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Abstract: Recently, the social dilemma problem is no longer limited to unrealistic stateless matrix
games but has been extended to temporally and spatially extended Markov games by multi-agent
reinforcement learning. Many multi-agent reinforcement-learning algorithms have been proposed to
solve sequential social dilemmas. However, most current algorithms focus on cooperation to improve
the overall reward while ignoring the equality among agents, which could be improved in terms
of practicality. Here, we propose a novel admission-based hierarchical multi-agent reinforcement-
learning algorithm to promote cooperation and equality among agents. We extend the give-or-take-
some model to Markov games, decompose the fairness of each agent, and propose an Admission
reward. For better learning, we design a hierarchy consisting of a high-level policy and multiple
low-level policies, where the high-level policy maximizes the Admission reward by choosing different
low-level policies to interact with environments. In addition, the learning and execution of policies
are realized through a decentralized method. We conduct experiments in multiple sequential social
dilemmas environments and show that the Admission algorithm significantly outperforms the
baselines, demonstrating that our algorithm can learn cooperation and equality well.

Keywords: multi-agent reinforcement learning; hierarchical network; the give-or-take-some paradigm;
sequential social dilemmas

1. Introduction

Reinforcement learning (RL) is a machine-learning method that improves the behavior
of an agent by making it trial and error in an environment with given rules [1]. It is
widely used in sequential decision problems to solve various tasks because of its theoretical
generality [2]. Reinforcement learning has achieved numerous successes in many scenarios,
such as video games [3], autonomous vehicles [4], traffic control [5], etc.

According to the number of controlled agents, reinforcement learning is divided
into single-agent and multi-agent learning. However, most real-world scenarios involve
multiple agents; therefore, single-agent reinforcement learning is insufficient. Multi-agent
scenarios are more complex, and multi-agents need to consider environmental factors and
interact with other agents during training [6,7]. Therefore, more researchers began to focus
on multi-agent scenarios and multi-agent reinforcement learning (MARL).

One of the more famous scenarios is the social dilemmas, in which short-term indi-
vidual incentives conflict with long-term collective interests [8,9]. In social dilemmas, a
Nash equilibrium is not an ideal solution [10]. Humans, for example, face the dilemmas of
collectively storing food in the summer in response to harsh winters, organizing annual irri-
gation system maintenance, or sustainably sharing local fisheries. In these cases, it is nearly
impossible to use traditional models of human behavior based on a rational choice to guide
cooperation [11,12]. Fehr and Falk proposed formal theories about fairness and reciprocity
based on game theory respectively [13,14]. Nevertheless, these two models have a limited
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scope of applicability and can only work in matrix game social dilemmas (see, e.g., [15,16]).
Ref. [17] proposed two more realistic video games, sequential social dilemmas (SSDs), such
as those presented in behavioral studies [18,19]. In these environments, the agent does not
simply choose cooperation or betrayal as atomic actions as in the matrix game. In addition,
as the number of agents in a multi-agent system increases, the complexity of the problem
grows exponentially. This poses a challenge for traditional reinforcement-learning methods,
which need to be better suited to handle such complex environments.

A large body of work has investigated deep MARL methods from different perspec-
tives to address these challenging tasks [20,21]. LOLA considers other agents’ behavior
strategies, adjusts its own strategy parameters, and finally successfully realizes complex
multi-agent coordination [22]. Ref. [23] used inequality aversion to directly and indirectly
change the payoff structure of agents by considering the rewards from other agents to facil-
itate agent cooperation in multiple SSD environments. However, both approaches make
unrealistic assumptions about the accessibility of other agents’ policy parameters or earned
rewards. Ref. [24] injected different degrees of social value orientation into reinforcement
learning agents, increasing the probability of group cooperation. In addition, using the
social influence of each agent as an intrinsic incentive can also facilitate multi-agent cooper-
ation [25]. However, the above two methods may cause some agents to be continuously
exploited. A counterfactual-based contribution evaluation algorithm is proposed to give
additional rewards by calculating the contribution of actions to latent states [26]. However,
they adopted a centralized training method. Although the above algorithms have been
successfully applied to multi-agent sequential dilemmas, most attempt to maximize the
rewards between groups regardless of the situation in which some agents are exploited.

