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Abstract: In this study, an AMR-PLIC-HF method is proposed and implemented by GPU paral-
lel computing based on CUDA programming language and NVIDIA GPU. The present method
improves the computation efficiency without compromising the accuracy and conservation of the
volume. To satisfy the requirements of stencil points of the PLIC-HF method, an extended stencil
computation method based on the tree-based AMR method is proposed and implemented. The
Weakly Compressible Scheme (WCS) is used in the present work as a fluid solver. An evolving
pressure projection method is adopted to suppress the oscillation induced by the reflection of acoustic
waves. The Langmuir model is introduced into the solver to calculate surfactant transport and the
Marangoni effect caused by the gradient of the interface concentration of the surfactant. The single
vortex flow results verify the accuracy of the AMR-PLIC method. A single bubble rising problem
with two different physical property settings is simulated. The results show good agreement with
the results given by incompressible solvers. This verifies the accuracy of the two-phase flow solver
including the AMR-PLIC-HF method and the WCS. The generation and rupture of liquid film by a
single bubble freely rising to an interface is simulated by the present solver with a 1024× 2048 AMR
grid as the finest resolution. This simulation successfully calculates surfactant transport and the
Marangoni effect.

Keywords: piece-wise linear interface calculation; volume of fluid; height function; adaptive mesh
refinement; liquid film; surfactant transport; Marangoni effect

1. Introduction

Following the development of the numerical fluid simulation field, a wide range
of fluid phenomena can now be simulated. Regarding multiphase flows, the generation
and rupture of thin liquid film has attracted researchers’ interest. Thin liquid films are
ubiquitous in many naturally occurring processes as well as in many industrial processes [1].
Typically, when a bubble starts rising from liquid and approaches the interface, a thin liquid
film is generated by the drainage of liquid. The dynamics of this process determine the
behaviors of fluid in many liquid–gas two-phase flows. Due to its practical importance, the
dynamics and stability of thin liquid film have been widely researched through experiments
and theoretical analyses [2–7]. However, there has been little research on the dynamics and
stability of thin liquid film using numerical simulations. The difficulty of conducting liquid
film simulations can be divided into several aspects.

First, in a thin liquid film simulation, the length of the problem is typically much
larger than the thickness of the film, which makes it a multiscale problem. In simulations
of such multiscale problems, a very-high-resolution mesh grid is required to ensure that an
accurate description of the behavior of liquid film is achieved. With a uniform resolution
mesh grid and CPU computing, the required memory of the computer and execution time
make simulations of thin liquid film impractical. CPU programs are used in conventional
numerical simulations. However, the CPU is a single processing unit that can only execute
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a limited number of instructions at a time. Thus, in large-scale simulations, or simulations
of thin liquid film that require a high-resolution mesh grid, the efficiency of the CPU is
unsatisfactory. To accelerate the computation process, GPU parallel computing can be
adopted. The GPU is a specialized type of processor that was designed to handle a large
number of parallel calculations simultaneously. This makes GPUs well-suited for certain
types of computational tasks, such as the rendering of graphics or the performance of
complex calculations for scientific simulations. The GPU can provide over 100 times more
FLOPS than the CPU in large-scale simulations [8].

In the simulation of real phenomena, it is inefficient to use a uniform resolution grid in
the computational domain. Normally, the resolution of the grid is determined by the size of
the cells or elements that make up the grid. The size of these cells is typically chosen based
on the size of the smallest features in the system being simulated as well as the desired
level of simulation accuracy. For example, if a simulation is being performed to study the
flow of a fluid through a complex network of pipes, the grid resolution needs to be fine
enough to accurately capture the details of the pipe geometry and the flow of the fluid
within the pipes. This requires the use of small grid cells in the regions of the grid that
correspond to the pipes to accurately represent their shapes and sizes. However, in other
regions of the grid, where the fluid flow is less complex, the grid cells can be larger, as
the details of the flow are not as important. This is a basic concept of the Adaptive Mesh
Refinement (AMR) method. In the 1980s, led by Berger [9], researchers proposed the AMR
method to dynamically adjust the size of cells and the resolution of the grid based on the
complexity of the solution with higher resolutions used in regions with rapidly changing
solutions and lower resolutions in regions with relatively constant solutions. In previous
work by Matsushita and Aoki, the execution time and size of the computational grids
were reduced by around 90% through the use of a benchmark advection problem from the
interface-capturing method [10,11].

Second, a highly accurate interface capturing method for two-phase flows is required
for the simulation of thin liquid films. Some numerical methods, including the volume-of-
fluid (VOF) method [12], level set method [13], phase field method [14], and coupled level
set and VOF (CLSVOF) method [15], can describe large amounts of interface topological
deformation. Considering the good conservation of mass achieved by the phase field
method and the high accuracy of the complex geometric calculation in the level set method,
the previous work by Matsushita and Aoki proposed a coupled phase field and level set
method that combines the advantages of the two methods [16]. The phase field method
describes the interface between different phases as a diffusive interface with a certain
thickness. In liquid film simulations, such a diffusive interface could bring uncertainty
to the simulation and may not describe the true physics. Based on the VOF method, a
piecewise linear interface calculation (PLIC) method was adopted in the present research.
The PLIC method has become a widely used technique in computational fluid dynamics
and has been applied to a range of problems involving the simulation of free-surface
flows and complex fluid–fluid interactions [17–19]. We believe that the sharp interface
described by the PLIC method is appropriate for use in the present simulation of liquid
films. The curvature was usually calculated by level set in previous work [16,20] due
to the high accuracy of this method. However, the level set was not used as the main
variable to capture the interface. The calculation of the volume fraction to height function
is straightforward [21–23]. Thus, in the present research, the interface curvature was
calculated by the Height Function (HF) method. It has been reported that the spurious
current [24] can be greatly decreased by the present PLIC-HF method [19].

Third, the method used to solve fluid dynamics problems needs to be considered.
Derived from the mesoscopic kinetic theory of gases, the lattice Boltzmann method has
developed into an effective CFD method in the past two decades and can be used for
research and applications [25,26]. In contrast to the Navier–Stokes equation, which is
based on macroscopic conservation law, The LBM is derived from the dynamics of fluid
particles and includes collision and propagation. It is modeled by a statistical distribution
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function to avoid the direct tracking of each particle, as occurs in molecular dynamics
methods. The most notable feature of the LBM is its explicit time advancement and local
spatial dependence, which enable it to fully exploit the potential of parallel computers.
Inspired by the standard LBM designed for isothermal weakly compressible fluids, weakly
compressible Navier–Stokes equations can also be used to simulate incompressible flows.
By introducing an isothermal state equation and ignoring density fluctuations at low Mach
numbers, an independent time evolution equation of pressure can be obtained [27,28]. This
hyperbolic equation of pressure can be explicitly integrated in time through a local spatial
stencil. Despite the limitation of the time step size by the speed of sound, this method
greatly benefits scalable calculations. Weakly compressible Navier–Stokes equations have
been successfully applied to turbulent flows [29] and two-phase flows [16]. The calculation
of pressure Poisson equation is necessary for incompressible Navier–Stokes solvers. This
method brings instability to the computation, and convergence in large-density-ratio two-
phase flow simulations is compromised. Thus, a weakly compressible scheme [16] and
evolving pressure projection method [30] were used in the current simulation.

The purpose of the present research was to understand the influence of surfactant
transport on the behavior of liquid film. The PLIC-HF method was used as interface
capturing method and implemented on an AMR grid with extended stencil computation.
The weakly compressible scheme and evolving pressure projection method was used as a
fluid solver. A Langmuir model [31–34] was introduced to calculate surfactant transport
and the Marangoni effect.

This paper is organized as follows. Section 2 presents the governing equations.
Section 3 presents an explanation of the numerical methods. Section 4 explains the imple-
mentation of AMR on GPU. The results of two-dimensional computations and a discussion
of the results are given in Section 5. The results are further discussed in Section 6, and
concluding remarks are given in Section 7.

