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Abstract: The modern digital world and associated innovative and state-of-the-art applications that
characterize its presence, render the current digital age a captivating era for many worldwide. These
innovations include dialogue systems, such as Apple’s Siri, Google Now, and Microsoft’s Cortana,
that stay on the personal devices of users and assist them in their daily activities. These systems track
the intentions of users by analyzing their speech, context by looking at their previous turns, and
several other external details, and respond or act in the form of speech output. For these systems to
work efficiently, a dialogue state tracking (DST) module is required to infer the current state of the
dialogue in a conversation by processing previous states up to the current state. However, developing
a DST module that tracks and exploit dialogue states effectively and accurately is challenging. The
notable challenges that warrant immediate attention include scalability, handling the unseen slot-
value pairs during training, and retraining the model with changes in the domain ontology. In
this article, we present a new end-to-end framework by combining BERT, Stacked Bidirectional
LSTM (BiLSTM), and a multiple attention mechanism to formalize DST as a classification problem
and address the aforementioned issues. The BERT-based module encodes the user’s and system’s
utterances. The Stacked BiLSTM extracts the contextual features and multiple attention mechanisms
to calculate the attention between its hidden states and the utterance embeddings. We experimentally
evaluated our method against the current approaches over a variety of datasets. The results indicate
a significant overall improvement. The proposed model is scalable in terms of sharing the parameters
and it considers the unseen instances during training.

Keywords: dialogue state tracking; attention mechanism; stacked BiLSTM; spoken dialogue systems;
BERT; classification problem

1. Introduction

During the last decade, verbal interaction with computing devices grew immensely
popular since it provides an effective method of communication without using hands or
eye contact with the system. The speech-based systems, which are also known as spoken
dialog systems (SDS), give users the opportunity to verbally interact with the system to
achieve a goal such as finding restaurants, airline tickets, and geographical locations [1,2].
Among the most popular SDS systems are Apple’s Siri, Google Now, and Microsoft’s
Cortana, which are integrated into mobile products, applications, and services [3]. A spoken
dialogue system contains five essential modules that are depicted in Figure 1. These include
automatic speech recognition (ASR), natural language understanding (NLU), dialogue
manager (DM), natural language generation (NLG), and text-to-speech synthesis [4]. Note
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that a DM has two structural components, namely dialogue state tracking (DST) and the
dialogue policy, which tracks the state of the dialogue [5–7]. The DST module is affected by
the results of NLU to update or track the state. However, the majority of DST mechanisms
in the literature ignore the NLU component, and results are retrieved directly from ASR to
track the dialogue states [8].

Figure 1. The principal components of a typical conversational system.

1.1. Research Background

Recently, DST has gained popularity in both industry and academia, as it is capable of
determining the users’ intentional states at each turn of the dialogue [9,10]. A state holds a
set of dialogue acts and pairs of predefined slots and their corresponding values [11,12] in
the form of dialogue states. Figure 2 presents an example of a dialogue conversation regard-
ing a restaurant reservation taken from the WoZ-2.0 dataset. Here, we can see the dialogue
acts (inform or request) and the slot value pairs (price range = expensive, food = Australian,
food = Mediterranean). The dialogue state of the conversation is estimated by DST over
the conversation history and current utterance of the user [8]. A state’s accurate prediction
is significant as it enables the system to perform the next action with greater accuracy and
efficiency, and produces a personalized response for the target user.

Figure 2. A toy example of dialogue conversation based on WoZ-2.0 dataset.

For accurate state prediction, the DST models are either based on fixed or open vocab-
ulary [13]. The fixed vocabulary-based DST models define a collection of slots and values
from a predefined ontology [9,13], to extract features or identify patterns and build relations
among the entities. The ontologies contain slots with known predefined values [14–16].
Moreover, these methods have demonstrated highly competitive performance over some
popular DST datasets, such as DSTC-2 and WoZ-2.0 [17]. However, they have conceptually
complex architectures and are heavily engineered [18–20]. Additionally, several models op-
erate on fixed domain ontology and each slot type requires a separate model to train in the
corresponding domain [8,12,20], which consequently increases complexity. Thus, the num-
ber of parameters and slot types are proportional to each other, rendering these approaches
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prone to scalability issues. Although they can predict the values that are not available in
history records, defining the possibly large slot value list per domain is quite challenging
during the training phase. Formally, they are treated as a classification problem [12,21].
On the other hand, open-vocabulary-based models generate or extract the values for each
slot from the context simply by using the encoder–decoder architecture [22,23] or pointer
networks [24–26]. These approaches can share the parameters among the slots and domains
in multi-domain datasets to overcome scalability issues [27]. They are flexible while ex-
tracting the slot values from dialogue history to solve the unseen problems [28]. However,
various architectures are inefficient in context encoding from dialogue context because
they encode all the previous utterances from history at each dialogue turn to aggregate the
information [24,26]. Additionally, they are limited in predicting the slot values that were
not detected during training.