The concept of fairness plays a key role in both human society and multi-agent
systems. Fairness is often seen as a critical factor in maintaining stability and increasing
productivity [27,28]. Thus, we incorporate fairness into agent learning to prevent some
agents from being exploited. However, simultaneously pursuing overall interests and
fairness can create the problem of multi-objective conflicts in learning. To address this issue,
a novel admission-based multi-agent reinforcement-learning algorithm, the Admission
algorithm, is proposed, which enables agents to learn to be cooperative and fair.

First, we generalize the give-or-take-some dilemma (GOTS) [29] model to Markov
games and introduce a fair Admission reward that allows each agent to optimize its own
strategy. The individuals in the GOTS model take atomic actions, which makes it difficult
for the agent to learn effectively in long-term tasks. To overcome this problem, we design
an Admission Hierarchical Network (AHN) consisting of a high-level policy and several
low-level policies. The high-level policy interacts directly with the environment and max-
imizes the Admission reward by choosing the low-level policy. Two low-level policies
are specified to maximize the environmental reward and maximize contribution and the
other strategies explore various behaviors guided by information-theoretic rewards. In
addition, employing cheap talk [30], the algorithm coordinates agents’ strategies in fully de-
centralized multi-agent learning. In this method, the agents are trained independently and
execute independently. Therefore, the Admission algorithm avoids unrealistic assumptions
and effectively solves the social dilemma problem.

We conducted some experiments in two classic SSD environments to evaluate the
proposed algorithm. In the Admission algorithm, each agent directs behavior and enables
simple communication through its own AHN. The experimental results show that the
algorithm achieved cooperation among multiple agents and is superior to the existing
algorithms in fairness. Due to cheap talk, the Admission algorithm can learn and execute
in a completely decentralized manner, making it more realistic.

The rest of this paper is organized as follows: In Section 2, we provide an overview of
the partial observation Markov decision process, hierarchical reinforcement learning, and
sequential social dilemmas. In Section 3, we describe the proposed Admission algorithm
in detail, including its reward design, network structure, and algorithm flow. Section 4
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provides the experimental environment and results, while Section 5 offers a discussion of
these findings. Finally, in Section 6, we summarize the paper.

2. Backgrounds

Our study is about solving sequential social dilemmas with hierarchical RL. There-
fore, in this section, we review the basic Markov concepts, the principles of hierarchical
reinforcement learning, and the relevant background on sequential social dilemmas.

2.1. Partially Observable Markov Decision Process

In this paper, we consider partially observable sequential decision-making games as a
mathematical framework for studying MARL [31,32]. In this framework, agents collectively
perform actions to interact with the environment on a discrete time scale. The environment
then feeds individual rewards and partial observations of the state space to each agent.
The rewards and observations determine what agents will do next, as agents need to learn
to maximize individual rewards through their respective experiences. We formalize this
framework as below.

A N-player partially observable sequential decision-making game defined over a
set of states S can be mathematically modeled as a partially observable Markov decision
processM(POMDP). InM, the observation function O : S × {1, . . . , N} → Rd specifies
each player’s view on the state space. The observation space of player i is written as
Oi = {oi|s ∈ S , oi = O(s, i)}. At each timestep, the player samples action ai from the
action set A1, . . . ,AN , where Ai represents each player’s action set. In the process of
Markov state transition, the next state only depends on the current state and action—that is,
T : S ×A1 × · · · × AN → ∆(S), where ∆(S) represents probability distributions over S
after joint actions a1, . . . , aN ∈ A1, . . . ,AN . The reward function ri : S ×A1 × · · · × AN →
R defines the reward each player will receive in state S .