2. Governing Equations
2.1. Fluid Dynamic Equations

The isothermal Navier–Stokes equation is derived from the compressible Navier–
Stokes equation [20]. Under isothermal conditions, the time evolution of temperature T is
not solved and T is considered to be a constant. When the Mach number is Ma = U

cs
� 1,

the density change is δρ
ρ0
� 1. U is the typical velocity, ρ0 is the constant density, and

cs is the sound speed. Assuming the flow is weakly compressible, in the computation
of a single-phase flow, the density ρ is considered constant, and in the computation of
a two-phase flow, the density ρ is calculated from the volume fraction. In this case, the
density compressibility can be ignored.

Additionally, when Ma = U
cs
� 1, the fluid velocity is much slower than the speed of

sound, and propagation by sound waves becomes dominant, so the material derivative
of pressure p can be approximated as the Eulerian time derivative of pressure p. When
this approximation is adopted, it has been reported that the results of the benchmark tests
approach incompressibility [27]. This approaches was adopted in the present research.

With the assumptions about the isothermal state and low Mach number, the governing
equations of weakly compressible flows can be shown as

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p +

1
ρ
∇ · τ +

1
ρ

F, (1)

∂p
∂t

+ (u · ∇)p = −ρc2
s∇ · u. (2)

where F represents the external forces, which include the surface tension and gravity in the
present research. τ is the viscous stress tensor.
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The speed of sound cs is set using the typical velocity and initial Mach number as

cs = U/Ma (3)

where U is the typical velocity. cs was given a large value in the present research to ensure
that the low Mach number assumption was applicable during the simulation.

An evolving pressure projection method was included in the current research to
dampen the acoustic waves in weakly compressible fluid flows [30].

2.2. Conservative PLIC-VOF Method

A conservative piecewise linear interface calculation volume-of-fluid (PLIC-VOF)
method was included in the present research [35,36] where a ‘color function’ c(x) is used to
describe the fluid type. This is defined as

c(x) =

{
1 if x ∈ ‘heavy’ fluid
0 if x ∈ ‘light’ fluid

(4)

In the VOF method, a characteristic function φ is obtained by integrating the color
function into a computational volume Ω:

φ =

∫
Ω c(x)dv∫

Ω 1dv
(5)

This characteristic function φ is a volume fraction and has physical constraints such as

0 6 φ 6 1 (6)

which means that in the computational volume, the fluid cannot be less than empty or
more than full.

The PLIC method approximates interfaces on each cell as a line in two dimensional
simulations, as shown in Figure 1a. The line can be described by the following equation:

n · x = α (7)

where α is a constant that ensures that the volume fraction cut by the interface is exactly the
φ defined by Equation (5) [37]. In Equation (7), the interface normal vector n is computed
with the second-order mixed Youngs-centered (MYC) method [38], and x is local coordinate
defined in one cell. As shown in Figure 1b, the volume flux across the cell face is calculated
by the geometric relationship to advect the reconstructed interface.

(a) (b)

Figure 1. The interface reconstruction and flux calculation used in the Piecewise Linear Interface
Calculation (PLIC) method.The region in blue is occupied by heavy fluid and the region in white is
occupied by light fluid. The dotted line represents linearized interface in a cell. The black arrow in
(a) indicates the normal vector of the interface and the black arrow in (b) indicates the direction of
the velocity on that cell face. (a) Interface reconstruction. (b) Flux calculation.
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The transport equation is based on the physical nature phenomenon whereby on any
material point, the fluid type does not change. It can be described by the material derivative
of the color function:

Dc
Dt

=
∂c
∂t

+ u · ∇c = 0 (8)

By integrating Equation (8) into a computational volume Ω and using the divergence
theorem, we get

∂

∂t

∫
Ω

c dv +
∮

∂Ω
cun ds =

∮
Ω

c∇ · u dv (9)

By considering the definition of the volume fraction φ in Equation (5), the transport
equation can be written as

∂φ

∂t
∆Ω + Fnet =

∮
Ω

c∇ · u dv (10)

where ∆Ω ≡
∫

Ω 1dv is defined as the volume of the cell. In Equation (10), the value of the
right-hand side should be zero because it is a divergence-free velocity field where ∇ · u is
zero. However, a dimensional split method was used in the current research, which means
that the flux calculation and time integration proceeded alternately in the X-direction and
Y-direction. One-direction velocity is not divergence-free; thus, the right-hand side could
not be simply ignored. To conserve the volume, a simplification was adopted:∮

Ω
c∇ · u dv = cc

∂ud
∂xd

∆Ω (11)

where d is the Cartesian index indicating the X-direction or Y-direction, and cc is the value
of the color function at the center of the cell and is defined explicitly as

cc =

{
1 if φ > 1/2
0 else

(12)

The interface curvature can be calculated with an improved Height Function (HF)
method [22]:

κ =
Hxx + Hyy + Hxx H2

y + Hyy H2
x − 2HxyHx Hy(

1 + H2
x + H2

y

)3/2 (13)

where κ is the interface curvature, H is the height function calculated by volume fractions
on a 3× 7 or 7× 3 stencil, and the subscripts x and y show the partial derivatives of the
height function H. This method has a high level of accuracy even when the local grid
resolution is low because a local monotonicity correction is included.

In the computations of density and viscosity shown in Equation (1), the volume
fraction φ is used:

ρ = φρh + (1− φ)ρl

µ = φµh + (1− φ)µl
(14)

where the subscripts ‘l’ and ‘h’ indicate the properties of heavy fluids and light fluids,
respectively.

2.3. Level Set Advection and Re-Initialization

In the present research, the level set function ψ [13,39] was used as a refinement crite-
rion in the Adaptive Mesh Refinement (AMR) method and for some surfactant transport
calculations. The level set function ψ evolves over time according to the advection equation
shown below:

∂ψ

∂t
+ (u · ∇)ψ = 0. (15)
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Since the Level Set function ψ represents the signed distance from the interface, it has
the following property:

|∇ψ| = 1. (16)

Due to the numerical error from long-term integration, the |∇ψ| = 1 property may
be compromised. To maintain the |∇ψ| = 1 property of the level set function ψ, which is
defined as a signed distance function, it is necessary to carry out re-initialization on the
level set function ψ .

An initial re-initialization value for the level set is given by the volume fraction near
the interface:

ψinit (x) = 1.5× ∆x
(

2
(

φ(x)− 1
2

))
(17)

Then, re-initialization is performed by time evolution of the following equation within
a physical time step ∆t using a virtual time step τ, which is usually set as 0.5× ∆x.

∂ψ

∂τ
+ S(ψ)(|∇ψ| − 1) = 0 (18)

S(ψ) =
ψ√

ψ2 + |∇ψ|2∆x2
(19)

2.4. Surfactant Transport Equations and the Marangoni Effect

In the current research, surfactant transport was taken into consideration. The surface
tension coefficient σ changes according to the concentration of the interface surfactant f .
Based on work by Hayashi and Tomiyama [34], a model that has the ability to calculate
surfactant transport on a deformed interface was proposed. The transportation equations
for the bulk concentration F in solution and the interface concentration f defined on the
interface can be expressed by the following equations that model the advection–diffusion
and adsorption–desorption effects:

∂F
∂t

+ u · ∇F = DF∇2F + jδ(ψ) (20)

D f
Dt
− u · ∇s f (u · n)(∇s · n) = −∇s · ( f u) + D f∇2

f f + j (21)

In Equations (20) and (21), ∇s = (I − n⊗ n)∇ represents the gradient on the surface.
DF is the bulk diffusive coefficient, D f is the interface diffusive coefficient, and δ(ψ) is a
delta function of the level set. j is the source term that models the adsorption and desorption
between the bulk surfactant and interface surfactant. In the present research, j is expressed
by the following equation using the Langmuir model:

j = kadF( flim − f )− kde f (22)

Here, kad is the adsorption rate coefficient, flim is the saturation concentration, and kde
is the desorption rate coefficient. Equation (21) can be expressed as the derivative on the
Cartesian coordinate:

∂ f
∂t

+ u · f − f (n · ∇u · n) = D f

(
∇2 f − n · ∇∇ f · n− κn · ∇ f

)
+ j (23)

Since the present method implicitly expresses the interface position by using the VOF
method, the following equation [32] is solved to create a field of f that makes n · ∇ f = 0 in
each phase:

∂ f
∂τ

+ S(ψ)n · ∇ f = 0 (24)
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For the bulk concentration F, the transportation equation is solved only in the liquid
phase. The values of F on the gas phase side should not affect the values of F on the liquid
phase side. Therefore, the values on the liquid phase side are extrapolated [31] to the gas
phase side:

∂F
∂τ
− S(ψ)n · ∇F = 0 (25)

Equation (25) is only solved in gas phase side. In Equations (24) and (25), S(ψ) is
defined by Equation (19) as a smoothed sign function.