To summarize, both DST approaches can handle scalability problems, parameters
sharing over slots, and handling the growth of parameters when the domain ontology
dynamically changes. However, the fixed-vocabulary-based DST tracker performs better on
DSTC-2 and WoZ-2.0 datasets versus the multi-domain datasets [21,29]. They can observe
unseen slot values. Therefore, this study focuses on creating a vocabulary-based model
and formalizing it as a classification problem. The notion behind considering this as a
classification problem is to further improve the performance of DST [19,30–33]. These
models use recurrent networks to extract features from the history of the system and the
user’s sentence pairs. A classifier is employed upon the extracted features to predict the
dialogue states. In contrast to [19,30–33], global–local self-attention (GLAD) [8], neural
belief tracker (NBT) [12], global conditioned encoder (GCE) [16], and temporal excessive
networks (TEN) [34] built a classifier to extract the features at each turn to predict the turn
level state from current system action and user utterance pairs. The MDBT model [33]
used multiple BiLSTMs to encode utterances of the system and user. Manh et al. [21]
applied the classifier upon dialogue context and candidate slot value pairs to determine
the relevance score of the candidate at a high level similar to the sentence pair classification
task. Additionally, the state operation predictor employed in [35] as a classification task
to output each slot representation on top of the encoder and additionally for domain
classification task in between dialogue turns to the acquisition of slot operations and
domain transformation. Other models [15,36] introduced a semantic parser (a binary
classifier) containing a semantic tuple classifier (STC) approach to train on dialogue act
consisting of slots and slot-value pairs in a topic to predict the presence of that slot-value
pair in the long sentences. This discussion emphasizes choosing a fixed-vocabulary-based
model for enhancing the quality of dialogue state prediction where DST exerts on sentence
pair as a classification task. Owing to this emphasis, the next section briefly explains the
proposed solution and presents our key contributions.

1.2. Key Contributions

We present the BERT-Stacked BiLSTM-Multiple-Attention (BLA) model, which aims
to track the dialogue over a fixed vocabulary. The model combines BERT [37], Stacked
BiLSTM (SBL) [38], along with multiple-attention. In addition, we have implemented a
pre-trained language model for word embedding in our framework. With the success of
pre-trained language models such as ELMO [39] and BERT [37] over the last few years,
only a few researchers had used these models in the domain of DST upon the datasets
WoZ-2.0 and DSTC-2 to tackle the classification problem. As stated earlier, the classification
problem lies within a special category where distinguished frameworks apply sentence
classification to themselves. To this point, we extended the BERT network by incorporating
SBL and multi-attention to learn the contextualized word representation, which increased
the robustness of the model in terms of predicting the slots and their corresponding values.
Our contributions are summarized below:
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• We present BLA to tackle the sentence classification problem in DST by taking a
dialogue context and candidate slot value pair to accurately track slots and their
corresponding values.

• We propose a model that exploits the sequential and overall features encoded in BERT
to improve the performance of neural networks.

• We extract the contextual word features from a dialogue context using the BERT
pre-training language model along with Stacked BiLSTM, and multi-attentions.

• Upon evaluating our model on two real-world datasets, we achieved state-of-the-
art performance over the current baseline models regarding turn request and joint
goal accuracies.

• With detailed experiments in the ablation study on distinguishing variants of neural
networks, we have confirmed the importance of feature extraction from Stacked
BiLSTM and Multiple Attention Mechanism for the proposed model in terms of the
improvement over turn goal, turn request, and joint goal accuracies.

1.3. Organization of the Paper

The rest of the paper is organized as follows. Section 2 presents the latest related
work. Section 3 presents the proposed methodology. Section 4 experimentally evaluates
our model against baselines over two popular datasets. Section 5 concludes the paper with
findings and future directions.

