute one iteration of 5SFCV was 20 min so to
perform the entire 5FCV is 100 min.

The average length of SEs obtained on a random oversampled dataset is lower than in
the SMOTE dataset balanced case however, with the latter higher classification performance
was obtained. So, the best results were those obtained on the SMOTE dataset.

3.2. Evaluating Best Models

As stated in the previous subsection the best model in terms of classification perfor-
mance were those obtained on the SMOTE dataset. There are five equations, due to them
being obtained in the 5-fold cross-validation. The best SEs are shown in Appendix B.
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The Equation (A1) in Appendix B, consists of 19 input variables and these variables
are Xy, Xy, X5, Xo, X7, X3, X11, X12, X16, X18, Xa0, Xaa, Xas, X56, X0, X77, X78, Xg1, and
Xg3. From Table Al these input variables are Fly , le , 17, F5, PZy , B, 15, F3, TSy , Ff, T7y , B,
F, F5y, Fy, Tis, Fy, Tfy, and Tj,. The Equation (A2) consists of 31 input variables and
these variables are: XO/ Xl/ XZ/ X3/ X4/ X5/ X6/ X7/ XS/ Xl4/ Xl5/ X16/ XlS/ X19/ X24/ X25/ XZS/
X30, X539, Xa4, Xu5, X47, X49, X520, X58, Xe3, X73, X77, X78, X80, Xgs. From Table Al these
input variables are Ff, F/, F?, T, T, T?, F, F, F5, F;, T, TY, Ff, Fy, F¥, FY, T, F¥, T3,
F;, T3, TZ, Fy, T3, T}y, T, Fis, Th, Ffy, F7,, and Ti. The Equation (A3) consist of 23 input
variables and these variables are X, X1, Xy, X3, Xy, X5, X, X7, Xg, X18, X28, X36, X140, X43,
X49, X59, X68/ X69, X70, Xg], ng, X84, X86- From Table A1 these input variables are Fx,
BF T T TE BB, B B TS B T, B, B, Ty, By, Ty, Ty, Tiy, Ty, Fis, and B,
The Equation (A4) consists of 28 input variables and these variables are Xy, Xi, X2, X4,
X5, X7, Xs, Xo, X16, X18, X20, X021, X22, X205, X207, X208, X40, Xaa, X46, X49, X50, X51, X590, X76,
X77, X79, Xgo, and Xgg. From Table A1l these input variables are Fy, Fly , Ff, le , 15, Fzy , F3,
TS, T3, Ff, F, Tf, Ty, B, T, TY, T4, F;, Ty, Y, 5, T3, T#,, Ti,, Th, Fi,, F7y, and Tis. The
Equation (A5) consists of 28 input variables and these variables are: Xy, X;, Xa, X3, X4, X5,
X, X7, X3, X14, X16, X18, X204, X7, X208, X32, X33, X36, Xa2, X146, X56, X3, X66, X67, X69, X73,
X74, Xge. From Table A1 these input variables are F, Fly , B, TF, le , T, F3, FZy ,E5,F, T3y ,
Fy, BT, TS, B, T3 By B T, Fio, Ty, B, By, Ti, B, By and Fis.

To compute the output Equation (A1) requires the lowest number of input variables
(19) its length is lowest when compared to other equations. The Equations (A4) and (A5)
require an equal number of input variables (28), however, not the same ones. Equation (A3)
and Equation (A2) require 23 and 31 input variables, respectively.

Although it seems that these five SEs require a lot of input variables many of those
variables are required in multiple SEs. Based on a detailed comparison of the best SEs it
was found that a large number of variables are not required to compute the output. The
input variables not in the best set of SEs are: Xjg, X13, X17, X23, X26, X29, X31, X34, X35,
X3y, X38, Xa1, X53, X54, X55, X57, X1, Xe2, Xoa, Xe5, X71, X72, X75, Xg5, Xg7, and Xg9. From
Table A1, these input variables are T3, Fj, T3, Tf, FZ, TZ, F!, T/, FJ, FZ, FZ, T2, T;, F§,, Ff,,,
T By, Fi, T, Th, Thy, F, Ti, and Fs, respectively.