The Marangoni effect refers to the free surface movement or flow along the interface
caused by the surface tension gradient due to the temperature difference and the surfactant
concentration difference. In the present research, an isothermal state was assumed, so the
Marangoni effect due to the temperature difference was not considered. In the present
research, the Marangoni effect was only induced by the difference in the interface concentra-
tion f of the surfactant. The change in the surface tension coefficient σ can be represented
by the following Langmuir state equation:

σ( f ) = σ0

[
1 +

RT flim
σ0

ln
(

1− f
flim

)]
(26)

Here, R is the gas constant of the ideal gas, T is the absolute temperature, and σ0 is the
surface tension coefficient when the surfactant concentration is 0.

As shown in Figure 2, since Equation (26) is a non-linear equation that includes loga-
rithms, when the interface concentration f approaches flim, the surface tension coefficient
asymptotically approaches −∞, resulting in a very steep gradient. A linearized equation
can be used to stabilize the calculation.

Figure 2. Dependence of the surface tension coefficient σ on the interface concentration f expressed
by the Langmuir state equation. The dotted line indicates the saturation concentration.

The effect of the reducing surface tension coefficient σ calculated by the linearized
equation is also shown in Figure 2. When the surfactant concentration is low, the non-linear
equation is well approximated. However, when the surfactant concentration is close to
flim, there is a huge deviation from the non-linear equation. In the present research, to
prevent numerical instability and maintain accuracy, an upper limit is set for the interface
concentration f during the calculation of the surface tension coefficient σ.

A Density-Scaled Continuum Surface Force (CSF) method [33,40] was used to calculate
the surface tension Fsf:
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Fsf =
2ρ

ρh + ρl
σ( f )κ∇φ + ρ∇sσ( f )δΓ (27)

In Equation (1), the external force term F includes surface tension Fs f and gravity
Fg = ρg, where g is the gravitational acceleration:

F = Fs f + Fg (28)

3. Numerical Methods
3.1. Spatial Discretization on Staggered Grid

A staggered grid system was used in the present research for spatial discretization,
as shown in Figure 3. The use of the staggered grid can avoid the problem of velocity
and pressure decoupling and can provide better numerical stability. In a two-dimensional
uniform staggered cell

[
i− 1

2 , i + 1
2

]
×
[

j− 1
2 , j + 1

2

]
, ∆x = ∆y, which means that the grid

spacing is the same in both the x-direction and y-direction. The scalar values pressure p,
density ρ, volume fraction φ, level set function ψ, and curvature κ are defined on the cell
centers (i, j). The components of the vectors, such as the velocity (u, v), are defined on the
corresponding cell faces.

𝑖, 𝑗 𝑖 +
1
2 , 𝑗

𝑖 −
1
2
, 𝑗

𝑖, 𝑗 +
1
2

𝑖, 𝑗 −
1
2

: 𝑝, 𝜌, 𝜙, 𝜓, 𝜅

: 𝑢

: 𝑣

Figure 3. Configuration of the staggered grid system. Vector components are defined at cell faces,
and scalars are defined at cell centers.

3.2. Finite Difference Method to Solve Fluid Calculations

To solve Equations (1) and (2), undefined velocities at cell centers and cell corners are
linearly interpolated from the nearest points:

ui,j =
(

ui− 1
2 ,j + ui+ 1

2 ,j

)
/2 (29)

ui− 1
2 ,j+ 1

2
=
(

ui− 1
2 ,j + ui− 1

2 ,j+1

)
/2 (30)

vi− 1
2 ,j+ 1

2
=
(

vi−1,j+ 1
2
+ vi,j+ 1

2

)
/2 (31)

Undefined scalar values at cell faces and cell corners are interpolated in the same
way. For example, the density at the cell face i, j− 1

2 is determined by linear interpolation,
as follows:

ρi,j− 1
2
=

1
2
(
ρi,j + ρi,j−1

)
(32)

In the above discretization, which considers the spatial change of density, numerical
instability is likely to occur because the differential operation is performed near the interface,
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where physical quantities such as density undergo drastic changes. In order to improve the
numerical stability, the gradient restriction function is applied to the gradient obtained by
the third-order WENO (Weighted Essentially Non-Oscillatory) scheme [41]:

fx = f 1st
x + Ψ(r)

(
f WENO
x − f 1st

x

)
(33)

where f is a variable and r is a smooth indicator that is expressed as

ri− 1
2
=



fi+ 1
2
− fi− 1

2

fi− 1
2
− fi− 3

2

ui− 1
2
> 0

fi+ 1
2
− fi− 1

2

fi− 1
2
− fi− 3

2

ui− 1
2
≤ 0

(34)

The minmod limiter function [42] was used for the restriction function Ψ. The deriva-
tive value

(
∂ f
∂x

)
i

of a certain grid point i can be obtained as follows, assuming that the
lattice width is ∆x. In the third-order precision HJ-WENO scheme, the sum of the central
difference and the numerical viscosity can be expressed as follows:(

∂ f
∂x

)
i
=

fi+1 − fi−1

2∆x
+

f±x
1 + 2r2 (35)

The numerical viscosity was constructed by taking a 4-point stencil depending on the
upwind direction with respect to the advection velocity u, as follows:

∆h = ∆x
fpp = fi+2, fp = fi+1, (u ≤ 0)
fm = fi−1

(36)


∆h = −∆x
fpp = fi−2, fp = fi−1, (u > 0)
fm = fi+1

(37)

f±x =
− fpp + 3 fp − 3 fi + fm

2∆h
, (38)

r =
fi − 2 fp + fpp + ε

fp − 2 fi + fm + ε
. (39)

In Equation (39), ε is a very small constant value that prevents the denominator from
being zero. r is an index of the smoothness of the function, and when r = 1, the scheme
shown above becomes the same as the third-order upwind difference method.

The pressure gradient ∇p included in the time evolution equation of velocity is
calculated by the second-order central difference method at the cell face i + 1

2 , as follows:(
∂p
∂x

)
i+ 1

2

=
pi+1 − pi

∆x
(40)

The viscous stress term ∇ · τ = ∇ ·
{

µ
(
∇u +∇uT)} is also calculated by the second-

order central difference method. µ is the spacial difference when the viscous stress term is
discretized. In the components of the viscous stress tensor, if the directions of the velocity
and the spacial difference are the same, such as in the term ∂

∂x

(
µ ∂u

∂x

)
, the discretization can

be obtained by [
∂

∂x

(
µ

∂u
∂x

)]
i− 1

2 ,j
=

(
µ ∂u

∂x

)
i,j
−
(

µ ∂u
∂x

)
i−1,j

∆x
. (41)
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The stencil calculation contained in Equation (41) is shown in Figure 4a. In the term
∂

∂y

(
µ
(

∂u
∂y + ∂v

∂x

))
i− 1

2

, which is included in the time evolution equation of u, the directions

of the velocity and spacial difference are different, and discretization can be achieved by

[
∂

∂y

(
µ

(
∂u
∂y

+
∂v
∂x

))]
i− 1

2 ,j
=

[
µ
(

∂u
∂y + ∂v

∂x

)]
i− 1

2 ,j+ 1
2

−
[
µ
(

∂u
∂y + ∂v

∂x

)]
i− 1

2 ,j− 1
2

∆y
. (42)

Each term in Equation (42) can be obtained with the stencil calculation, as shown in
Figure 4b.