2. Related Work

A large number of models focus on DST aiming to scale over realistically sized dialogue
problems and perform in real-time. During those years, DST has shown improvement in
the overall performance of spoken dialog systems. This section examines related methods
and techniques used to exploit information and generate DST. The DST approaches can
be categorized into two types: (a) traditional approaches, i.e., rule-based, SVM, Bayesian,
maximum entropy and delexicalized, (b) deep-learning (DL)-based approaches, including
deep neural networks and BERT, discussed in the following subsections.

2.1. Traditional DST Approaches

Most of the DST detection methods in the literature employ rule-based and machine-
learning approaches. A spoken dialogue system (SDS) can be imitated as a decision process
where the uncertainty in tracking its dialogue state occurs due to errors that pervade
through ASR and SLU/NLU [40–42]. These impairments were resolved by [43] through
a simple and generic rule-based DST mechanism called GENR. It is based on simple
domain-independent rules that use basic probability operations without requiring external
knowledge. It infers the immediate information gained from observable system actions and
partially observed user acts. The observation is SLU n-best list and normalized confidence
scores, which are similar to those proposed in [3,44,45]. However, GENR targets miss the
intermediate analysis of the information gained from SLU n-best lists and the confidence
scores are produced without learning prior knowledge. Additionally, GENR uses data-
driven methods or is designed based on domain-specific strategies beyond considering
only the SLU hypothesis.

Another popular approach to predict labels, annotations, or slot-value pairs in DST
is the use of maximum margin classifiers, such as support vector machines (SVMs). For
instance, [36] proposed a hybrid-based architecture consisting of traditional and deep-
learning-based approaches (see next section for DL-based approaches of the model). They
used a semantic parser that requires a set of SVMs trained on n-gram features to predict
the dialog act type by multi-class SVM, and a binary SVM to predict the existence of each
slot-value pair from an utterance. The dialogue context features and the n-gram features of
the original STC parser were exploited to constrain the semantic parser. The final vector is
obtained by combining the original n-gram feature with the reciprocal of the turn index
and the context features from the last system action. Finally, normalization via a semantic
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parser is applied to each of the top ASR hypotheses to guarantee the sum for generating
confidence scores to test and predict the dialogue act.

Few other approaches [46–48] assume that dialogue can be modeled as a probabilistic
model such as Bayesian network that relates dialogue state s to the system action a, the
true or unobserved user action u, and ASR or SLU result û as cited in Figure 3. When the
ASR/SLU and the system action are observed, Bayesian inference is applied to compute
the distribution over possible dialogue states. Several probabilistic formulations have been
researched for relating these quantities [46,47]. For example, [48] employed a dynamic
Bayesian network to learn the user action for a given text directly from the machine-
transcribed corpus. In another work, Yu et al. [49] used constrained Markov Bayesian
polynomial (CMBP) based on Bayes theorem to enhance the power of the rule-based
model. The primary idea was to demolish the necessary probabilistic conditions and prior
knowledge to overcome the optimization problem for the DST model during training.

Figure 3. A typical Bayesian network for DST.

Some other opportunities such as maximum entropy (MaxEnt) used in belief tracking
mechanism to calculate beliefs [50] upon a state through parametric models, which directly
present the belief b(st+1) = p(st+1|st, zt) in connection to maximum entropy that has
been widely implemented as discriminative approach [51] in variety of models. It creates
the belief methodically as P(s|x) = η.ewT∅(x,s); where η represents normalizing constant,
x = (du

1 ), dm
1 ), s1, . . . , du

t ), dm
t ), st) denotes the history of user dialogue acts, du

i ε{1, . . . t} are
system dialog acts, dm

i ε{1, . . . t} presents the sequence of beliefs unto the current dialogue
at time t, φ(.) is vector features on x and s, and w denotes the set of model parameters
learned from the annotated dataset.

Sun et al. [36] designed six models of MaxEnt where they parted one model for method,
one for the requested slot, and four for joint goals. The models for the joint goals were
applied on four informable slots (price range, food, area, name), separately. For each
informable slot-value pair in SLU in k-th turn, the MaxEnt for the corresponding slot was
employed to see whether the slot value in the user goad is right or not. The input of the
model consists of 160 features extracted from the feature functions of joint goals and the
model passed the confidence score as output. The MaxEnt model for the method was
implemented to determine the user interaction with the system. The input comprises
97 features extracted from feature functions of the method and the output contains five
confidence scores. The model for the requested slots determined the true or false requests
of a user in the SLU. The input is comprised of 10 features extracted from feature functions
of requested slots and a true confidence score is the output.