The evaluation was performed as follows:
¢  Use the variables from the non-augmented dataset inside the expressions to obtain the

predicted outputs;

e Apply the sigmoid function Equation (2) on that output, to transform the output of
this function to an integer value;

*  Compare the obtained values with the original target values from the dataset and
obtain evaluation metric values.

The results of the evaluation of the models are listed in Table 6.

Table 6. The mean and standard deviation scores obtained using the best models on the non-
augmented dataset.

Evaluation Metric Mean Value Standard Deviation
ACC 0.9978 5x107°
AUC 0.998 348 x 107°
Precision 1.0 0
Recall 0.997 1.6 x 1072
F1 — Score 0.9985 2.74 x 107>

Table 6 shows that the best model achieved even better classification performance
on the original dataset. The dataset balanced with the SMOTE method did have some
synthetic samples that deviate from the original dataset samples. The final evaluation of
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the proposed approach would be to compare the results obtained on the original dataset
with those results obtained in other research papers. In Table 7, the list of research papers
with achieved classification performance is compared with results obtained in this research
on the initial (binary) dataset.

As seen from Table 7, the highest score was achieved in the case of [3] using SNN.
The results in this paper are slightly lower although this approach outperforms all other
research papers in terms of classification accuracy. The additional benefit of using this
approach is that a set of robust SEs was obtained which can be easily stored and used.

Table 7. The results comparison obtained in this paper with results from other research papers.

Reference Methods Results
[19] GA-SOM, SOM ACC :91.95%

Naive Bayes, Boosted Naive Bayes,
Bagged Naive Bayes, SVM,
Boosted SVM, Bagged SVM,
Decision Table (DT), Boosted DT,
[20] Bagged DT, Decision Tree (DTr), ACC :95.24%
Boosted (DTr), Bagged DTr,
Plurality Voting,
Stacking Meta Decision Trees,
Stacking Ordinary Decision Trees

[21] DCNN ACC :98.82%

[22] NN with o ACC : 95.45%
Bayesian regularization

[23] MLP ACC :90.45%

DBN, C-support vector classifier,
logistic regression, decision tree classifier,
K-Nearest Neighbor Classifier,

[24] MLP, AdaBoost Classifier, AAC - 80486%
Random Forrest Classifier,
Bagging Classifier, Voting Classifier
[3] SNN F1 — Score : 100%
ACC 99.78%,
AUC 0.998%,
This paper GPSC Precision 100%,

Recall 99.7%
F1 — Score 99.85%

4. Discussion

The dataset consists of 90 input variables (forces and torques) and the output (target)
variable which defines the operation class and there is a total of 15 classes. However,
due to a small dataset and a large number of classes, the samples were divided into two
classes “normal” and “fault” operation. So, by reducing the multi-class problem into a
binary one the number of samples for these two classes increased. Since the initial dataset
was improperly balanced, the balancing methods were applied to rectify this. One of the
reasons why the multi-class problem was initially abandoned in this research is that some
classes in the multi-class dataset had an extremely low number of samples per class (3,
5,7,and 9). The dataset oversampling methods could not be applied to the classes with
the extremely low number of original class samples. The initial investigation with GPSC
using a multi-class dataset generated poor results so the multi-class problem was initially
abandoned. Low correlation values were determined with the initial analysis, but all the
variables ended up being included in the best-performing equations.

The definition of hyperparameter range for the random hyperparameter method is
a time-consuming process since it requires initial tuning of hyperparameter ranges and
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observing the GPSC algorithm execution behavior. The most crucial hyperparameters
are genetic operation coefficients, the relation between population size and tournament
selection size, and parsimony coefficient value. The starting hyperparameter tuning showed
that an increase in the value of any genetic operation would not have any benefit towards
the evolution process so they were all set to a pretty general case (all in the initial range of
0.001 to 1). Initial investigation showed that small tournament size and large population
size can prolong GPSC execution time drastically. To prevent this the tournament size
is, in the best-case scenario, 30% of the entire population. Finally, the most sensitive
hyperparameter is the anti-bloat mechanism (parsimony). As mentioned, due to the low
correlation between inputs and outputs, having a low parsimony coefficient value can
result in a violent growth of equations. On the other hand, too large of a value will stifle
the evolution process, resulting in the non-convergence of the model.