(a)

(b)

Figure 4. Stencil computations of the viscous term where (a) the directions of the derivative and
velocity are the same and (b) the directions of the derivative and the velocity are different. (a) Sten-
cil computation where the directions of the derivative and the velocity are the same. (b) Stencil
computation where the directions of the derivative and the velocity are different.

The velocity divergence term included on the right side of the pressure evolution
equation, Equation (2), is evaluated by the second-order central difference, as follows:

(∇ · u)i,j =
ui+ 1

2 ,j − ui− 1
2 ,j

∆x
+

vi,j+ 1
2
− vi,j− 1

2

∆y
(43)

In Equation (27), the surface tension is defined at the cell faces, so the surface tension
coefficient σ( f ) and curvature κ need to be interpolated from the cell center values:

σ( fi+ 1
2
) =

σ( fi) + σ( fi+1)

2
(44)

κi+ 1
2
=

κi + κi+1

2
(45)
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The pressure Poisson equation is solved in a few initial time steps to suppress acoustic
waves. It is spatially discretized as

∂pi,j

∂t
= −ρi,jc2

s

(
ui+ 1

2 ,j − ui− 1
2 ,j

∆x
+

vi,j+ 1
2
− vi,j− 1

2

∆y

)
(46)

and solved with the parallel-computing-suitable red/black successive over relaxation (SOR)
method [43].

The advection and re-initialization equation of the level set function is solved with the
third-order HJ-WENO scheme [20].

3.3. Dimension Split Method to the Solve Transport Equation of the Volume Fraction

A dimension split method is used to solve the transport equation of the volume
fraction [35,44] and is spatially discretized as

∆φi,j =
∆t
∆Ω

(
Fnet,x + cc

ui+ 1
2 ,j − ui− 1

2 ,j

∆x
∆Ω

)
(47)

∆φi,j =
∆t
∆Ω

(
Fnet,y + cc

vi,j+ 1
2
− vi,j− 1

2

∆y
∆Ω

)
(48)

where cc is calculated by volume fraction at the cell center updated at the last time step

cc =

{
1 if φi,j > 1/2
0 else

(49)

It remains unchanged within a time step.
The net fluxes Fnet,x and Fnet,y are calculated according to a geometrical relationship,

as shown in Figure 1b.
Equations (47) and (48) are calculated alternately in time steps. In even time steps,

Equation (47) is calculated first, and then Equation (48) is calculated. In odd time steps, the
order is reversed.

3.4. Time Integration

For temporal discretization in the computations of the present research, a three-stage
third-order strong stability-preserving Runge–Kutta (SSP-RK3) scheme was applied. The
exception was the evolving pressure projection process, where a first-order Euler scheme
was employed. Generally, for a general time-marching partial differential equation of an
arbitrary variable q,

∂q
∂t

= L(q), (50)

where L(·) is an operator that relies on q. The SSP-RK3 scheme uses the following formula-
tion to update qn+1 from qn:

q(1) = qn + L(qn)∆t

q(2) = qn +
1
4

(
L(qn) + L

(
q(1)
))

∆y

=
3
4

qn +
1
4

q(1) +
1
4

L
(

q(1)
)

∆t

qn+1 = qn +
1
6

(
L(qn) + L

(
q(1)
)
+ 4L

(
q(2)
))

=
1
3

qn +
2
3

q(2) +
2
3

L
(

q(2)
)

∆t

(51)
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Since the present method solves the governing equation with the fully explicit method,
the size of the time step ∆t is constrained by advection, viscous stress, the propagation of
acoustic waves and surface tension waves, and other factors. The simulations carried out in
the present research were conducted in the low Mach number region, where the maximum
velocity should be much slower than the speed of time. So the time step ∆t was mainly
constrained by the speed of sound. In the present research, the size of the time step ∆t was
constrained as follows:

1. Constraint by advection

∆tadv ≤
∆x

max |u|+ cs
(52)

2. Constraint by viscous stress

∆tvisc ≤
∆x2

2ν
(53)

ν is the kinematic viscosity, ν = µ
ρ , µ is dynamic viscosity and ρ is density. In

Equation (53), the higher kinematic viscosity of heavy and light fluid is used.
3. Constraint by surface tension [45]

∆tsf ≤

√
ρh + ρl

2
∆x3

2πσ0
(54)

Considering the above constraints of the time step ∆t, the time step ∆t can be deter-
mined as follows:

∆t = min(CFLadv∆tadv, kvisc∆tvisc, ksf∆tsf) (55)

where CFLadv is a non-dimensional number with a value of less than 1. In the present
research, CFLadv was set as 0.10 to maintain the numerical stability. As for the other
parameters, in the present research, kvisc = ksf = 0.10.

4. AMR Implementation by Using GPU Parallel Computing

The use of GPU (graphics processing unit) parallel computing in computational fluid
dynamics (CFD) can provide several advantages over traditional CPU-based computing.
One of the main advantages is that GPUs can perform many calculations in parallel, allow-
ing for faster and more efficient computation during complex fluid dynamics simulations.
This can significantly reduce the computational time required for a simulation, making it
possible to run larger and more detailed simulations or to perform multiple simulations in
a shorter time period.

Another advantage of GPU parallel computing in CFD is that it can provide better
scalability and flexibility than CPU-based computing. This is because GPUs can be easily
added to a computing system to increase its overall performance without the need to
redesign the entire system. This can allow for the efficient use of computing resources as
well as the ability to quickly adapt to changing computational demands.

By using an orthogonal grid with ordered memory access, parallel computing by GPU
is performed efficiently, and many large-scale calculations using supercomputers have been
reported [46].

However, it is rare that a high-resolution grid is required for the entire computational
domain during the simulation of an actual phenomenon. In a real phenomenon, it is rare
for the gradient to be constant throughout the computational domain, and it is inefficient to
resolve a region with a steep gradient and a region with a gentle gradient with the same grid
resolution. To reduce the calculation cost, Berger et al. proposed the AMR (Adaptive Mesh
Refinement) method [9]. AMR is a computational method that involves dynamic refinement
of the resolution of a mesh or grid used in a numerical simulation. The resolution of the
mesh is adjusted based on the complexity of the solution with higher resolutions used
in regions where the solution is changing rapidly and lower resolutions used in regions
where the solution is relatively constant. This allows the AMR method to achieve a high
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level of accuracy with less computational effort than that required with a fixed mesh with a
uniform resolution. One of the main advantages of the AMR method is that it can reduce
the computational cost of a simulation by using a coarser resolution in regions where it is
not needed. This can greatly improve the efficiency of the simulation, allowing it to run
faster and use fewer computing resources. Additionally, AMR can improve the accuracy of
a simulation by using higher resolutions when needed, resulting in more accurate solutions.
At present, the AMR method proposed by Berger et al. is classified as a patch-type AMR
method, in which arbitrary orthogonal grid regions with different resolutions are assigned
to arbitrary locations. Since this method is deployed on an orthogonal grid, it is highly
compatible with the GPU. However, refinement is complicated because the size of the patch
area changes.

The tree-based AMR method [47] is considered to be compatible with two-phase flow
simulations with an interface, because the tree structure is easy to manage in the frequently
repeated dynamic refinement and coarsening of the grids. Based on the tree structure,
the memory access is regular, making it suitable for GPU parallel computing. When grid
refinement is performed to halve the grid width of each side for a certain region, as shown
in Figure 5, one grid is divided into four equal parts. The refinement leads to the creation
of four child nodes in two-dimensional space and eight child nodes in three-dimensional
space for the parent node on the tree structure.

Figure 5. The refinement procedure of a two-dimensional tree-based AMR grid and the corresponding
quadtree structure. The purple lines and circles represent leaf nodes.

The present research used an extended AMR method based on the tree-based AMR
method with GPU implementation, as proposed by Matsushita and Aoki [20]. In this
method, the grid is recursively refined based on a certain criterion:

min(|ψm|) <
√

3× dhn+1 × b (56)

where m represents the ID of the leaf, n represents the depth of the leaf m, and b is the
number of cells in one direction in one leaf. In the present research, the value of b was
4. According to Equation (56), simply speaking, the current leaf will be refined if the
minimum distance shown by the level set in a leaf is less than the diagonal block length of
its child leaf.