Through their interactions with the environment, agents can learn their behavioral
strategies πi : Oi → ∆(Ai) (written π(ai|oi)). For convenience, we simplify the joint action
(a1, . . . , aN) and collective strategy (π1(·|o1), . . . , πN(·|oN)) as~a and ~π(·|~o). γ ∈ [0, 1] is
the temporal discount factor, and the discount reward is Rt = ∑∞

l=0 γtrt+l . The objective
function of each agent is to maximize its expected discount reward through its own policy,
defined as:

Vi
~π(so) = E

[
∞

∑
t=0

γtri(st,~at)|~at ∼ ~π, st ∼ T (st−1,~at−1)

]
(1)

2.2. Hierarchical Reinforcement Learning

Human decision-making often involves the choice of temporarily extended action
routes over a wide range of time scales [33]. This can be challenging for a learning agent,
as it requires the ability to operate at different levels of temporal abstraction. Ref. [34]
introduced the concept of option and extended reinforcement learning to hierarchical
reinforcement learning (HRL). In HRL, the agent occasionally chooses among a set of
options, each of which defines a high-level policy that the agent can follow for a certain
period. While following an option, the agent may need to take a sequence of primitive
actions at each timestep in order to achieve the high-level goal defined by the option.

Compared with the RL algorithm, HRL decomposes the RL problem into multiple
sub-problems, which have the following advantages [35]: higher interpretability, higher
sample efficiency, and better solution to sparse reward problems. At the same time, HRL
decomposes the complexity of policy learning into multiple levels, which significantly
reduces the complexity of the problem and can well solve the problem of “Curse of Dimen-
sionality”. HRL thus succeeds in more complex and time-extended tasks. A well-known
example is HDQN [36], where the meta-controller learns high-level policies to select goals,
and the controller learns sub-policies to achieve goals.
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This approach extends the traditional MDP to the semi-Markov decision process
(SMDP) in order to model continuous-time discrete-event systems and learn high-level
policies over multiple timesteps during which a given goal persists. In an SMDP, actions
require a variable amount of time τ to simulate time-extended action processes. The
transition function in this setting is defined as T (st+τ |st, gt), which denotes the probability
of attaining goal g in state st, and reaching state st+τ after τ time steps. When state st+τ

is reached, the agent receives the cumulative environmental reward r̃t, where r̃t is the
environmental reward. This modified transition function allows for the rewriting of the
Bellman equation as follows:

V(st) = r̃t(st, gt) + ∑
st ,τ

γτT (st+τ |st, gt)V(st+τ) (2)

2.3. Sequential Social Dilemmas

The social dilemma problem provides a good scene for studying the tension between
individual and collective rationality [12,37,38]. Social dilemmas have three characteris-
tics [39]: (1) Individuals face some choices, some of which can maximize their own interests,
while others are more beneficial to collective interests. (2) When everyone else chooses to
maximize collective interests, the maximization of individual interests will bring greater
benefits to individuals. (3) However, if all or enough people choose to maximize personal
benefits, the outcome is much worse than if all people act to maximize collective benefits.
Such as the famous “Tragedy of the Commons” [40]. The core of this dilemma is that
individual rationality can lead to collective irrationality.

By the nature of the actors’ tasks, the researchers differentiated between “Give-Some”
(GS) and “Take-Some” (TS) social dilemmas [41]. In the GS dilemma, actors can keep
private resources or use resources to develop or maintain a non-exclusive public good. For
example, public broadcasting in the United States is available to everyone but depends on
donations from a small number of institutions for funding. In this situation, cooperation
means that individuals choose to contribute to the public good, while defection refers to the
decision to withhold or not give. The TS dilemma and the GS dilemma are mirror images.
In the TS dilemma, collective interests are competitive, i.e., one person’s consumption
reduces the amount enjoyed by others. For example, fishing. In this dilemma, actors are
considered cooperative when they refrain from overconsumption and defectors when they
do not.

