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Abstract: The performance of deep neural networks (DNNs) critically relies on high-quality annota-
tions, while training DNNs with noisy labels remains challenging owing to their incredible capacity
to memorize the entire training set. In this work, we use two synchronously trained networks to
reveal that noisy labels may result in more divergent gradients when updating the parameters. To
overcome this, we propose a novel co-training framework named gradient agreement learning (GAL).
By dynamically evaluating the gradient agreement coefficient of every pair of parameters from two
identical DNNs to determine whether to update them in the training process. GAL can effectively
hinder the memorization of noisy labels. Furthermore, we utilize the pseudo labels produced by the
two DNNs as the supervision for the training of another network, thereby gaining further improve-
ment by correcting some noisy labels while overcoming the confirmation bias. Extensive experiments
on various benchmark datasets demonstrate the superiority of the proposed GAL.

Keywords: noisy labeled data; robust learning; gradient methods; image classification

1. Introduction

The performance of deep neural networks (DNNs) still largely depends on the quality
of annotations despite the tremendous success they have achieved in a variety of visual
tasks. There is a series of works on the learning mechanism of DNNs with noisy labels [1–3].
It is observed in [3] that DNNs are able to perfectly fit a randomly labeled training set owing
to their strong memorization ability. When trained on a noisy dataset, the generalization
performances of DNNs decrease sharply [2,4], due to overfitting of noisy labels. However,
the accurate labeling of large scale datasets is almost impractical [5]. On one hand, it is
extremely time consuming and costly to obtain high-quality labels for large scale datasets.
Researchers tend to collect data and the labels automatically using social media or online
search engines as a cheaper alternative, which inevitably introduces noisy labels. On the
other hand, annotators need specific expertise to label some datasets (e.g., medical or
agricultural datasets), which will easily produce incorrect labels caused by variability in
the labeling by several annotators.

Therefore, noisy label learning has attracted increasing research interest in recent
years [6–18]. Recent studies have demonstrated that co-training is conducive to noisy label
learning. To hinder the memorization of noisy labels, MentorNet [6] trains a student net-
work by feeding in small-loss samples selected by a teacher model because the prediction
loss of true-labeled samples tends to be smaller than that of noisy samples [1]. Decou-
pling [7] trains two DNNs and only uses samples with divergent predictions from the two
models to update them. Each network in Co-teaching [8] provides small-loss samples to
the other. Co-teaching+ [9] gains further improvement by only selecting small-loss samples
from those with different prediction labels from two models. By excluding samples with
low certainty of being clean from the training, these methods can effectively avoid overfit-
ting of mislabeled samples, yet they are criticized for leaving a large part of the training
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dataset unused. JoCoR [10] jointly trains two networks using a joint loss consisting of cross
entropy losses from each model and a KL-Divergence loss [19] measuring the distance of
the two prediction logits. Co-learning [11] trains a shared feature encoder using a noisy
label supervised classifier head along with a self-supervised projection head.

The two parallelly trained models in the above methods will gradually become in
agreement with each other in the training process. With the constraining of KL-Divergence
loss, JoCoR archives agreement on model predictions while Co-learning maximizes the
agreement in latent space. In this study, we innovatively propose to alleviate the memo-
rization of noisy labels by utilizing agreements on parameter gradients.

First, we conduct contrast experiments to explore how noisy labels affect the training
process of DNNs. We train two identical networks with the same initialization. A gra-
dient agreement coefficient is designed to evaluate whether the updating directions of
two corresponding parameters from the two networks agree at every gradient descent
step. Figure 1 presents the proportion of parameters that achieve agreements among all
parameters under different levels of label noise on CIFAR-10. In every batch of the warm
up period, the two networks are trained on exactly same input data. Therefore, as shown,
the gradient direction of all parameter pairs are in total agreement. After that, we feed
data with same class distributions but not consists of same samples to each network in
every batch. As Figure 1 illustrates, the agreement ratio gradually decreases and finally
reaches convergence. The higher the noisy rate is, the lower final agreement ratio becomes.
While the decreases of agreement ratio occurring on original CIFAR-10 are mainly resulted
by intra-class variance, the significant drops of final agreement ratios on other settings
are obviously caused by noisy labels, indicating that noisy labels may result in divergent
gradient directions in the late stage of training, which ultimately degrades the generation
abilities of DNNs.