To avoid complex implementation between leaves at different levels and to ensure
numerical stability, the level difference between two adjacent leaves cannot be greater than
one. This is called the 2:1 balance.

In the GPU implementation of the tree-based AMR method proposed by Matsushita
and Aoki [20], there are 42 cells on a leaf. Since the WENO scheme accesses up to two
neighboring points, while doing stencil computations, a (4 + 2× halo)2 shared memory is
prepared, as shown in Figure 6. The data in the white-colored area are directly accessed in
the global memory and copied to the stencil. The 4× 2 dataset in the X-direction neighbor
leaves (presented in light blue) is accessed and copied to the halo region of the stencil. The
2× 4 dataset in the Y-direction neighbor leaves (presented in light red) is accessed and
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copied to the halo region of the stencil. If there is an AMR level difference between leaves,
only one time refinement or coarsening is needed because of the 2:1 balance.

Figure 6. The construction of a 8× 8 stencil without a diagonal halo region in the shared memory.
The white cells represent 4× 4 leaf cells in a leaf node. The light blue cells represent the halo cells of
the stencil taken from the X+ and X− directions. The light red cells represent the halo cells of the
stencil taken from the Y+ and Y− directions. The light and deep gray cells are not accessed in an
8× 8 stencil without a diagonal halo region.

This again shows the significance of the 2:1 balance, which makes the implementation
less complex. The neighbor leaves in the diagonal directions (shown in light gray) are not
accessed, so the values stored in the diagonal halo region cells cannot be accessed.

In the present research, the reconstruction of the interface with the MYC scheme
requires a 3× 3 stencil that includes neighbor cells in diagonal directions. The HF method
requires an even larger 3× 7 or 7× 3 stencil. The 8× 8 stencil without a diagonal halo
region is not sufficient for such computations. Thus, we propose an extended 12× 12 stencil
with a diagonal halo region to satisfy the stencil requirements of the MYC scheme and the
HF method, as shown in Figure 7. For the halo region in each direction, a 4× 4 dataset is
accessed and copied from the corresponding neighbor leaf. The diagonal neighbor leaves
shown in light green are accessed in a ’neighbor of neighbor’ way. Since the MYC scheme
and HF method are only used near to the interface to calculate the interface’s normal vector
and curvature, the 12× 12 stencil is only used in these two computations. Additionally,
since the AMR grid is interface-adapted, most refined meshes gather near the interface
where there is no level difference. Thus, there is only access to diagonal neighbor leaves
when the level difference is 0. This helps to reduce the need for computational resources,
so the performance is not greatly compromised.
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Figure 7. The construction of a 12× 12 stencil with diagonal halo region in the shared memory. The
white cells represent 4× 4 leaf cells in a leaf node. The light blue cells represent the halo cells of the
stencil taken from the X+ and X− directions. The light red cells represent the halo cells of the stencil
taken from the Y+ and Y− directions. The light green cells represent the diagonal halo cells of the
stencil taken from diagonal directions in a ’neighbor of neighbor’ way.

5. Numerical Results
5.1. Two-Dimensional Time-Reversed VOF Advection in a Single Vortex

A two-dimensional single vortex interface deformation simulation [48] is a computa-
tional model that can be used to test the accuracy of an interface-capturing method. In this
simulation, a single vortex velocity field is designated in a fluid, and the interface between
two phases is tracked as the vortex deforms the interface.

The size of the computational domain is [0, 1]× [0, 1]. A circular interface with a radius
of 0.2 is set at the initial position (0.5, 0.75), and advection is performed according to the
stream function expressed by the following equation:

Ψ(t, x, y) =
1
π

sin2(πx) sin2(πy) cos
(

πt
T

)
(57)

The velocity field is derived from the stream function, as follows:

u(x, y, t) =
∂Ψ
∂y

= 2 sin2(πx) sin(πy) cos(πy) cos
(

πt
T

)
(58)

v(x, y, t) = −∂Ψ
∂x

= −2 sin(πx) cos(πx) sin2(πy) cos
(

πt
T

)
(59)

Here, T is the period, which was set as 8.0 in the present research.
The interface is stretched by the flow field until t = T

2 , and from t = T
2 , the reverted

velocity field is restored to its initial shape at t = T. In this calculation, T = 8.0 and the time
step is set in accordance with the finest mesh size ∆t = 0.1∆x. As described in Section 3.4,
the time step ∆t in the weakly compressible scheme is mainly dominated by the speed
of sound, whereas in the VOF advection calculation, the time step is dominated by the
advection velocity field. A value of ∆t = 0.1∆x is sufficiently small with respect to the
flow velocity.

In the present research, an interface-adapted AMR method was used. The fine mesh
was gathered near the interface according to the level set, which is defined as a signed
distance function of the interface. As shown in Figure 8, the initial tree node was 16× 16



Appl. Sci. 2023, 13, 1955 16 of 33

in size, and there were 4 cells in one direction on a leaf node. Thus, the initial resolution
was 64× 64. The finest resolution can be set by the maximum AMR refinement level.
Two maximum levels were set at 2 and 3 with the finest resolutions being 256× 256 and
512× 512, respectively.

(a) (b)

(c) (d)

Figure 8. Interface deformation in a 2D single vortex. The reconstructed interface is shown as a black
line and the AMR grid is shown as a light gray line. The maximum AMR level and finest resolution
of (a) and (b) are 2 and 256× 256, respectively. The maximum AMR level and finest resolution of
(c) and (d) are 3 and 512× 512, respectively. (a) t = T

2 , finest resolution 256× 256. (b) t = T, finest
resolution 256× 256. (c) t = T

2 , finest resolution 512× 512. (d) t = T, finest resolution 512× 512.

The volume fraction φ inside the circle was set as 1.0, and the volume fraction outside
the circle was set as 0.0 when t = 0. The total volume fraction inside the circle can be
defined as

V(t) =
∫

Ω(t)inside

1dxdy (60)

where Ωinside indicates the region for φ > 0.5.
V0 is the initial total volume fraction when t = 0. An relative error function ε(t) is

proposed to measure the volume conservation quantitatively, as follows:

ε(t) =
V(t)−V0

V0
(61)
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The relative error is less than 10−14 during the simulations for both cases, which shows
that the method allows for good conservation of the volume fraction.

On a uniform mesh, to achieve resolutions of 256× 256 and 512× 512, 65,536 and
262,144 cells are needed, respectively. In the present research, the AMR method was used to
reduce the number of cells needed in the simulation. As shown in Figure 9, the maximum
cell numbers during the simulation were 38,032 and 98,272, respectively. The AMR method
reduced the cell number by more than 41.7% and 62.3%, respectively. This shows that
the present method allows good conservation and can greatly reduce the computational
memory that is required for simulations.

Figure 9. Time evolution of the total cell number on the AMR grid. Maximum AMR refinement level
2 with a finest resolution of 256× 256 is shown in blue, and maximum AMR level 3 with a finest
resolution of 512× 512 is shown in pink.

5.2. Two-Dimensional Single Rising Bubble

To verify the accuracy of the proposed AMR-PLIC-HF method and the ability to solve
two-phase flows, a two-dimensional rising bubble problem was simulated as a benchmark
test. This is a typical benchmark test for two-phase flow methods [13,49–51], because
gravity and surface tension need to be taken into consideration.

In the simulation, as illustrated by Figure 10, the size of the computational domain
was [0, 1]× [0, 2]. There was a circular bubble with a diameter of D = 0.5 whose center was
located at (0.5, 0.5). It consisted of light fluid and was surrounded by heavy fluid. It was
at rest at the beginning of the simulation. The upper and lower walls were non-slip walls,
while the left and right walls were free-slip walls. Gravitational acceleration was applied
towards the negative Y direction. Surface tension existed on the interface between light
and heavy fluids.

Two different sets of physical properties were tested as case A and case B, as shown in
Table 1. Two different AMR grids were used to simulate both cases. The initial tree node
was 4× 8, so the initial resolution was 16× 32. For maximum AMR refinement levels 4
and 5, the finest resolutions were 256× 512 and 512× 1024.