Sequential social dilemmas(SSDs) are models proposed to simulate better real-world
social dilemmas [17]. In SSDs, the decision-making process is modeled as a partially
observable Markov game, where the actions and observations of individual agents are
temporally and spatially extended. The underlying incentive structure of SSDs often leads
to a reward-inhibition equilibrium in which individual agents are motivated to prioritize
their short-term rewards over the collective good. Therefore, the sum of the rewards
obtained by all agents becomes an explicit measure to estimate how well agents learn to
cooperate [23]. In Section 4, two SSD environments in which traditional RL agents have
difficulty learning to cooperate are described.

3. Method

In this section, we describe the Admission algorithm in detail. Section 3.1 outlines how
the Admission reward is calculated. Section 3.2 details the Admission Hierarchical Network
(AHN), and Section 3.3 describes the decentralized workflow of the Admission algorithm.

3.1. Admission Reward

The give-or-take-some (GOTS) paradigm, proposed in [29], introduces a more realistic
hybrid social dilemma by allowing participants to both contribute and request resources
from a shared pool. Considering there are N players, each of these players i has a endow-
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ment, ei, (where ei ≥ 0 and i = 1, . . . , n). Each player i can “contribute” ci ≥ 0, and/or
“request” ri ≥ 0. The individual payoff is formulated as:

Pi = (ei − ci) + ζ(ri + b), where ζ = 1 i f T ≥ 0 and ζ = 0 i f T < 0, (3)

where b is a positive bonus, and it depends on the sum of net contributions, T = ∑(ci − ri),
which we also call the admission boundary.

In real dilemmas, the contributed and demanded resources are often not the same
resource, and there is no bonus. To this end, we set ri as the environmental reward obtained
by the player i, and then the utility of each player can be simplified as:

Ui = ζri, where ζ = 1 i f T ≥ 0 and ζ = 0 i f T < 0, (4)

in which T = ∑(κci − ri). The parameter κ controls the proportion of contribution and
environmental reward, which depends on the specific environment.

However, as a computational model, the GOTS model is only suitable for matrix
games. Equation (4) can only work in stateless games [42]. Thus, we need to extend this
model to temporally extended Markov games. The main issue with redefining Equation (4)
for a Markov game is that different players’ rewards are obtained at different timesteps.
Therefore, the key to extending Equation (4) to this case is to make each player’s reward
trajectory temporally smooth. Let ri(s, a) represent the reward the i-th player receives for
taking action a in state s at time step t. We define the i-th player’s Admission reward ui(s, a)
and admission boundary at timestep t as:{

ui(si
t, ai

t) = ζri(si
t, ai

t), where ζ = 1 i f T ≥ 0 else ζ = 0

T = ∑[κdi
t(s

i
t, ai

t)− ei
t(s

i
t, ai

t)]
(5)

where the temporal smoothed contributions di
t and rewards ei

t of each agent i are updated
at each timestep according to:

di
t(s

i
t, ai

t) = γλdi
t−1(s

i
t−1, ai

t−1) + ci
t(s

i
t, ai

t) (6)

ei
t(s

i
t, ai

t) = γλei
t−1(s

i
t−1, ai

t−1) + ri
t(s

i
t, ai

t), (7)

where λ is a hyperparameter.
In the sequential decision-making process of multi-agents, it is difficult for an indi-

vidual agent to optimize the fairness of the whole because the fairness is not only related
to its strategy but also the strategies of other agents. Then, due to the limited resources,
cooperative agents are easily exploited by selfish agents. We decompose the fairness goal
of each agent to optimize the Admission reward (5) further:

ui(si
t, ai

t) = ζ

(
ε + ēi

t−1

ε + ei
t−1

)2

ri(si
t, ai

t), (8)

where ē is the mean value, ε is a small positive number to avoid a zero numerator or
denominator. Rewards are optimized so that each agent responds to the actions of other
agents. Therefore, Admission rewards can coordinate the policies of agents. At the same
time, ē can be calculated through a decentralized method.