Figure 1. Experiments of gradient agreement using a pair of identical networks. We define parameters
whose gradient directions achieve agreements with corresponding parameters from the other network
as clean parameters. Agreement Ratio refers to the proportion of clean parameters among the whole
network. The four curves depict, from left to right, the trend of agreement ratios in the whole training
process under origin CIFAR-10 and CIFAR-10 with 20%, 50%, 80% noisy labels. X-axis is the number
of iterations. In every batch of the early training period, the two nets are trained on exactly same
input data. Therefore, the gradient direction of all parameter pairs are in total agreement. Later,
batches with same class distributions but not consists of same samples are fed into each network
respectively and the agreement ratio gradually decreases.
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This phenomenon inspires us to hinder the memorization of noisy labels by identifying
divergent gradient directions. However, besides noisy labels, there are several factors
which will result in divergence of gradient directions, including different initialization
and different class distribution of input samples. To distinguish the divergences caused
by noisy labels, we need to eliminate the impact of other factors. Naturally, we propose
a novel gradient agreement learning framework (GAL for short). GAL synchronously
trains two identical networks with same initialization to avoid the gradient divergence
caused by different initialization. Moreover, we propose class distribution agreement
sampling strategy to ensure the samples input to the two networks in each iteration
share same distribution of annotation classes while avoiding them being identical, thus
eliminating the gradient divergence caused by different class distribution of input samples.
Therefore, by excluding divergent gradient updates after the warm up steps, GAL can
effectively prevent networks from memorizing noisy samples. Then, in every epoch, we
use the prediction results of the two networks as pseudo-labels to supervise the training
of a third net. In this way, we can rectify noisy labels while avoiding the accumulated
confirmation biases.

Compared with previous co-training methods, GAL trains models on the entire train-
ing set and gains additional information from hard or noisy samples which have a great pos-
sibility not to be selected by small-loss methods such as Co-teaching+. Moreover, by seeking
agreement on gradient directions, GAL still allows divergence on the final predictions from
the two nets, thus obtaining more significant improvements from model ensembling.

In summary, the contributions of this paper is threefold:

• Contrast experiments show that noisy labels may cause more divergent gradients in
the late stage of training.

• We propose a simple yet effective gradient agreement learning framework that effec-
tively hinders the memorization of noisy labels.

• Extensive experiments show the effectiveness and robustness of GAL under different
ratios and types of noise, outperforming previous methods.

2. Related Work

We briefly introduce existing literature on noisy label learning in this section.
Regularization. Regularization methods are widely used in the literature and are

proved to be able to upgrade the generalization abilities of deep learning models. Recent
studies [12–18] have proposed various regularization methods to prevent the memorization
of noisy labels. Menon [15] design a new approach to clip gradients, which is robustness
to noisy labels. Robust early-learning [16] dynamically divides parameters into critical
and non-critical ones based on their importance for the learning of clean labels. Then
different update strategies are applied to the two groups of parameters to avoid overfitting.
However, noise rate is needed to divide the parameters, which is not available in real
world cases. ELR [17] proposes an noise robust regularization term to steer models towards
label probabilities produced based on model outputs. Label Smoothing [18] is a technique
to train models with an estimated label distribution instead of the one-hot label, thereby
hindering the memorization of noisy labels.

Co-training Methods. Recently, kinds of co-training methods for noisy label learn-
ing have been developed by researchers. Decoupling [7] proposes the “disagreement”
strategy, only updating two simultaneously trained models based on samples with diver-
gent predictions from the two networks. MentorNet [6] trains a student network using
small-loss samples selected by a cooperating teacher model. Co-teaching [8] parallelly
trains a pair of networks and updates them with small-loss samples selected by the peers.
Co-teaching+ [9] then introduce the “disagreement” strategy into the training process of
Co-teaching. In contrast, JoCoR [10] proposes to select confident samples with agreed pre-
dictions. Co-learning [11] tries to introduce more views of training data by training a shared
feature encoder using a noisy label supervised classifier head along with a self-supervised
projection head. By seeking agreements in latent space, models become tolerant to noisy
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labels. Different from previous co-teaching kind methods which select samples with small
loss yet leaving a large part of training set unused, the proposed GAL trains models on the
whole training set by only excluding parameters with disagreed gradients from updating
instead of excluding all the large loss samples, thereby benefiting from more supervisory
signals. Moreover, while the previous co-training methods either achieve agreement on
the output predictions (e.g., Co-teaching+ and JoCoR) or seek to maximize the agreement
in latent space (e.g., Co-learning), GAL seeks agreement on gradient directions of each
parameter pairs and still allows divergence on the final predictions from the two nets, thus
obtaining more benefits in test accuracy from model ensembling.