One NVIDIA GeForce RTX 3080 GPU and one 12-core 2.1MHz Intel Core i7-12700F
CPU were used in the current simulation.
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Figure 10. A schematic diagram of the two-dimensional rising bubble problem as a benchmark test.
The region in light blue is occupied by heavy fluid and the region in white is occupied by light fluid.

Table 1. Physical properties of the two-dimensional rising bubble problem.

Case ρheavy ρlight µheavy µlight g σ

Case A 1000.0 100.0 10.0 1.0 0.98 24.5
Case B 1000.0 1.0 10.0 0.1 0.98 1.96

A typical velocity was chosen, U = 0.5, and to make sure that the low Mach number
condition was satisfied during the simulation, an initial Mach number of Ma = 0.03 was set.
The speed of sound was constant in this simulation and was set according to Equation (3) as

cs =
U

Ma
=

0.5
0.03

' 16.67 (62)

Since the computational domain was enclosed by walls and Neumann boundary
conditions were applied for pressure at all the walls, the acoustic waves could easily be
reflected and were hard to dampen. The acoustic sound waves caused obvious oscillations
in the bubble rising velocity. In order to avoid the impact on the initial pressure field, for
both simulations and AMR settings, the following pressure Poisson equation is solved by
the red-black successive over-relaxation (SOR) method in the first five time steps:

∇ ·
(

1
ρ
∇p
)
=
∇ · u

∆t
(63)

The convergence criterion of the pressure Poisson equation is∣∣∣∣∇ ·(1
ρ
∇p
)
− ∇ · u

∆t

∣∣∣∣ ≤ 10−7 (64)

Since the pressure Poisson equation was only solved in the first five time steps, the
influence on the overall computational performance was negligible. The evolving pressure
projection method [30] was also introduced to the present simulations with 10 iterations in
every time step.
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The shapes of the interface at t = 3.0 in case A and case B with AMR grids with
different of maximum AMR refinement levels are shown in Figure 11. In case A, both AMR
grids generated similar shapes. In case B, the higher resolution AMR grid gave a result
with better agreement with [49].

(a) (b)

Figure 11. The shape of the interface in the two-dimensional rising bubble simulation, t = 3. The
red line indicates the results of the AMR grid with a finest resolution of 256× 512 and the black line
indicates the results of the AMR grid with a finest resolution of 512× 1024. (a) Case A. (b) Case B.

To analyze the results given by the present method quantitatively, two parameters
were introduced into the present research: the Y coordinate of the center of mass of the
bubble and the rising velocity v of the bubble. They are defined in the following equations:

yc =

∫
Ωlight

ydΩ∫
Ωlight

1dΩ
(65)

vrising =

∫
Ωlight

vdΩ∫
Ωlight

1dΩ
(66)

where Ωlight indicates the region occupied by light fluid, and the volume fraction is φ < 0.5.
The evolution of the Y coordinate of the center of mass and the rising velocity given

by the present method were compared with other incompressible two-phase solvers [49],
including TP2D [39,52], FreeLIFE [53], and MooNMD [54].

Figure 12 shows the center of mass of the bubble given by the present method and the
reference. In both case A and case B, the low- and high-resolution AMR grids gave similar
results and were in good agreement with the reference.
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(a) (b)

Figure 12. The evolution of the center of mass of the bubble compared with the reference results
presented by Hysing et al. [49] for the two-dimensional rising bubble problem. The colors of the
references indicate the results achieved with TP2D (solid red), FreeLIFE (solid green), and MooNMD
(solid blue), as well as the 256× 512 (solid black) grid and the 512× 1024 (dashed pink) grid. (a) Case
A. (b) Case B.

Figure 13 shows the rising velocity of the bubble given by the present method and the
reference. In case A, the low- and high- resolution AMR grids gave similar results. In case
B, the high-resolution AMR grid had better agreement with the reference. The oscillation
of the rising velocity was suppressed well by the solving pressure Poisson equation in the
first five time steps and the pressure projection method. By using the PLIC-HF method
in the simulations carried out in the current research, the spurious current was greatly
suppressed, as was reported in Ref. [19]. This benchmark test verifies that our method
has the ability to solve weakly compressible fluid flow problems and has good numerical
accuracy.

(a) (b)

Figure 13. The evolution of the rising velocity of the bubble compared with the reference results
presented by Hysing et al. [49] for the two-dimensional rising bubble problem. The colors of the
references indicate the results achieved with TP2D (solid red), FreeLIFE (solid green), and MooNMD
(solid blue), as well as the 256× 512 (solid black) and 512× 1024 (dashed pink) grids. (a) Case A.
(b) Case B.

As shown in Table 2, by using the present tree-based interface-adaptive AMR method,
the required memory can be reduced by over 50%, which can reduce the computational
resource requirement while improving the efficiency of conventional methods. All simu-
lations in this section were completed within 10,000 s by CUDA programming and GPU
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parallel computing, while the reference paper [49] reported that a CPU time of more than
10 times longer was needed for a similar mesh resolution. The computational resource
requirements, including the execution time and memory, were reduced by GPU parallel
computing and the AMR method.

Table 2. Number of cells on a uniform mesh and maximum number of cells on different AMR grids.

Case Number of Cells on
Uniform Mesh

Maximum Number
of Cells on Finest

256 × 512 AMR Grid

Maximum Number
of Cells on Finest
512× 1024 AMR

Grid

Case A 131,072 21,728 43,328
Case B 524,288 29,696 62,432

5.3. Liquid Film Generation and Rupture by a Single Bubble Rising to the Interface

Thin liquid film generation and rupture by a single bubble freely rising to an interface
was simulated by a weakly compressible scheme with a pressure projection equation, the
PLIC-HF method, and the Langmuir model. The initial geometrical settings, including the
size of the computational domain, the size of the bubble, and the position of the bubble in
Section 5.2 were used. A horizontal interface between the heavy and light phases was set
at the center of the computational domain where y = 1.0, as illustrated by Figure 14.

Figure 14. A schematic diagram of liquid film generation and rupture simulation by a single bubble
freely rising to an interface. The region presented in light blue is occupied by heavy fluid and the
region presented in white is occupied by light fluid.

Surfactant transport was calculated in the present simulation by using the Langmuir
model. The surface tension coefficient σ changes accordingly to the interface concentration f
of the surfactant and causes the Marangoni effect. The physical properties of the surfactant
in terms of adsorption and desorption were set in accordance with Triton X-100 [55], as
shown in Table 3.
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Table 3. Physical properties as a soluble surfactant of Triton X-100.

Surfactant kad
[
m3/(mol · s)

]
β
[
mol/m3] flim

[
mol/m2] kde

[
s−1]

Triton X100 50.0 6.6× 10−4 2.9× 10−6 0.033

The Langmuir number La is a dimensionless number that expresses the ease of des-
orption of a surfactant. It is typically defined as

La =
Fkad
kde

(67)

where kad is the adsorption rate coefficient, and kde is the desorption rate coefficient.
It is a measure of the overall equilibrium between adsorption and desorption for the

surfactant at the liquid surface, and it is typically used in the study of surfactant adsorption
and desorption at the surface of a liquid.

A high Langmuir number indicates that the adsorption rate of the surfactant is domi-
nant over the desorption rate, meaning that the surfactant tends to adsorb onto the surface
of the liquid and remain there. In contrast, a low Langmuir number indicates that the
desorption rate is dominant over the adsorption rate, meaning that the surfactant tends to
desorb from the surface and enter the bulk of the liquid.

The surfactant Triton X-100, whose properties were used in the present research, has a
relatively high adsorption rate coefficient to desorption rate coefficient ratio, kad

kde
= 50.

Cases with a Langmuir number of La = 15 were simulated. According to Equation (67),
with a Langmuir number of La = 15, the initial bulk concentration of the surfactant is
F0 = 1.0× 10−2.

The interface concentration on the initial interface f0 was set to the concentration in
the equilibrium state, where j = 0 in Equations (20) and (21). From Equation (22), when
j = 0,

j = kadF( flim − f )− kde f = 0. (68)

Therefore, in the beginning of the simulation when t = 0,

f =
kad · F · flim
kde + kad · F

(69)

The saturation concentration on the interface was flim = 2.9× 10−6. Since the Lang-
muir number was La = 15, the equilibrium concentration on the initial interface was
2.72× 10−6, which is 93% of flim.