3.2. Admission Hierarchical Network

In the GOTS model, individuals take atomic actions; however, in long-term sequences,
it is difficult for the agent to maintain the initial behavior. For example, when an agent
performs a contribution operation, and resources appear in its observations, the agent
is likely to give up performing contributions and turn to collecting resources, making
it challenging to learn contribution behaviors. Therefore, this is difficult for traditional
reinforcement learning.

In this work, we design a two-level hierarchical network, Admission Hierarchical
Network(AHN), for each agent to solve this problem. As shown in Figure 1, the AHN
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consists of a high-level policy and several low-level policies, respectively, denoted as πhi
and πi. The πhi(z|o) selects a πi based on partial observations of the environment, where
z ∈ Z is the space of possible low-level policies. The selected low-level policy starts
to perform specific actions and obtains the corresponding reward r, while πhi obtains
Admission rewards ut.

Figure 1. AHN architecture. The high-level policy πhi selects a low-level policy πi through observa-
tion, and then πi performs actions to obtain rewards, while πhi obtains Admission rewards ut.

Unlike earlier work, the high-level policy does not switch between low-level policies
every τ timestep. Instead, it executes the selected low-level policy at every timestep, such as
the low-level policy. This is necessary because we have no way to ensure that the timesteps
required by each strategy are the same. In addition, in order to avoid frequent replacement
of low-level policies by high-level policy, the high-level policy will be subject to a minor
penalty when each low-level policy is changed. This structure is illustrated in Figure 2.

To improve efficiency, we specify the low-level policy π1 and π2 to maximize the
environmental reward r and the contribution reward, respectively. For other low-level
policies, since we cannot directly quantify the differences in low-level policies, we utilize
information theory to guide the exploration of various possible behaviors. In particular, we
note that the greater the difference between the low-level policies, the less the uncertainty
of Z given the observation, i.e., the lower the entropy of Z. From the high-level policy point
of view, the low-level policies should be differentiated from each other in order to provide
more choices. Therefore, we set the minimization of H(Z|O) as the objective function of
the low-level policies.

High-level policy only output probability distribution over the space of low-level
policies phi(z|o), and thus the goal of each low-level policy is to maximize the probability
of being chosen by the high-level policy. To maximize the probability of being selected,
we set the reward of the low-level policy to be log phi(z|o). On the other hand, in order
to explore as many behaviors as possible, the low-level policies should take actions more
randomly, i.e., we should maximize the entropy between observations and actions, H(A|O).
Therefore, we consider the term as an entropy regularization and place it into the objective
function of policy learning. Policy learning with entropy regularization can be written as:

max[J(πi)] =max[H(A|O)− H(Z|O)]

=max[Ea∼πi [−p(a|o) log p(a|o)] +Ez∼πi ,o∼πhi [log p(z|o)].
(9)
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Figure 2. Unlike existing work, in the Admission algorithm, the high-level policy πhi must make
a choice every timestep. When the high-level policy πhi changes its choice, it receives a small
negative reward.

3.3. Decentralized Training

Centralized training is advantageous in coordinating the behaviors of all agents.
However, the difficulty of centralized training increases exponentially as the number of
agents grows. When the number of agents is large, the centralized training method may
face the problem of dimensionality explosion. Our method is, thus, decentralized in both
training and execution. Each agent does not need to access other agents, and we achieve
cooperation by coordinating the agents through cheap talk [43,44].

During the decentralized training process, each agent needs to know the total con-
tribution and total benefit of all agents to know its current admission boundary. When
there are not many agents, obtaining contributions and rewards and computing admission
boundaries from each agent are relatively straightforward. However, with a large number
of agents, the cost of collecting data from all agents can become prohibitively expensive in
practical applications. To solve this problem, we use cheap talk to calculate the admission
boundary—that is, only to collect the information of neighboring agents to calculate their
admission boundary. Let Ni be the set of adjacent agents observed by agent i. Each agent
maintains an admission boundary and updates it by

Ti
t+1 = ∑

j∈Ni

κdj
t(s

j
t, aj

t)− ej
t(s

j
t, aj

t). (10)

The cheap talk process is performed in a decentralized manner and requires only
limited communication between neighboring agents to complete the evaluation.