Poor generalization regarding morphological or lexical variations in the training data,
presents a constant key challenge in the DST domain. This can be counteracted using
various techniques [47] such as delexicalization features. The systems using delexicaliza-
tion pose exact matching of words for slot-value pairs generation with the construction
of semantic dictionaries to identify alternative mentions of ontology [12,31]. For example,
“I am looking for a cheaper restaurant in the downtown area.” where the words cheaper and
downtown rephrase into Cheap and Centre, respectively. This type of word-rephrasing
occurs with the adoption of a defined semantic dictionary with rephrasing for ontology val-
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ues Food = Cheaper: (affordable, low cost, inexpensive, low budget, cheaper, cheaply, . . . ),
Area = Centre: (central, center, downtown, midtown, center of the city, . . . ). The delexi-
calized features for RNN word-based tracking can be used to share training data across
disparate domains and improve performance in each individual domain [32].

Unfortunately, all the aforementioned models are typically heavily engineered with
rules, and generative and discriminative approaches such as delexicalization, Bayesian
networks, maximum entropy, and SVM. Thus, the extraction of features relevant to each
state and the lack of learning the semantic information is challenging for these approaches.
These models require separate training for each slot value. Additionally, the word embed-
ding techniques are mostly dense-based, that cannot extract words features in a contextual
way. Therefore, downstream modules are prone to morphological and lexical errors. Fur-
thermore, the parameters grow with the ontology size and are proportional to the number
of slots [21]. To overcome these issues, the model requires extra techniques to reduce the
issues that increase the complexity of the model architecture.

2.2. Deep-Learning-Based Approaches

In recent years, numerous studies applied DL-based approaches (DLA) to natural lan-
guage processing (NLP) problems [52,53] including DST in spoken dialogue systems [21,29].
DLA is a set of algorithms, i.e., deep neural networks (DNNs) such as convolutional neural
network (CNN), gated recurrent unit (GRU), long short-term memory (LSTM), attention
mechanism, and BERT, that can learn a complex mapping between input and output
space [54]. These approaches demonstrated excellent performance on DST datasets such
as WoZ-2.0 [17] and DSTC-2 [18]. Moreover, DLA has produced promising results in the
field of DST for learning semantic neural representations of words [55,56], point slot val-
ues in conversation [24], neural dialogue generation [57], and sharing parameters among
estimators for various dialogue states [16,58] as well outlined in Table 1.

In connection with the above discussion, Ref [59] proposed a deep neural network as
a classifier for the DST mechanism to train the entry of the DST challenge dataset. The aim
of deploying the DNN was for improving the probability distribution over possible values
by learning the tied weights and use of sliding windows. Sun et al. [36] designed four
DNNs for joint goals (one for each informable slot), one for method, and one for requested
slots. These DNNs have a similar structure with softmax for output layer activation and
sigmoid for hidden layer activation. Each DNN takes the feature set of a certain value
of the goal, method, or requested slots as the input and outputs two values through the
hidden layer to predict the confidence score as output. Mrkšić et al. [12] presented a neural
belief tracker (NBT) that employed multi-layers of neural networks including CNN. It
uses the previous system output, viz., the last utterance takes the user utterance as the
current utterance and parses the system output and current utterance to come up with
the current state of dialogue. Another framework, GLAD [8] designed LSTM with the
combination of attention mechanism to estimate each slot value pair independently. It uses
global modules to share parameters between estimators for each slot and local modules to
learn slot-specific feature representations. Kumar et al. proposed a multi-attention-based
scalable DST (MA-DST) framework [60] to tackle DST as a classification problem. The
model contains GRU, and multi-attention to encode the dialogue context and slot semantics
that enhance the performance of DST robustly in a scalable manner and perceive the unseen
words during training.
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Table 1. Comparison of latest studies exploring the DST problem, where TG, TR, and JGA, denote
Turn Goal, Turn Request, and Joint Goal Accuracy, respectively.

Model Methodology Strengths Limitations Performance
(TG, TR, JGA)

GLAD
[8]

• Encodes each utterance and previous
system actions by modeling slot-value
pairs using BiLSTM and learns slot
specific features.

• The attention mechanism computes
the slot-specific temporal and context
summary

• Estimates each slot-value
pair independently.

• Learns feature representa-
tions via parameters shar-
ing.

• Generalization on rare slot-
value pairs.

• Each slot type requires a
separate model to train.

• Pretrained Glove embed-
dings and character n-
gram for words represen-
tation.

• Deterministic rule propa-
gate errors to future turns,
may lead to wrong state
aggregation.