Physically, it was assumed that the bubbles were contaminated in a stationary state
for a long time. By setting the initial interface concentration of the bubble surface to the
equilibrium state, adsorption could easily proceed, and the interface concentration quickly
approached the saturation concentration [56]. Therefore, according to Equation (26), the
gradient of the surface tension coefficient became steep, the Marangoni effect worked
strongly, and the shape of the bubble smoothed.

The AMR method was used in the simulations. The initial tree node was set as
4× 8, so the initial resolution was 16× 32. The maximum AMR refinement level was set
as 6. Thus, the finest resolution was 1024× 2048, with the minimum resolution being
∆h = 9.7656× 10−4.

An NVIDIA V100 GPU mounted on the Flow Type II supercomputer of the Informa-
tion Technology Center of Nagoya University and a NVIDIA P100 GPU mounted on the
TSUBAME 3.0 supercomputer of The Global Scientific Information and Computing Center
of Tokyo Institute of Technology were used in the simulation.

The volume fraction profile during the rising of the bubble and the generation of the
liquid film is shown in Figure 15. When the bubble started to rise, the bottom of the bubble
became flat. At around t = 2.0, the upper part of the interface of the bubble approached



Appl. Sci. 2023, 13, 1955 23 of 33

the horizontal interface between the heavy fluid and light fluid. As the bubble continued to
rise, the liquid layer over the bubble became thinner. After t = 5.0, with the drainage of the
upper liquid layer, a thin liquid film was generated. The thin liquid film was kept stable
until around t = 11.0. Since the present simulation used the PLIC-HF method, the influence
of spurious current on the liquid film was greatly suppressed. Under the influence of
gravity, drainage continued and the thickness of the thin liquid film gradually decreased.
When the thickness of the thin liquid film reached a lower limit, rupture occurred on the
liquid film at t = 11.11.

(a)

(b)

Figure 15. Volume fraction profile for the bubble rising to an interface starting from the contaminated
state and forming liquid film in surfactant solution with a Langmuir number of La = 15, from t = 1.0
to t = 12.0. The region presented in red contains heavy fluid and the region presented in blue contains
light fluid. AMR leaves are shown as light gray lines. (a) Volume fraction profile for the bubble rising
to an interface starting from the contaminated state and forming a liquid film in surfactant solution,
La = 15, from t = 1.0 to t = 6.0. (b) Volume fraction profile for the bubble rising to an interface
starting from the contaminated state and forming liquid film in surfactant solution, La = 15, from
t = 7.0 to t = 12.0.

Figure 16 shows the detailed volume fraction profile and the behavior of the liquid
rim during the rupture of the liquid film from t = 11.13 to t = 11.27 with an interval of
∆t = 0.02. As illustrated by Figure 16, when the rupture occurs, a moving liquid rim is
generated at that place. The generation of the liquid rim on the left is shown by Figure 16a
at t = 11.13 and the generation of the liquid rim on the right is shown by Figure 16c at
t = 11.17. In the present two-dimensional simulation, the rim moved as droplets on the
edges of the liquid film. The moving liquid rim swept the liquid film in its path at a higher
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speed than the typical velocity. This process can be observed from t = 11.17 to t = 11.25.
The typical velocity of the simulation was U = 0.5, and the maximum velocity of the liquid
rim was Umax = 3.6, more than 7 times the typical velocity. The speed of sound cs reduced
during the rupture of the liquid film, allowing a low Mach number to be maintained to
keep the flow weakly compressible.

(a) t = 11.13 (b) t = 11.15

(c) t = 11.17 (d) t = 11.19

(e) t = 11.21 (f) t = 11.23

Figure 16. Cont.
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(g) t = 11.25 (h) t = 11.27

Figure 16. Volume fraction profile focused on the liquid film area during the rupture process of the
liquid film in surfactant solution with a Langmuir number of La = 15 from t = 11.13 to t = 11.27 with
an interval of ∆t = 0.02. The region presented in red contains heavy fluid, and the region presented
in blue contains light fluid. The AMR leaves are shown as light grey lines.

Shortly after the rupture, the liquid rim adsorbed most of the liquid on the liquid film.
As observed from t = 11.17 to t = 11.25, the size of the liquid rim became larger and larger
during the sweeping of its path. As time progressed, the liquid rim gradually accelerated,
and not all liquid on the film was adsorbed by the rim. Some of the liquid splashed and
formed small droplets, as shown from t = 11.21 to t = 11.25.

This process continued until the whole liquid film forming the soap bubble was broken
into droplets, as shown in Figure 16h at t = 11.27. The movement of the liquid rim after the
rupture of the thin liquid film is in good agreement with the results obtained by experiments
reported by Pandit and Davidson [57].

Figure 17 illustrates the profile of the interface concentration of the surfactant f in the
interface region where the volume fraction was 0.05 < φ < 0.95. As shown in Figure 17, at
the upper part of the interface of the bubble, the interface concentration of the surfactant
f decreased due to the flow of the fluid. As a result, the interface concentration of the
surfactant f decreased on the upper side of the liquid film. The surface tension coefficient
σ( f ) decreased to a lesser degree. At the lower part of the interface of the bubble, adsorption
occurred, so the interface concentration of the surfactant increased. The surface tension
coefficient σ( f ) decreased sharply and became much smaller than in the upper part of
the bubble interface. This adsorption–desorption tendency agrees well with the results of
previous studies conducted by Takagi [58] using an incompressible solver.

The progress of adsorption with a surfactant such as Triton X-100 is strong. Even with
a small initial bulk concentration F0, the maximum interface concentration fmax gets close
to the saturation concentration while the bubble is rising.

After the liquid film was generated, the lower surface of the thin liquid film collided
with the upper surface of the ascending bubble, so desorption occurred during the ascend-
ing movement, and the interface concentration of the surfactant f became smaller than that
of the upper surface of the liquid film.
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(a)

(b)

Figure 17. Interface concentration profile for the bubble rising to an interface starting from the
contaminated state and forming liquid film in surfactant solution, La = 15, from t = 1.0 to t = 12.0.
The color legend ranges from f = 0 to a saturation concentration of f = 2.9× 10−6. (a) Interface
concentration profile for the bubble rising to an interface starting from the contaminated state and
forming liquid film in the surfactant solution, La = 15, from t = 1.0 to t = 6.0. (b) Interface
concentration profile for the bubble rising to an interface starting from the contaminated state and
forming liquid film in surfactant solution, La = 15, from t = 7.0 to t = 12.0.

On the interfaces of the liquid film, as shown in Figure 17, the interface concentration f
was the lowest on the top part of the interface of the liquid film. The interface concentration
f increased as the distance increased from the center of the liquid film to the left and the
right. This distribution is thought to be due to the downward transport of the surfactant
by gravity.

Marangoni convection occurred in the direction tangential to the interface to restore
this interface concentration gradient, and it is thought that a force acts in the direction
opposite to the collapse of the liquid film due to gravity and in the direction that stabi-
lizes the liquid film. In addition, as can be seen from Equation (26), the surface tension
coefficient decreased when the interface concentration of the surfactant f approached the
saturation concentration.

Figure 18 shows the interface concentration profile during the liquid film rupture pro-
cess from t = 11.13 to t = 11.27 with an interval of ∆t = 0.02 when the Langmuir number
was La = 15. It was observed that the upper rim on the left side had a later generation time.
It was observed that, during the rupture process, the interface concentration was low at the
point at which the rupture occurred, while the interface concentration was relatively high



Appl. Sci. 2023, 13, 1955 27 of 33

at the top of the interface concentration. This distribution can be explained by the motion
of the liquid forming the liquid film. Due to the gradient of the interface concentration, the
surface tension coefficient σ was low on the top and high on the left side.