During this initial testing stage, it was ensured that the dominating stopping criteria
would be a predefined maximum number of generations. The lowest value of the log loss
fitness function was never achieved.

The described methodology was successful in generating models for all of the dataset
variations, with the best-performing ones resulting from the SMOTE augmented dataset.
The results shown in Table 5 show that random oversampling has lower classification
accuracy than the SMOTE case and lower size of SEs. However, the size of SEs obtained in
the SMOTE case is not so big so they were chosen as the best results.

The models trained on the SMOTE dataset showed that not all 90 inputs are necessary
for classification. Each of these five SEs can be used to determine the class. However, all
five are used to obtain the robust solution which was the initial idea of utilizing 5SFCV. The
SE that requires the lowest number of input variables is Equation (A1). This research also
showed that not all of the input variables are required to obtain the best results. A detailed
comparison of the best SEs showed that 26 input variables out of 90 are not needed to
detect fault operation so these variables can be omitted from further investigation.

The utilization of the obtained models on the non-augmented dataset showed that
using these SEs high classification accuracy could be achieved which can be seen from the
results shown in Table 6.

5. Conclusions

The paper demonstrates an application of GSPC on a robot operation failures dataset.
In the analyzed binary problem the GPSC was applied and validated for randomly selected
hyperparameters, to obtain SE which can detect faulty operation. Since the binary variation
of the original dataset was imbalanced the idea was to apply various balancing methods
to equalize the dataset. The random oversampling and SMOTE methods were applied.
The best results were evaluated on the initial dataset. After conducted investigation the
following conclusions can be drawn:

*  The GPSC algorithm can be applied to obtain the models that detect the faulty opera-
tion of the robot manipulator and show high-performance metrics;

¢ The investigation showed that with the application of OMs, the balance between
class samples was reached, and using these types of datasets in GPSC generated
high-performing models. So the conclusion is that dataset OMs have some influence
on the classification accuracy of obtained results;

*  Conducted research demonstrating that by using a balanced dataset with the SMOTE
method in the GPSC algorithm with RSHVs and 5FCYV, the best SEs in terms of high
mean evaluation metric values with low standard deviation can be obtained. When
the aforementioned SEs were applied to the initial imbalanced dataset the results of
EMs slightly deviate from those obtained on the SMOTE dataset.

*  The GPSC algorithm as applied procured a set of the best SEs that can be used to
obtain a robust solution;



Appl. Sci. 2023,13, 1962

17 of 23

¢  This investigation also showed that not all variables are necessary to detect the faulty
operation of a robotic manipulator. In this case, a total of 26 input variables are not re-
quired which is a great reduction in the experimental measurement of these variables.

The main pros of the proposed method are:

*  The entire GPSC model does not have to be stored. No matter how long the equation
is it still requires lower computational resources than the entire CNN or DNN. The
aforementioned CNN or DNN can not be simply transformed into a form of SE.

¢  The generated SEs with GPSC in some cases do not require all dataset input variables.
However, other machine learning methods require all input variables that were used
to train them.

The main cons of the proposed method are:

*  The development of the RSHVs method is a time-consuming process that requires
changing each hyperparameter value and running GPSC execution to investigate its
influence on the performance of the algorithm;

¢ The ParsCoef is the most sensitive for tuning. A small change in its value can have a
great impact on the GPSC performance.