TG, TR, JGA

TEN
[34]

• Captures temporal dependences
across dialogue turns using GRU.

• The classifier extracts feature at each
turn to predict the turn level state from
current system action and user utter-
ance.

• The graph factor aggregates state de-
pendencies.

• Belief propagation handles the uncer-
tainties in state aggregation.

• Improves turn level state
prediction.

• Reduces the state aggrega-
tion errors.

• Requires less parameter es-
timation for the state aggre-
gator.

• Robust for the state aggre-
gation.

• Needs to be improved
with respect to graph fac-
tor with another graph
neural network for state
aggregation.

• Pretrained Glove embed-
dings and character n-
gram for words represen-
tation.

• Conceptually complex
framework due to feature
engineering.

JGA

Seq2Seq-
DU [61]

• BERT-based encoder for the utterances
in sequence-to-sequence fashion.

• Schema descriptions deal with unseen
domains.

• State representation based on LSTM
and pointer network.

• Attention between utterance embed-
dings and schema descriptions.

• Sequence-to-sequence
framework to model in-
tents, slots and slot-values
as global.

• Learns representations of
current and previous utter-
ances during encoding and
schema descriptions.

• Scalable.

• Closely related to specific
dialogue contexts.

• Ignores slot domain mem-
bership relations.

• Low prediction accuracy.

JGA

MSP
[56]

• Slot specific memory holds slots and
values to handle state update.

• BERT for dialogue contextual represen-
tation.

• Hit type prediction layer maps repre-
sentations of memory and dialogue
contexts.

• Update dialogue state accu-
rately.

• Previous wrong predicted
values may correct in new
value prediction

• The framework update
state may reduce the per-
formance of general track-
ing the slot-value pairs.

• Increases the usage of sys-
tem’s memory

JGA

Trippy-r
[62]

• Fills slots with values copied from
the context, predictions from previous
turns or system informs.

• Feed forward network for classifica-
tion.

• Tracks constraints via intent detection.
• Triple copy strategy to copy values

from the context, predictions, previous
turns and system information.

• Slot attention layer to token represen-
tations of dialogue turn.

• Handles unseen values dur-
ing training robustly.

• Economically alternative
to data augmentation to
prevent memorization and
over-fitting.

• Domain agnostic to facili-
tate transfer to unseen slots
and d

• Capable to track new do-
mains by learning from
non-dialogue data.

• Requires intent detection
module.

• Weak supervision and
sparsity of data may ren-
der model prone to errors
in the prediction of slot-
value pairs.

JGA

Several studies rely on hand-crafted rules to extract the features and delexicalization
for lexical errors [31,43,63] that rise the scalability challenge in the framework during
the classification task for DST. It has been noticed that stacked BiLSTM [38] is a better
alternative for features extraction [64,65]. Stacked BiLSTM is the extension of LSTM and
a deep bidirectional neural network that learns deeper representations up to the two or
more layers [38]. It performs better on classification tasks for speech recognition and
prediction-based management systems such as domain and intent detection of dialogue
systems [38,64].
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In another study, [66] introduced a model to deal with DST as a sequence-to-sequence
problem and mitigate other problems including scalability and unseen schema in new
domains on multi-domain datasets. The model employed BERT to learn and utilize a better
representation of the current and previous utterances. Moreover, a pointer network was
utilized to build the representations of intents, slots, and values among their corresponding
values. Tian et al. [66] employed to take the previous dialogue state and the dialogue
of the current turn to produce a primitive dialogue state. Later, the current turn of the
dialogue and primitive dialogue state is passed to the amendable generator to generate
the amendable dialogue state that contains the mistake-free dialogue state for further
predictions of dialogue states. Wang et al. [28] developed a stack-propagation framework
to jointly process the slot filling and come up with end-to-end DST by exploiting a BERT-
based dialogue history encoder to procure the dialogue history representation and initiate
the slot value decoder. They employed a slot mask attention mechanism to get key slot
information detected by slot filling to improve the updated dialogue state. They used a
slot-value softcopy mechanism to exploit words marked by slot filling.