Through cheap talk, let us calculate the boundaries. In this setting, a greedy agent
needs to stay close to the contributing agent if it wants to free-ride. However, only a small
reward can be obtained due to fairness factors. A selfless agent will be rewarded higher for
fairness. This constraint also has some side effects that may bring agents closer together.
However, this encouragement to draw closer is justified because people seek to belong and
spend time near other people [45].

The training method is introduced in detail in Algorithm 1. Both high-level and
low-level policies in our algorithm are trained using A3C [46] and PPO [47]. The high-level
policy selects a low-level policy to take the original action at each step. When a low-level
policy is replaced, it is updated based on the trajectory generated over its duration. The
high-level policy is also updated based on the trajectories and rewards generated by the
low-level policies during each episode.
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Algorithm 1 Admission algorithm training.
We used two reinforcement-learning algorithms, A3C and PPO, which are referred to as
algo below.

1: Initialize high-level policy and low-level policies for each agent i with random parame-
ters θ, φ. Initialize learning rate α.

2: for each episodes do
3: for t = 1, . . . ,max-episode-length do
4: Calculate admission boundary Ti

t
5: The high-level policy πθ chooses one low-level policy πφk
6: The chosen policy πφk acts to the environment

and obtain the reward


rt i f z = 1,
ct i f z = 2,

logpθ(z|ot) else
7: The high-level policy πθ obtains the reward ui(st, at)
8: Send di

t and ei
t to the neighbor agents using cheap talk

9: if πθ changes the low-level policy, π
φj
t−1 6= π

φk
t then

10: πθ obtains a little punishment
11: Compute gradient ∇φj

12: Update policy and network piφj using algo
13: end if
14: end for
15: Compute gradient ∇θ

16: Update policy and network πθ using algo
17: end for

4. Experiment

To evaluate the effectiveness of the proposed Admission algorithm, we test the algo-
rithm in two SSD environments (https://github.com/eugenevinitsky/sequential_social_
dilemma_games, accessed on 10 November 2022), Cleanup and Harvest. First, the concrete
rules of the two environments are described. Secondly, we introduce the general evaluation
metrics. Finally, the experimental results are presented.

4.1. Environment
4.1.1. Cleanup

As shown in (Figure 3A), Cleanup is a multiplayer game within a 25 × 18 grid-world
environment. The black part of the environment is an orchard, and the blue part is a river.
Players are rewarded with one point for each apple (green square) they collect. Apples
grow at a rate that depends on the density of waste in the river. The more waste there is,
the slower it will be. At the same time, the waste in the river will continue to increase.
When the waste in the river reaches a certain percentage, the apples stop regrowing.

Players can clean up close-range waste by cleaning the beam. Therefore, if players
want more rewards, they need to clean up the river to maintain the growth of apples.
Additionally, players can punish other players by paying a small price for using the
punishment beam (reward-1), and the player who was hit obtains a reward minus 50.
Punishment plays a crucial role in sequential social dilemmas, which can be used to deter
free riders [48,49].

https://github.com/eugenevinitsky/sequential_social_dilemma_games
https://github.com/eugenevinitsky/sequential_social_dilemma_games


Appl. Sci. 2023, 13, 1807 9 of 15

Figure 3. (A) is the Cleanup and (B) is the Harvest. Green grids represent apples, and the agent
collects rewards by reaching green square locations. Blue and yellow represent cleaning beams and
punishment beams, respectively.

The environment is initialized with no apples in the orchard and reaches the waste
threshold in each episode. Apples will only grow if the player cleans up a portion of the
waste. After 1000 time steps, the game ends, and the environment will be reset to its initial
state. Each player’s partially observable area is a 15 × 15 square centered on the player’s
current position.