Future work will be focused on creating the original dataset, preferably balanced. The
idea is to apply the same procedure in an experimental study to validate the mathematical
equations obtained using the same procedure described in this paper. Besides that, the
dataset which was used in this investigation will be subjected to a synthetic data generation
process to try artificially create samples of the original dataset and after that perform
oversampling. Synthetic data generation, in this case, is mandatory, especially for classes
with an extremely small number of samples. Hopefully, this procedure will contribute to
high classification accuracy in the multi-class problem.
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Appendix A. Dataset Additional Information
Appendix A.1. Dataset Statistics and GPSC Variable Representation

In Table A1 the result of dataset statistical analysis is shown as well as the GPSC
variable representation.
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Table Al. Dataset statistics and GPSC variable representation.
Verable | Mean  SW Min Max gl ogrob  Men S Min Maxo g
Class 0.721382  0.448804 0 1 y T3 —10.9136 7098129  —524 400 X5
E 5429806  54.7229 —254 353 Xo Ty —5.7905  66.34445  —492 433 Xa6
F/ 1.045356 4496064 —338 219 X1 T3 —4.35421 1717883  —150 64 X4y
Ff —37.7624 369.2985 3617 361 X3 F —1.57451 47.21401 389 339 X4
Ty —523974 117.2394  —450 686 X3 FJ —2.28942  36.62957  —343 190 Xy9
le 7.358531  111.824 —286 756 Xy F —62.5702  403.8498 —2792 151 Xs0
Ty —1.77322 2555332  —137 149 X5 Ty —8.7581  70.60608  —567 410 X51
F5 3.481641 4837184  —246 337 X6 Tg —7.83369  62.94308  —487 437 X5
24 —0.1987  39.63278  —-360 205 Xz T3 —2.77322  13.33397 —83 88 X53
F —58.1361 399.9206 —3261 146 X3 Ey 0.416847 3427027  —248 338 Xs54
T —7.9892  86.15365 —467 605 X9 Flyo —3.30022 36.81007  —353 188 Xs5
7 —7.49028 64.08104 271 261 X10 Ey —51.7041  340.3173 2788 89 X56
T3 —1.3067  15.80375 —69 135 X1 T3 —9.11015 68.56809  —563 408 Xs57
B 2.598272 42132890 247 331 X12 T}y —528726  62.68280 502 462 Xsg
Fg —2.32829  42.9849 —367 276 X13 T —3.19654  12.09228 —89 97 Xs9
F —61.5961 379.1127 —3281 132 X14 £ —1.35853 65.97879  —492 448 X0
T3 —7.47084 8593531 535 620 X5 1—"1y1 —7.42765 51.87442 364 185 X61
Ty —2.60691  74.5475 —427 476 X16 ] —110.994 510.0633 —3234 94 Xe2
T3 —1.33693  15.03959 —66 144 X7 T —8.0108  78.76645  —558 404 X63
£ 3.153348  39.23666 ~ —249 337 X138 T/, —7.22678 7512606 —576 454 Xea
F/ —1.11447 4540036  —364 354 X19 T —4.47948  22.87002  —199 81 Xe5
F; —67.635 4283144 3292 107 X20 F, —4.43844 88.33604 —883 460 X6
Ty —6.33693  84.95088 —495 567 X5 F, —8.48812 55.64501  —364 187 Xe7
TZ —3.24406 75.36126  —633 464 X Ff, —134.477 575.1008 —3451 179 X8
Ty —1.76026  17.14544 —88 161 Xo3 T3 —3.31102 105.7364  —540 1016 Xe9
F 0.717063  43.43762  —251 351 X4 lez —5.80994 89.37178  —568 458 X70
F 0.667387  52.38475 ~ —368 438 X5 i, —4.75378  26.98989  —233 86 X7
F —79.6004 479.6485 —3348 107 X6 E5 —5.47516  89.50921  —851 462 X7
T3 —12.0842  105.922 —824 536 Xo7 F1y3 —7.26134 53.43668  —352 181 X73
T5y —8.77754  85.63418  —725 406 Xo8 I —140.566  586.8129  —3275 126 X7
TZ —221166  19.82233  —128 201 Xo9 T —7.3067 8326654 516 400 X75
B —0.55508 38.56243  —262 324 X30 T/, —10.2613  82.56735  —567 471 X76
Féy —22635 40.62626  —320 254 X31 Ti, —4.15767 1997507  —197 93 X77
F —57.8942  417.1217 —3051 418 X3 Fy —1.66307 69.58861  —480 460 X78
T —3.56371 89.31248  —672 747 X33 F1y4 —521598 48.83071  —343 212 X79
) —2.42549  67.07047  —468 389 X34 F, —133.618 559.7376  —3226 92 Xg0
T¢ —1.60259  23.169 —-162 244 X35 T3 —7.85745 87.05328  —527 531 Xg1
F; —2.69762 41.83346  —389 338 X36 T/, —7.89201 78.53241  —600 466 Xg
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Table Al. Cont.
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Appendix B. The Best SEs