Semi-supervised and self-supervised learning. With the rapid developments in the
area of Semi-supervised [20] and Self-supervised learning [21], recent studies [22–26] have
leveraged these techniques in noisy label learning. DivideMix [24] categorizes training
samples into clean and noisy sets utilizing a two-component Gaussian Mixture Model [27].
Then semi-supervised learning is applied to train the networks by treating the clean set
and noisy set as labeled and unlabeled set respectively. MOIT+ [25] employs supervised
contrastive learning to pretrain the models. With the learned representations, samples are
divided into clean or noisy sets, after which semi-supervised learning is applied to train
a classifier. Sel-CL+ [26] utilizes the low-dimensional features pretrained with unsupervised
contrastive learning to select confident pairs of samples for the supervised contrastive
training of models, which enables the training of models to benefit from not only the
pairs with correct annotations, but also the pairs which are mislabeled from the same
class. Despite the promising classification accuracy achieved by these methods, their
improvements mainly owe to the strong abilities of semi-supervised and self-supervised
learning techniques which partly or completely ignore the annotation labels, thereby not
providing new approaches in how to hinder the memorization of noisy labels in supervised
learning. In contrast, the proposed method tries to alleviate the impact of noisy labels in
the context of supervised learning using the annotations as input.

3. Proposed Method

In this section, we introduce GAL, our proposed framework for noisy label learning,
in detail. We utilize a pair of identical network to distinguish noisy gradients and prevent
the memorization of noisy labels, thus upgrading the performance of the trained models.
The overview of GAL is illustrated in Figure 2. We propose a triplet network structure
(i.e., θA, θB and θC in Figure 2). To avoid divergence caused by different initialization,
θA and θB are two identical nets, while θC can be any classification network. At each
mini-batch after warm-up period, training samples with same class distribution are fed
into θA and θB. To hinder the memorization of noisy labels, for every pair of corresponding
parameters, we evaluate whether their gradient directions achieve agreement and only
update agreed parameters. To further improve the performance and avoid the accumulated
confirmation bias, at every epoch, the predictions of θA and θB on the training set are used
as pseudo labels to supervise the training of θC. In general, GAL consists of three parts:
class distribution agreement sampling, gradient agreement updating and pseudo-labels
supervising. The three components will be introduced in order in the following subsections.

3.1. Class Distribution Agreement Sampling

We present class distribution agreement sampling in this section. In order to avoid
gradient disagreement caused by different input data, the samples input to θA and θB
should share same class distribution in every iteration. However, if the samples are
identical, the gradient directions for all the parameters of θA and θB will be exactly the
same, resulting in failure to distinguish gradient disagreement caused by noisy labels. Thus,
we propose a class distribution agreement sampling strategy to ensure roughly the same
class distribution for the samples input to θA and θB in every batch while avoiding them
being identical.
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Figure 2. Overview of the proposed Gradient Agreement Learning (GAL) framework.

Let batches input to θA and θB in the nth iteration as X a
n = {(xa

i , ya
i )}bs

i=1 and X b
n =

{(xb
i , yb

i )}bs
i=1 with bs being the batch size. As Figure 3 presents, the sampling process is

repeated every four iterative steps. In the first iterative step, X a
n is randomly sampled

from the whole training set S with K annotation classes. Naturally, the annotated class
distribution Da

n of X a
n can be obtained:

Cj = {(ya
i == j)}bs

i=1;Da
n = {Cj}K

j=1 (1)

where Cj represents the number of samples belonging to class j in X a
n . Then X b

n is formed
by randomly sampling Cj instances for every class j in Da

n among training samples except
those in X a

n . In the second iteration, we feed X b
n into θA and X a

n into θB to make sure the
training samples input to θA and θB are the same in one epoch. In the next two steps,
to balance the training process of θA and θB, X b

n+2 is randomly sampled from S while X a
n+2

follows the class distribution of X b
n+2.