In Cleanup, players earn rewards by collecting apples. Moreover in the case of not
much waste, apples can be continuously regenerated. However, clearing the river does
not directly benefit the player. Selfish players will simply choose to consume apples. In
this environment, proactively cleaning the waterways is a behavior of cooperation, while
not doing so or doing minimal cleaning is a behavior of defect. Therefore, in the Cleanup
environment, we define cleanup as a contribution.

4.1.2. Harvest

The second experimental environment, the Harvest game, is shown in (Figure 3B).
The Harvest game is a 24 × 26 grid world in which the player’s goal is to collect as many
apples as possible. The player is rewarded with a point for each apple collected. In Harvest,
each grid’s probability of apple regeneration depends on the number of nearby apples.
The more apples around, the higher the probability of apple regeneration. The grid no
longer grows apples when there are no apples around. Therefore, if players want more
rewards, they need to not excessively collect to maintain the continuous growth of apples.
In Harvest, the player also has the action of firing penalty beams. When a player uses
punishment or is punished, the price he pays is the same as that of Cleanup.

Each episode in Harvest also has 1000 timesteps, and the environment is reset when
the episode ends. Furthermore, the player’s observability is limited to a 15 × 15 grid
window centered on the player’s current position. This means the player must use the
information at their disposal to plan their actions and collect as many apples as possible
within the time limit.
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In Harvest, selfish players who excessively collect apples will ultimately cause the
resources to be permanently depleted. The more greedy a player is, the more quickly the
resources will be exhausted. Therefore, not collecting resources is a behavior of cooperation,
while harvesting continuously is a behavior of defect. For this reason, in Harvest, we define
not collecting apples as a contribution behavior.

4.2. Evaluation Metrics

In this paper, we evaluate our algorithm using three metrics [38]. The first metric,
called the Utilitarian metric (U), is the sum of rewards obtained by all agents. The second
metric, the Equality metric (E), measures equality between agents using the Gini coefficient.
The third metric, the Sustainability metric (S), is the average timestep over which rewards
are earned. These metrics allow us to evaluate the overall performance of our algorithm, as
well as its ability to promote equality and sustainability.

U = E
[

N

∑
i=1

Ri

]
, E = 1−

∑N
i=1 ∑N

j=1 |Ri − Rj|
2N ∑N

i=1 Ri
, S = E

[
1
N

N

∑
i=1

ti

]
where ti = E[t|ri

t > 0].

4.3. Results
4.3.1. Cleanup

We evaluate the performance of agents in Cleanup using the collective reward, total
waste cleaned, and equality of waste cleaned. We also evaluate an additional baseline using
the A3C algorithm and PPO algorithm. The results can be seen in Figure 4.

The shades in the figure represent fluctuations in the experimental results of multiple
groups. Experimental results show that in the early stages of training, the agent acts
randomly to explore the environment. In the face of limited apples, agents start attacking
each other, resulting in a sharp decline in total waste and equality. The agent then quickly
learns not to attack; however, without the help of external forces, the baseline inevitably
falls into a dilemma.

Last, the total reward in the A3C approach converges to around 20, and the total
reward in the baseline-PPO slowly increases to 50. However, after applying the Admission
algorithm, the collective rewards of the A3C and the PPO approaches quickly exceed the
baseline and continue improving with the training time. After training for 30 million time
steps, the algorithm (A3C) achieves a collective reward of around 350. The PPO approach
reaches 400. At the same time, fairness in both A3C and PPO approaches is maintained at a
high level.

As shown in Figure 4, in Cleanup, with the help of the admission-based algorithm,
agents will obtain higher total rewards. Moreover, the baseline agent can only become stuck
and unable to learn outcomes that are beneficial to the collective. From the properties of
SSD, we can deduce that agents with high collective rewards learn to cooperate effectively.
At the same time, the agents maintain relative equality under cooperation, proving that our
algorithm can effectively solve SSDs.