The set of best SEs that were obtained on the dataset balanced with SMOTE OM.
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\/max X18X44,1.410g(X49)) — 1. min(Xgp, sin(Xy7)) + min(1.41og(0.4Xzs5 log(+/Xo))

_|_

min(1.41og(Xy + tan(log(Xgs))), min(1.4log(Xp + tan(log(Xgg))), 1.4log(max(Xzs,1.21/1log(1/X2s))

0.41lo ,1.4log(tan(Xg3))) + 1/log(X19) — 1. min(Xgy — 1.X7,1.410 Xo
lg log log( log

)+1g(

(A2)

) 1.4log(tan(Xe3))) + 1.41og(cos(tan(log(Xss))) — 1. min(Xsgo, sin(Xyy)))

1.4log(1. 4log(\3/X5 ) +1log(X73)) + min(1.41log(+/Xg + sin(Xy6)), 1.4 log(max(1.4log(+/Xo),
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Y3

Ya

min(log(Xi9), 1.4log(1.41og(/X2g) — 1. min(Xgg, sin(Xyy))) + 1.41log(Xos) + ¥/ X52)
1.41log(cos(tan(log(Xss))) — 1. min(Xgo, sin(Xy7))) + 1.4log(1.4log(1.41og(1.410g(Xp)))
sin(Xg) — 1.sin(Xyy)) + 1.41og(1.41og(1/Xp)) + 3.log(X19) + 0.4log(0.41og(sin(X3)))
0.410g(Xa0) + 0.4 1og(cos(Xss)) + 0.4 og(cos(Xas)) + 14log(Xas) +2.3/Xzz

)
(
1.4log(1. 4log(@)) +0.4 log(cos(@)) + log(Xy3)) + min(1.4log( m + sin(Xyg)),
(ma
(

+ + +

1.41log(max(1.41log(+/Xp),log(X19)) — 1.sin(Xyy)) + 1.4log(1.4log(1.41og(+/Xo))
0. 410g 0. 410g(X16))) + log(Xlg) +0.4 log(COS(X45)) + Xsp +04 10g(X78))

\/max(XO, X30, X44X58) - 1.min(X80, sin(X4)) + \/max(X18X44, 14 log(X49)) - 1.min(X80, sin(X47))

\/log(Xlg) — 1.min(Xgy — 1. X7, 1.41og(+/Xp)) + min(log(X19), 1.41og(1.410g(/ X2s)
— 1.min(Xgp, sin(X4y))) + 1.41og(Xp4) + ' Xsp) + 2. log(Xj9)
+ 0.4log(0.4log(sin(X3))) + 0.4log(cos(Xys5)) + 0.4log(cos(+v/ Xs5p))

+ o+ +

6(sec(cos(Xp))( (2.4 cot(cos(cos(tan(Xsgp))))(2.4(sec(cos(Xp))( (2 4 cot(cos(cos(tan(Xgp)))) (sec(cos(Xp))
(cot(cos(cos(log(Xp))))(cot(cos(cos(log(Xp))))(1.4(max(log(Xp), 2.4(sec(cos(Xp)) (cot(cos(cos(log(Xp))))