3.2. Gradient Agreement Updating

Algorithm 1 briefly describes Gradient Agreement Updating. The training procedure
of θA and θB can be divided into two phases. Due to the large random volatility of the
gradient directions at the early stage of training process, gradient agreement updating is
not applied in the first phase. Meanwhile, previous works [2,3] have observed that DNNs
tend to fit training samples with clean labels before memorizing noisy labels. Thus, in the
first phase, we warm up the two models using the standard cross-entropy loss and gradient
descent for a certain number of epochs. At this stage, parameters of the two identical nets
θA and θB are initialized with the same values. The data fed into θA and θB is also identical
in every batch to avoid unnecessary gradient divergence.

In the next phase, the two nets will gradually over-fit to noisy labels if following
the training method in the first phase. Therefore, to hinder the memorization of noisy
labels, gradient agreement updating is applied. θA and θB each consists of N parameters.
We can group the corresponding parameters of the two networks to obtain N parameter
pairs ρi = {PA

i ,PB
i }; i ∈ (1, . . . , N). In every iteration, using cross entropy loss and the

annotation labels, a pair of gradients∇PA
i and∇PB

i for ρi is obtained after each backward
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propagation. In contrast to standard gradient descent methods which directly add gradients
to ρi, an intermediate parameter pair ρ̂i is first calculated following Equation (2):

P̂A
i = PA

i + η∇PA
i

P̂B
i = PB

i + η∇PB
i

(2)

where η is the learning rate. We then reshape P̂A
i and P̂B

i to D-dimension vectors vA
i and

vB
i , respectively.

vA
i = Reshape(P̂A

i ), vA
i ∈ (1, D)

vB
i = Reshape(P̂B

i ), vB
i ∈ (1, D)

(3)

To measure whether the gradients are clean or noisy, we propose a gradient agreement
coefficient gi which is defined as follows:

gi = Φ(vA
i , vB

i ) =
(vA

i )
TvB

i√
ΣD

j=1(v
A
ij )

2 ×
√

ΣD
j=1(v

B
ij)

2
(4)

After acquiring gi, we then apply parameter updating as follows:

P̃A
i = PA

i + 1gi≥τ ∗ η∇PA
i

P̃B
i = PB

i + 1gi≥τ ∗ η∇PB
i

(5)

where τ is the threshold for determining whether the gradients of a pair of parameters
reach an agreement.

Figure 3. Class Distribution Agreement Sampling. X a
1 and X b

3 are randomly sampled from S while
X b

1 and X a
3 from S−X a

1 and S−X b
3 respectively. X a

1 and X b
1 share same annotated class distribution,

so are X a
3 and X b

3 .
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Algorithm 1: Gradient Agreement Updating.
Input: θA, θB, θC, param update threshold τ, learning rate η, batch size bs,

training dataset S = (X ,Y) = {(xi, yi)}N
i=1

1 for e = 0 to MaxEpoch do
2 /*warm up θA and θB for certain epochs*/
3 if e < WarmUpEpoch then
4 θA = WarmUp(S ,θA)
5 θB = WarmUp(S ,θB)
6 else
7 for iter = 1 to IterNum do
8 Draw two mini-batches {(xa

n, ya
n)}bs

n=1 and {(xb
n, yb

n)}bs
n=1 from S using

Class Distribution Agreement Sampling strategy
9 /*performing a forward propagation step*/

10 La =
1
bs CE(Pmodel(xa

n; θA), ya
n)

bs
n=1

11 Lb = 1
bs CE(Pmodel(xb

n; θB), yb
n)

bs
n=1

12 /*propagating the loss back to obtain gradients of parameters*/
13 Backward(La)
14 Backward(Lb)
15 for PA

i ,PB
i in (θA, θB) do

16 /*add gradients to parameters*/
17 P̂A

i = PA
i + η∇PA

i
18 P̂B

i = PB
i + η∇PB

i
19 /* compute gradient agreement coefficient gi */
20 gi = Φ(Reshape(P̂A

i ), Reshape(P̂B
i ))

21 /* compare gi to threshold to determine whether to update the
parameters */

22 P̃Ai = PAi + 1gi≥τ ∗ η∇PAi

23 P̃Bi = PBi + 1gi≥τ ∗ η∇PBi

24 end
25 end
26 end
27 end

3.3. Pseudo-Labels Supervising

The training set S = (X ,Y) consists of input data X and corresponding labels Y . Part
of Y is made up of noisy labels. Models will over-fit to noisy labels if directly using Y as the
supervision for training, downgrading the generalization abilities. The gradient agreement
updating method proposed above can effectively prevent θA and θB from memorizing
noisy labels, yet the performance of trained models can be further strengthened leading by
more correct supervision. However, if we directly correct the labels used to supervising θA
and θB, the training of models will suffer from accumulated confirmation biases. Therefore,
we propose to train a third net θC as shown in Algorithm 2.