4.3.2. Harvest

Figure 5 presents the performance of the baseline method and the admission-based
algorithm in the Harvest game. We added a sustainability metric to evaluate the agents’
behavior compared to the previous section.
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Figure 4. The performance of the Admission algorithm in various metrics in Cleanup. The three
images on the left and the three images on the right are the results of our algorithm applied to A3C
and PPO, respectively.
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Figure 5. The performance of the Admission algorithm in various metrics in Harvest. The three
images on the left and the three images on the right are the results of our algorithm applied to A3C
and PPO, respectively. One of the metrics was replaced by the Sustainability metric.

At the beginning of training, the agents start exploring different places in the envi-
ronment and start learning to collect apples. They also learn that their punitive action is
ineffective and stop using it. Over time, the agents improve their ability to collect apples,
and their collective rewards increase. The Baseline-A3C reaches a reward of 400, while the
Baseline-PPO reaches around 450 but then starts to decline gradually. At the same time,
the sustainability of baseline-PPO is also declining simultaneously. When the Admission
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algorithm is applied, the total rewards for the A3C approaches can converge to about
700, and the PPO approaches can reach up to about 600. Moreover, the fairness of both
approaches is also guaranteed.

Experiments show that agents applying the Admission algorithm obtained more
rewards. The density of apples determines the growth probability of an apple in the
Harvest environment in its surrounding area. This suggests that maintaining a moderate
number of apples may increase the overall rewards. According to this property, the
improvement of collective reward reflects the success of our algorithm in breaking the
social dilemma problem.

5. Discussion

In Cleanup, the agents are in a social dilemma because they are too greedy to clean
up the waste. After applying the Admission algorithm, the agent will no longer greedily
pursue environmental rewards because of the admission boundary and will clean up the
waste for the Admission rewards, thereby, breaking the predicament. In the pre-training
period, the agents are unequal. Nevertheless, as the training progresses, the agents tend
to contribute when resources are low. Eventually, each agent learns to cooperate equally.
In addition, the equality of Baseline-A3C is also high because the group is in a dilemma,
and the individual rewards are meager. In the baseline-PPO, the agents learn simple
cooperation; however, as the total reward slowly increases, the equality begins to decline.

In the context of the harvesting game, making a contribution does not involve actively
paying but rather refraining from collecting resources. The Admission reward in the
Admission algorithm incentivizes sustainable behavior and ultimately leads to higher
collective rewards. However, the PPO approach has limitations in the distance of gradient
updates due to the nature of the algorithm. This leads to agents exploring the environment
and learning to obtain rewards more quickly at the beginning of training.

As the threshold is reached, the resource collection rate exceeds the resource regenera-
tion rate, decreasing the total number of resources collected. Due to the constraints of the
PPO approach, agents must collect resources at an increasingly fast rate, leading to a vicious
cycle. As a result, the total reward and sustainability of the baseline-PPO approach initially
increases but ultimately decreases. The Admission algorithm (PPO) can only mitigate this
decline but cannot reverse the trend.

In general, the Admission algorithm has the advantage of being able to solve social
dilemmas while maintaining equality among agents. However, the Admission algorithm
also has disadvantages. In the Cleanup game, there is inefficiency. Nevertheless, the
practical significance of the Admission algorithm is more important.

6. Conclusions

This paper presented an Admission-based hierarchical multi-agent reinforcement
learning approach for tackling cooperation and equality in social dilemmas. The proposed
algorithm extends the give-or-take-some model to Markov games and incorporates an
Admission reward to facilitate the learning of cooperation and fairness among agents. The
algorithm also includes an Admission Hierarchical Network (AHN), which comprises a
high-level policy and multiple low-level policies. The high-level policy was trained to
optimize the Admission reward, while the low-level policies were trained to optimize the
environment reward and contribution reward. Additionally, other strategies were em-
ployed to provide diverse behaviors guided by the derived information-theoretic reward.

The use of cheap talk allows for decentralized learning and execution of the Admission
algorithm. Through experiments on two SSD environments, we showed that the Admission
algorithm effectively facilitated cooperation and fairness and outperformed the existing
baselines in various scenarios.
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