(cot(cos(cos(log(cos(log(Xp)))))) (1.4(max( X7, Xs4,10g(Xp))) + cos(| v/ Xss|)) + log(max(Xag, Xz,
cos(max(cos(log(Xy3)), log(Xy3))) + 1.4(cos(log(Xo)))
Xog ’
log(m. \/X759 X40Xe8,X70))))))) + log(log(max(X7g, log(Xo),3.55108(X49))))) + log(max(Xas, X3,
log(X3 ) + cos(| v/ Xge|)) + log(max(Xps, X36, log(max(—4485.04, X1g, X6, X70,10g(Xo), log(max( X0 Xes,

log(max(Xig, X36, X70,log(Xo),

(A3)

Xg9, X70))))))) + log(log(max(X7p,log(Xp),3.5510g(Xy9))))) + log(max(Xps, log(max(Xyo, log(Xp), 2.4(log(max(Xos,

cos(|v/Xss|)
| cos(cos(log(cos(log(Xo)))))|

X36,log(max(X40Xes, X70, Xs1)))) + )))))) +log(max(Xzs, X36, log(max( X7,

cos(log(Xs3)), 10g(Xo), 10g(X3))))) ) / (| cos(cos(log(cos(log(X0)))))| ) +log(log(cos(log(Xo))))) + log(max(Xas,

X3¢, log(max(Xas, X36))))) + log(max(Xas, log(max(Xy, log(Xp), 2.4(log(max(Xps, X3, log(max(Xs9Xes,

cos(|v/Xse|)
X70, Xs1)))) + | cos(cos(log(cos(log(Xp)))))|

l0g(X1)))))) / (I cos(cos(log(cos(log(Xo)))))| ) + log(log(cos(log(X))))) + log(max(Xas, Xas, 10g(10g(X0)))))

)))))) + log(max(Xas, X3, log(max (X, cos(log(X43)), log(Xo),

= max(Xpp, max(Xp, Xgs, max(Xn, X7e, Xss, 1.4 log(min(Xgg, 0.4 log(max (X, 0.41og(X20))))), max(Xie, X1s,

X
X, X25, Xo8, X59, Xgs, max(Xis, Xs9, Xgs, 1.4 log(min(Xgg, 0.4 log(log(0.4log(max( X51 1.4log(| log(max (X,

(A4)

0.410g(X20)))]))) + | tan(Xs9)|)))) + max(v/X1, Xgg, Xo7 + 1.410g(0.41og(log(Xs))), v/Xa9| Xo| min(X77, X79)))

max(Xop, X76, Xgs, 1.4 log(min(Xgp, 0.4 log(max(Xp, 0.41og(X20))))), max(Xps, 1.4 log(min (X, Xs50

Xo,0.410g(0.410og(X20)))), max(Xpo, X76,1.41og(min(Xy, Xgo, 0.4 log(log(0.4 log(max( %, 0.41og(v/X27)))
21

|log(0.410g(X20))|)))) + max(X1e, X18, X22, X25, X28, X40, X46, X59,5in(X44))) + 1.4log(min(X>,

0.4log(log(O0. 4log(max( X51 ng)) + |log(0.410g(X20))|)))) + 1.41log(min(Xgo, 0.4 log(log(tan(Xsy)

X . .
+ 04 log(X—i)))))) + max(X16, X18, X202, Xo5, Xo8, X40, Xa6, Xs59,5in(Xy4))) + 1.4log(min(X,, Xgo,

0.4log(log(0.4log(max(Xy,0.410og(X20))))))), sin(Xaq)) + max(Xpg, 1.4 log(min(Xo, Xs50 + Xo,
0.41og(0.410g(X20)))), max(Xaz, X76, 1.4 log(min(Xp, Xgo, 0.4log(log(0.4log(max( };51 0.41og( I X27)))

+ |log(0.4l0g(X20))])))) + max(Xie, X18, X22, X25, X28, X40, X46, X59,8in(X44))) + 1.4log(min(X>,

0.4log(log(0.4log(max( ;51 Xgg)) + |log(0.410g(X29))|)))) + 1.4log(min(Xgp, 0.41log(log(tan(Xse)