First, we use the average of the prediction logits outputted by θA and θB for sample xi
to represent the joint prediction:

pjoint
i =

1
2
(Pmodel(xi; θA) + Pmodel(xi; θB)) (6)

Then the label with maximum score in pjoint
i is used as pseudo-label ŷi:

ŷi = arg max(pjoint
i ) (7)
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With the logit pc
i predicted by θC for sample xi according to Equation (8), the train-

ing of θC is supervised by two losses, named classification loss and prediction logit
loss respectively.

pc
i = Pmodel(xi; θC) (8)

Because θA and θB are hindered from memorizing noisy labels, the precision of pseudo
labels generated is apparently much higher than the original annotation labels. Therefore,
the classification loss Lc is defined as:

Lc =
1
bs

bs

∑
i=1

1
max(pjoint

i )>ε
CE(pc

i , ŷi) (9)

where only pseudo labels with confidence scores higher than ε will be counted in the loss.

Algorithm 2: Pseudo-Labels Supervising.
Input: θA, θB, θC, con f idence threshold ε, batch size bs, class number M,

training dataset S = (X ,Y)
1 for e = WarmUpEpoch to MaxEpoch do
2 Draw a mini-batch (xi, yi)

bs
i=1 from S

3 /* obtain the joint prediction logit pjointi for sample xi */

4 pjoint
i = 1

2 (Pmodel(xi; θA) + Pmodel(xi; θB))
5 /* generate pseudo label ŷi for sample xi */

6 ŷi = arg max(pjoint
i )

7 /* obtain the prediction logit pc
i for sample xi using θC */

8 pc
i = Pmodel(xi; θC)

9 /* classification loss for θC */
10 Lc =

1
bs ∑bs

i=1 1max(pjoint
i )>ε

CE(pc
i , ŷi)

11 /* prediction logit loss for θC */

12 Ld = 1
bs ∑bs

i=1 ∑M
j=1 pjoint

ij log
pjoint

ij
pc

ij

13 /* update θC with the joint loss */
14 L = Ld + Lc

15 end

The prediction logit loss Ld is defined as the Kullback–Leibler Divergence between
the joint logits and the output prediction logits of θC:

Ld =
1
bs

bs

∑
i=1

M

∑
j=1

pjoint
ij log

pjoint
ij

pc
ij

(10)

Then, the overall loss L of θC is the sum of Ld and Lc:

L = Ld + Lc (11)

Leading by Ld, θC is effectively prevented from over-fitting to noisy labels. Meanwhile
the performance of θC is further enhanced with Lc which brings in more correct supervision.

4. Experiments
4.1. Experiment Settings
4.1.1. Datasets

GAL is validated on various popular benchmark datasets for learning from noisy labels.
CIFAR-10 [28] and CIFAR-100 [29], both of which contain 50 K training images and 10 K
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test images, are accurately labeled. To maintain consistency with previous works [10,11],
we evaluate two types of synthetic noisy labels on the two datasets. In symmetric noise
(Sym for short) settings, every category has the same probability to be labeled as a random
class. As for asymmetric noise (Asym), a certain percentage of labels of each class are
relabeled into a visually similar category (e.g., cat→ dog).

Animal-10N [30] consists of 50 K human-labeled training images with an estimated
noise level of 8% and 5 K clean testing images. The images are collected online, belonging
to 10 classes of animals.

Clothing1M [31] is made up of 1 million training images with labels generated from
website descriptions and an accurately labeled validation with about 10 K images. Due to
the collecting methods of its training samples, the noise rate of Clothing1M is approximately
38.5% [32].

4.1.2. Implementation Details

CIFAR-10 and CIFAR-100. For experiments on CIFAR-10 and CIFAR-100, an 18-layer
PreAct Resnet [33] is adopted for θA, θB and θC. The training process takes 200 epochs with
a batch size of 128. The initial learning rate is 0.06 and is reduced by a factor of 10 after
80,150 epochs. The warm-up period is set to 80 epochs all the experiments on CIFAR-10
and CIFAR-100. The experiments are conducted on a single NVIDIA Tesla V100 GPU.