(a) t = 11.13 (b) t = 11.15

(c) t = 11.17 (d) t = 11.19

(e) t = 11.21 (f) t = 11.23

Figure 18. Cont.
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(g) t = 11.25 (h) t = 11.27

Figure 18. Interface concentration profile focused on the liquid film area during the liquid film rupture
process in surfactant solution with a Langmuir number of La = 15, from t = 11.13 to t = 11.27,
with an interval of ∆t = 0.02. The color legend ranges from f = 0 to a saturation concentration of
f = 2.9× 10−6.

The Marangoni effect generated tangential surface tension from the top of the liquid
film that was directed toward the left side, making it harder for the liquid rim to form and
sweep the liquid film. When the liquid rim on the right side swept the liquid film, the
interface surfactant absorbed to the interface of the liquid rim. The interface concentration
was relatively higher and closer to the saturation concentration on the interface of the liquid
rim. The Marangoni effect generates tangential surface tension. This tangential surface
tension accelerates the motion of the liquid rim and makes the velocity much higher than
the typical velocity of the bubble rising process.

The results of the simulation verify the mechanism of liquid film stability. The interface
concentration has unique distribution characteristics, whereby it is lower at the center top
of the liquid film and higher at both sides at the bottom. The gradient of the interface
concentration and the Marangoni effect generate tangential surface tension in a direction
that is opposed to gravity, making the liquid film unstable. This contributes to the stability
of liquid film.

6. Discussion

In this paper, a two-phase flow solver was proposed to simulate the motion of thin
liquid film. The Weakly Compressible Scheme (WCS) was introduced as a fluid solver.

In the WCS, the evolution of pressure is fully explicit, so the semi-implicit iterative
calculation of the pressure Poisson equation, which sometimes brings numerical instability
to the simulation, can be avoided. A evolving pressure projection method was used in the
current simulation to suppress the oscillation of velocity by acoustic waves that are easily
reflected by Neumann boundaries and are hard to dampen.

The Piece-wise Linear Interface Calculation (PLIC) based on the Volume of Fluid (VOF)
method was used as the interface-capturing method in the present study’s simulation. The
curvature of the interface was calculated in a straightforward manner using the Height
Function (HF) method. The PLIC-HF has the advantage of suppressing spurious currents
in two-phase flow simulations. For the solver described in the current study, the PLIC
and HF method were implemented on an AMR mesh with GPU parallel computing based
on CUDA programming language and NVIDIA GPU. The time efficiency was obvious
compared with traditional CPU programs.

An extended stencil computation on an AMR grid including neighbor leaves in diago-
nal directions was proposed and implemented to provide the stencil points required by the
PLIC-HF method. A ‘Neighbor of Neighbor’ method to access diagonal neighbor leaves
was proposed and implemented.
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The Langmuir model was implemented in the present study’s solver to calculate the
transport of the soluble surfactant. The surface tension coefficient was not a constant in the
present study’s simulations. A variable σ( f ) was adopted. The variable changed according
to the interface concentration of the surfactant.

• The results shown in Section 5.1 verify the accuracy and efficiency of the presented
PLIC-VOF method on AMR mesh. The conservation in the results is satisfactory,
which indicates that the implementation of the AMR mesh is valid. The number of
cells and the required memory are reduced with the AMR method, which decreases
the execution time and the computer cost;

• The results shown in Section 5.2 verify the accuracy and ability of the two-phase solver.
The accuracy of the weakly compressible solver is shown by its good agreement with
references for the center of mass and the rising velocity of the bubble;

• Section 5.3 describes a simulation of the generation of liquid film by a single bubble
rising to a horizontal interface and the rupture process of that liquid film with surfac-
tant transport and the Marangoni effect. The motion of the liquid rim after the rupture
of the liquid film observed in the present study’s simulation showed good agreement
with the results of previous experiments, which indicates the accuracy of this method
and its potential for use in further simulations of multi-scale problems.

The present study’s method can be extended to three dimensions in a straightforward
manner. With the Message Passing Interface (MPI), multiple GPUs can be connected and
used for a large-scale three-dimensional simulation. The Immersed Boundary Method
(IBM) can be implemented for simulations with more complex geometries.

7. Conclusions

In conclusion, the PLIC-HF method was applied to a tree-based interface-adaptive
AMR mesh and used to simulate the generation and rupture of thin liquid film. It was used
along with the WCS and the evolving pressure projection method as a fluid solver. The
mathematical description of the solver and numerical methods are explained in Section 2
and Section 3, respectively. The accuracy and efficiency of the solver were verified by
benchmark tests including the single vortex flow and single bubble rising. The processes of
liquid film generation and rupture with surfactant transport and the Marangoni effect were
directly simulated. The behavior of the liquid rim formed after rupture in the simulation
showed good agreement with the results of previous experiments.

Author Contributions: Conceptualization, T.L.; methodology, T.L. and S.M.; software, T.L. and S.M.;
validation, T.L. and S.M.; writing—original draft preparation, T.L.; writing—review and editing, S.M.
and T.A.; visualization, T.L.; supervision, T.A.; project administration, T.A.; funding acquisition, T.L.
and T.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partly supported by a Grant-in-Aid for Scientific Research (S) 19H05613
from the Japan Society for the Promotion Science (JSPS), the Joint/Research Center for Interdisci-
plinary Large-scale Information Infrastructures (JHPCN), jh200018 and jh210013, High Performance
Computing Infrastructure (HPCI) hp210129 projects, and JST SPRING under grant number JP-
MJSP2106.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge the financial support received from
the Grant-in-Aid for Scientific Research (S) 19H05613, Japan Society for the Promotion Science
(JSPS), Joint/Research Center for Interdisciplinary Large-scale Information Infrastructures (JHPCN),
jh200018 and jh210013, High Performance Computing Infrastructure (HPCI) hp210129 projects, and
JST SPRING under grant number JPMJSP210. The authors thank the Global Scientific Information
and Computing Center, Tokyo Institute of Technology for the use of the TSUBAME 3.0 supercom-
puter and the Information Technology Center of Nagoya University for the use of the Flow Type II



Appl. Sci. 2023, 13, 1955 30 of 33

supercomputer. The authors would like to thank Kai Yang from the Tokyo Institute of Technology for
his help with the programming and implementation of the PLIC-HF method.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
2D two-dimension
AMR Adaptive Mesh Refinement
CPU Central Processing Unit
FreeLIFE Free-surface LIbrary of Finite Element
GPU Graphics Processing Unit
HF Height Function
HJ Hamilton-Jacobi
IBM Immersed Boundary method
LS Level Set
MooNMD Mathematics and object-oriented Numerics in MagDeburg
MPI Message Passing Interface
MYC Mixed Youngs-Centered
NS Navier–Stokes
PF Phase Field
PLIC Piece-wise Linear Interface Calculation
SOR Successive Over-Relaxation
SSP-RK Strong Stability-Preserving Runge–Kutta
TP2D Transport Phenomena in 2D
VOF Volume of Fluid
WCS Weakly Compressible Scheme
WENO weighted essentially non-oscillatory
Nomenclature
cc color function on cell center
cs sound speed
c(x) color function
D f interface diffusive coefficient
DF bulk diffusive coefficient
f interface concentration
flim saturation interface concentration
F bulk concentration
F external force
Fs f surface tension
Fg gravity force
Fnet volume flux across cell faces
H height function
i index on X-direction
j surfactant source term, index on Y-direction
kad adsorption rate coefficient
kde desorption rate coefficient
La Langmuir number
Ma Mach number
n normal vector
p pressure
R gas constant
t time
T temperature, period of single vortex flow
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u x-direction velocity component
U typical velocity
u velocity
v y-direction velocity component
V total volume fraction inside circle of single vortex flow
x coordinate
Greek Symbols
α PLIC constant
δ(ψ) delta function
ε relative error function of total volume of single vortex flow
ρ density
ρh density of heavy fluid
ρl density of light fluid
µ viscosity
µh viscosity of heavy fluid
µl viscosity of light fluid
τ virtual time step
τ viscous stress tensor
φ volume fraction
ψ level set
Ψ stream function of single vortex flow
σ surface tension coefficient
κ curvature
Ω computational volume
π the ratio of a circle’s circumference to its diameter
∇s gradient on the interface
∆x, ∆y, ∆h length of cell
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