+ 04 log(%))))))) + max(Xis, Xs9, Xss, 1.4 log(min(Xgp, 0.4 log(log (0. 4log(max(§ ,1.41og(| log(max (X,
21

0.410g(X20)))]))) + | tan(Xs0)|)))) + max(y/X7, Xss, Xo7 + 1.410g (0.4 log(log(Xs))), /Xag|Xo| min(X77, X79)))
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+  1.4log(min(Xy, Xgo, 0.4 log(log (0.4 log (max(Xo, 0.410g(X20)))))))) + 1.41og(0.4log(max(Xp, 0.41og(X20)))))
+  14log(0.4log(0.410g(Xx)))

ys = max(X1e, max(Xye, max(Xyg, max(Xie, max(Xye, (1.4log(sin((max(X16, (A5)
log(X33)
max(1.4log(1.201124/log(+/X73)), tan(0.41og(X73)))

10g(1.2\/10g( min(Xyy, Xlg))))))) §) + 1.41log(max(Xs, (1.4 log(sin(y/max(Xy, X32)))

))/(|Xzs|>)) + max(Xy, tan(1.4log(1.4

1
+ tan(1.4log(0.65 log(X69)))) 5) + 1.4log(y/min(Xy4, X18))) + max(Xye, max(Xye, Xa6, max(Xig, X46,

<max(X16, Xy6, max(Xyg, (max(Xlé, tan(1.4 log(l.Z\/log( min(X3, Xgg))))) + max(Xyg,

1

1.13g/log(sin(max(xo,xn)))) + 1.4log(sin(v/Xe7) )) *) + Lalog( min(Xlg,Xg6)))> ) + max(X14,

<1.4 log(max(Xig,log(Xp), \/max (X16, y/min(X1g, X74), tan(1.4log(1.4log(1/X18)))))) + max(Xie,

tan(1.4log(1.41og(v/X13)))) + max(Xie, v/ X4 )§ + max(Xpy, tan(tan(1.4log(1.201124/10g(X36)))))))

Wl

+ max(1.4log(y/min(Xis, Xg6)), tan(0.41og(X73)))) + max(X1e, max(Xye, (max(Xl(,,max(Xlé, (max(Xl(,,

1.13§/10g(sin(«/max(X0, X32)))) + v/ X4 + 1.4log(sin(1.4 log(X(,y)))) %) + 1.4log(y/min(Xsg, X86)))) %)

+  max(Xys, (max(Xlé,max(Xlé,X%, v/ Xy, tan(1.41log(min(X14, X15)))) + max(Xie, 1.4 log(sin(iggg%)))
56

+ 1l4log( }OEEX%% )) + max(Xyg, tan(1.4log(1.41og({/min(Xys, X74)))))) ’ )) + max(Xig, max(Xye, tan(1.4
log(\/max(Xlé,tan(l.él log(1.4log(1/X15))))))) + 1.4 log(sin(wn) +1.4log(1.4

log(\/min(Xyy, v/Xy)))) + max(1.4log(max(Xo4, tan(1.4log(max(Xys, §/1.4 log(sin(Xy4)) + cos( §27 )
18

+  max(Xis, tan(1.4log(Xe3))) + X2)))), tan(tan(1.41log(1.201124/log(1/X73))))))

It should be noted that during GPSC executions mathematical functions division,
natural logarithm, square root, and logarithms with base 2 and 10 are modified to avoid
errors during execution. If the Equations (A1)-(A5) are used then the aforementioned
mathematical functions must be applied which are defined in the following way:
*  Division function
I if|x,| > 0.001

yprv(x1,x2) = { 2

. : (A6)
1 ifjxp] < 0.001

*  Square root

Ysorr(x) = \/m (A7)

() [los(lz)) iflzl > 0001
Mogt= = if|z| < 0.001

¢ Natural logarithm

(A8)

The Equation (A8) can be applied to log,, and log;, however log must be replaced
with log,, and log,,, respectively. The z, x1, and x;, in Equations (A6)-(A8) are arbitrary
variable names.
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