Animal-10N. We employ ResNet-34 [34] as the backbones of the three networks to
evaluate GAL on Animal-10N. The training process lasts 150 epochs using a single NVIDIA
Tesla V100 GPU with a mini-batch size of 128. We set the initial learning rate as 0.01,
and reduce it by a factor of 10 after 60, 90, and 120 epochs. The warm-up period consists of
60 epochs.

Clothing1M. For experiments on Clothing1M, an imagenet pretrained resnet-50 [34]
is adopted as the backbone of the three networks. The training procedure lasts 40 epochs
with a batch size of 32 using four NVIDIA Tesla V100 GPUs. The initial learning rate is 0.01
and is reduced by a factor of 10 after 10, 20 and 30 epochs. The warm-up period is set to
10 epochs.

In all the experiments, we train all three nets using SGD with a momentum of 0.9
and a weight decay of 0.0005. The gradient agreement threshold τ is set to 0.4 and the
pseudo-label threshold ε is set to 0.8. The reported results of GAL in Tables 1–3 are obtained
only using the prediction of θC.

4.2. Compared Methods

In this section, we compare the performance of the proposed GAL with previous
methods on the four popular benchmark datasets. Table 1 compares the performance of
the proposed GAL and previous co-training methods on CIFAR-10 and CIFAR-100 with
synthetic noisy labels. Table 2 presents the evaluation results on Animal-10N with real-
world noisy labels. It can be seen that GAL significantly outperforms the other methods
in most experimental settings. In particular, there exists an obvious performance drop
between the best and the last test accuracy for most methods, especially under high noise
levels (e.g., 24.1 for JoCoR and 13.8 for co-learning under 80% symmetric noise rate on
CIFAR-10). This implies that the models are over-fitted to noisy labels during the training.

In sharp contrast, while achieving better accuracy than other methods, the perfor-
mances of GAL are quite stable under all types and ratios of noise on CIFAR-10 and
CIFAR-100 with the maximum drop between the best and the last test accuracy being
merely 0.6. By seeking agreement on gradient directions, GAL can effectively hinder the
memorization of noisy labels. While the previous co-training methods either achieve
agreement on the output predictions (e.g., Co-teaching+ and JoCoR) or seek to maximize
the agreement in latent space (e.g., Co-learning), GAL still allows divergence on the fi-
nal predictions from the two nets, thus obtaining more benefits in test accuracy from
model ensembling. Moreover, the performance is further enhanced with the supervision of
pseudo labels.
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Table 1. Performance comparison with previous methods. Models are trained on CIFAR-10 and
CIFAR-100 with different ratios and types of label noise as PreAct-18 resnet being the backbone and
tested on a clean testing set. The best test accuracy in the whole training process and the test accuracy
of the last epoch are reported.

Dataset CIFAR-10 CIFAR-100

Method/Noise Ratio Sym 20% Sym 50% Sym 80% Asym 40% Sym 20% Sym 50% Sym 80%

Cross-Entropy
Best 86.8 79.4 62.9 85.0 62.0 46.7 19.9
Last 82.7 57.9 26.1 72.3 61.8 37.3 8.8
Best-Last 4.1 21.5 36.8 12.7 0.2 9.4 11.1

MentorNet [6]
Best 86.6 82.4 63.1 - 61.8 47.3 22.8
Last 85.2 81.3 41.9 - 61.1 38.5 11.6
Best-Last 1.4 1.1 21.2 - 0.7 8.8 11.2

Co-teaching [8]
Best 87.9 83.5 64.4 87.1 63.4 50.3 25.6
Last 86.5 81.9 44.2 85.2 62.8 48.5 13.2
Best-Last 1.4 1.6 20.2 1.9 0.6 1.8 12.4

Co-teaching+ [9]
Best 89.5 85.7 67.4 87.8 65.6 51.8 27.9
Last 88.2 84.1 45.5 86.4 64.1 45.3 15.5
Best-Last 1.3 1.6 21.9 1.4 1.5 6.5 12.4

JoCoR [10]
Best 90.2 85.3 69.2 88.3 65.4 52.5 27.1
Last 88.9 83.8 45.1 86.6 64.3 50.4 15.7
Best-Last 1.1 1.5 24.1 1.7 1.1 2.1 11.4

Co-learning [11]
Best 93.1 88.6 76.2 88.0 69.5 59.8 38.6
Last 92.5 87.6 62.4 86.5 68.9 59.1 35.2
Best-Last 0.6 1.0 13.8 1.5 0.6 0.7 3.4

GAL
Best 93.7 90.5 78.9 91.6 70.5 61.3 40.8
Last 93.5 90.1 78.3 91.2 70.1 60.8 40.2
Best-Last 0.2 0.4 0.6 0.4 0.4 0.5 0.6

Table 2. Performance comparison on Animal-10N.

Method CE Decoupling Co-Teaching Co-Teaching+ JoCoR Co-Learning GAL

Best 82.68 79.22 82.43 50.66 82.88 82.95 83.33
Last 81.1 78.24 81.52 48.52 81.06 81.18 82.91

Table 3. Performance comparison on clothing1M.

Method JoCoR TCNet [35] ELR [16] FINE [36] F-div [37] Label Smooth [18] GAL

Accuracy 70.30 71.15 72.87 72.91 73.09 73.44 73.62

Table 3 presents the evaluation results on the real-world benchmark Clothing1M
of GAL and several baseline methods, i.e., co-training method JoCoR, sample selection
methods (TCNet, Fine) and regularization methods (ELR, F-div, Label Smoothing). GAL
works well on Clothing1M, demonstrating its effectiveness in learning with noisy labels.

4.3. Ablation Study
4.3.1. Ablation Study on Components

GAL synchronously trains two networks with gradient agreement updating and uses
pseudo-labels to supervise the learning of a third network. To evaluate the contribution
of each part, we perform ablation studies in this section. The evaluation results are pre-
sented in Table 4. The experiment named “θA + θB + Cross Entropy” refers to training
two nets using standard cross-entropy loss and using the average prediction results of the
two models to calculate the accuracy. In the experiments named “Random Updating”,
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the network is warmed up with 80 epochs and then we randomly update a certain pro-
portion of parameters in every iterations. In the experiments named “θA + θB + Random
Updating”, two nets are trained synchronously. After warming up, a certain proportion
of parameter pairs in the two nets are randomly selected for updating. For the above
two settings, 80%, 50%, 20% and 60% of parameters are randomly selected under 20%,
50%, 80% symmetric noise and 40% asymmetric noise respectively. As shown in Table 4,
when applying gradient agreement updating to the two nets, the performances in different
experimental settings sharply increase, manifesting its effectiveness. The performances
of “θA + θB + Gradient Agreement Updating” are significantly higher than those of “θA +
θB + Random Updating”, further demonstrating the effectiveness of selecting parameter
pairs based on gradient agreement. The full GAL method gains further improvements by
training a third network supervised by pseudo-labels produced by the two jointly trained
models. Notably, only the third net is used for inference when reporting the performance
of the full GAL.

Table 4. Results of ablation study on CIFAR-10 with different types and levels of label noise

Dataset CIFAR-10
Method Sym 20% Sym 50% Sym 80% Asym 40%

Cross Entropy 86.8 79.4 62.9 85.0
Random Updating 83.1 74.2 56.5 81.8
θA + θB + Cross Entropy 88.9 83.6 63.9 86.5
θA + θB + Random Updating 83.4 74.3 57.1 82.2
θA + θB + Gradient Agreement Updating 93.5 89.8 77.7 91.1
GAL 93.7 90.5 78.9 91.6

4.3.2. Ablation Study on Agreement Sampling Methods

In this section, we perform ablation studies on different data sampling methods to ver-
ify the effectiveness of the proposed class distribution agreement sampling. With Random
Sampling, instances fed into θA and θB in every batches are different and both randomly
sampled from the whole training set. Models fail to learn from clean labels because the
updates of parameters are hindered by gradient divergences caused by data difference.
With Identical Sampling, exact same samples are fed into θA and θB in every iteration.
Naturally, the gradients of the two models are always in agreement. Therefore, GAL fails
to prevent models from memorizing noisy labels. Instead, the proposed class distribution
agreement sampling strategy avoids gradient disagreement caused by different input data,
meanwhile enables models to distinguish noisy gradients. As is shown in Table 5, the test
accuracy is significantly higher utilizing class distribution agreement sampling. “CDAS
w/o Reversed Sampling” refers to class distribution agreement sampling without reversed
sampling from θB to θA. As Table 5 presents, the contribution of reversed sampling strategy
to the performance of trained models is not very significant. However, by reducing the
deviation of accuracy, it is conducive to stabilize the performance of GAL.

Table 5. Ablation Study on Agreement Sampling Methods. The mean accuracy and its standard
deviation are computed over five tries.

Dataset CIFAR-10
Method Sym 20% Sym 50% Sym 80% Asym 40%

Random Sampling 84.9 ± 0.4 81.9 ± 0.6 65.2 ± 0.9 85.2 ± 0.2
Identical Sampling 86.8 ± 0.1 81.4 ± 0.1 65.1 ± 0.2 86.5 ± 0.1
CDAS w/o Reversed Sampling 93.2 ± 0.5 89.8 ± 0.8 78.1 ± 0.8 91.2 ± 0.4
Class Distribution Agreement Sampling 93.6 ± 0.2 90.3 ± 0.3 78.6 ± 0.4 91.5 ± 0.2
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4.3.3. Ablation Study on Agreement Threshold

In this section, we analyse the impact of different values of gradient agreement thresh-
old τ on the training process of GAL. Figure 4 presents the test accuracy acquired by the
joint prediction of θA and θB on CIFAR-10 with different values of τ. When τ is set to zero,
all the parameters of θA and θB will be updated without any constraint in every iterations.
Therefore, the test accuracy occurs severe drop owing to memorize noisy labels. In the
gradient agreement updating phase, data fed into θA and θB is not identical. Therefore,
θA and θB can hardly be updated when τ is set to 1.0. As is shown in Figure 4, with other
values of τ the models can effectively hinder the memorization of noisy labels and achieve
optimal performance when τ is set to 0.4.

(a) (b)

(c) (d)

Figure 4. Analysis of different values of gradient agreement threshold τ on CIFAR-10 with differ-
ent types and levels of label noise. (a) Test accuracy on 20% symmetric noise. (b) Test accuracy
on 50% symmetric noise. (c) Test accuracy on 80% symmetric noise. (d) Test accuracy on 40%
asymmetric noise.

4.4. Training Time Analysis

In this section, we compare the training time of GAL on CIFAR-10 with 50% symmet-
rical noise with previous methods. The results are listed in Table 6. We use a single Nvidia
Tesla V100 GPU to train all the models. Cross Entropy is the fastest but its performance
is not satisfying. The training time of Co-teaching and Co-teaching+ are almost the same.
JoCoR is sightly slower than Co-teaching+. Although the three methods are both faster
than Co-learning and GAL, the performances of Co-learning and GAL are much stronger.
The training time of GAL is slightly shorter than Co-learning. In the warm-up period of
GAL, the two networks with same initialization are trained with the same data in every
iterations. Therefore, in practice, we just need to train one network in the warm-up period
and clone it to form a pair of identical networks in the beginning of the second stage.
At the second stage, despite the fact that GAL needs to calculate many parameters, all
the calculations are undertaken on GPU. Consequently, the training time of GAL is still
acceptable.Further more, the training process of GAL can be further shortened by speeding
up the backward updating process with parallel computing.
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Table 6. Comparision of total Training Time on CIFAR-10 with 50% symmetrical label noise, using
a single Nvidia Telsa V100 GPU.

Cross Entropy Co-Teaching Co-Teaching+ JoCoR Co-Learning GAL

2.1 h 4.3 h 4.3 h 4.4 h 5.2 h 5.1 h

5. Conclusions and Future Work

In this study, using contrast experiments, we observe that noisy labels may cause
more divergent gradients in the late stage of training. Thus, we propose a novel gradient
agreement learning framework (GAL) to tackle the problem of learning with noisy labels.
By synchronously training two nets and dynamically excluding divergent gradients, de-
tected using a gradient agreement coefficient, from parameter updating, GAL is highly
effective in hindering the memorization of noisy labels. Training a third network with
the pseudo labels produced by the two nets further enhances the performance. Extensive
experiments on CIFAR-10, CIFAR-100, Animal-10N and Clothing1M datasets demonstrate
the effectiveness of GAL.

Limitations. Nowadays, the parameter size of deep neural networks is becoming
more and more huge with the introducing of big models. Therefore, the training efficiency
of GAL might become a drawback in training big models, with the gradient agreement
coefficients for billions of parameter pairs needed to be calculated. Further studies should
be conducted to reduce the computational complexity on big models.

Future Work. Our further work will focus on two aspects. (a) Reduce the training
time of GAL on big models with deeper studying of the impact of noisy labels on different
parameters. (b) Current noisy label learning techniques are mostly studied and applied in
the task of image classification. Extending these works to other areas will be interesting.
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