Zhang et al. [58] used two BERT-based encoders and designed a hybrid approach
for fixed-ontology- and open-vocabulary-based DST. They defined pick list-based slots
for classification and span-based slots for span extraction as DST readers. Shan et al. [67]
employed a contextual hierarchical attention network based on BERT and an adaptive
objective to alleviate the slot imbalance problem by dynamically adjusting the weights of
slots during training. To overcome the substantial noise in the state annotation, Ye et al. [38]
used a pre-trained language model BERT such as [11,15,55] that was fine-tuned during
training and encoded dialogue context into contextual semantic representations. Ye, Feng,
and Yilmaz [68] worked on the noise labels in the state annotations of datasets to increase the
efficiency of DST. They employed one BERT to encode the dialogue context into contextual
semantic representations and another one to encode the candidate slot-value pairs into
semantic vectors. Multi-head slot attention was used to obtain the information relevant
to all slots from the same dialogue context. Hu et al. [69] developed IC-DST, a text-to-
SQL approach to define each domain as a table and each slot as a column for dialogue
states representations. The aim was to overcome the limitations of fine-tuning pre-trained
language models, retrain the systems again when a new slot or domain is added, and
achieve reasonable performance on few-shot settings.

In summary, by analyzing the related works presented in this section, we suspect that
DST needs to focus on managing scalability problems, unseen values observed during
training, and retrain the model when new values appear. This conclusion formalizes
DST as a sentence classification task, that can be processed by generating slots and their
corresponding values from the learning through the current turn and dialogue history to
recognize the dialogue state in fixed domain-ontology-based frameworks. Therefore, we
devised a model that is capable of sharing parameters across the slot types and scalable
on both datasets for addressing the scalability issue. The model takes candidate slots and
value pairs as input to preserve them in the sequence of words. This way, the model can
be applied directly to the newly occurred slot values that were unseen during training.
The Stacked BiLSTM should be used to exploit features from the last hidden state of
BERT to capture the contextual and semantic features of words. This will improve the
classification of slot-value pairs from user and system utterances. In addition, parameters
of the model does not grow using a BERT-based uncased model with fixed parameters of
110 M. The proposed model should not require a retraining model when domain ontology
changes dynamically. The self-attention mechanism and a combination of mask-input IDs
attention and self-attention can be used to focus more precisely on the features extraction
and sentence classification to enhance the performance of DST. We present this vision in
the next section.
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3. Methodology

This section presents an overview of the proposed model in detail as cited in Figure 4.
The model has three modules, namely BERT, Stacked BiLSTM (SBL), and multiple attention
mechanism. The BERT module takes the input of words from the dialogue context and
candidate. The contextual embeddings assign each word a representation of its context
obtained by the BERT pre-training language model. The vector representation of each
word in the text is passed to the BERT module to obtain the sequential and overall features.
The sequential features are input into SBL to obtain the hidden features and actual output.
The hidden features of SBL are fed into global attention. The local attention is applied
to the non-zero words generated by the BERT tokenizer in the form of input ids. Finally,
the overall features from BERT, the actual output from LSTM, and the output of multiple
attention mechanism are concatenated for final recognition.

Figure 4. A schematic view of the proposed model.

3.1. Contextual Word Representation

Many pre-trained contextual language models such as ELMO [39] and BERT [37] have
gained popularity in NLP tasks. The BERT language model is used to extract semantic
features of the tokens by creating relationships among tokens [70] with different contexts
in sentence pair classification problems. In view of this, we designed BERT as a contextual
word representation encoder to get semantic feature vector representations of dialogue
contexts and candidates. The use of BERT is inspired by the fact that it is a powerful deep
bidirectional language representation learning model with multiple transformer layers [37],
each having 12 self-attention heads and a hidden size of 768 units [71]. We used BERT to
produce not token-specific vector representation for each taken in a sentence as well as an
aggregated vector representation for the whole sentence.

3.2. Dialogue Context Encoding

In order to encode the dialogue context, which holds utterances of the user and system
(from its previous turn), it is fed to BERT. The candidate that contains the slot-value pair
is fed to BERT. The two inputs pass through the tokenizer layer to split into a list of
tokens. Next, the model produces an output fixed-length vector by concatenating the
token, position, and segment embedding. Next, at the start of each utterance, a special
classification [CLS] token is inserted and a special token [SEP] is utilized to separate two
utterances and candidates. The output vector, i.e., the hidden states Um

h of each token is
then computed by BERT as shown in Equation (1).

Um
h = BERT(S[CLS], S1, S2, . . . , Sn, S[SEP]) (1)

where Um
h denotes h[CLS], hm

1 , hm
2 , . . . , h[m]

[SEP], m represents the number of BERT encoder
layers, and ht is the embedding of token t. The BERT model predicts the probability score
for candidate slot value pairs that are only equal to or greater than zero at each turn. To
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obtain the predicted slot value pairs at the current turn, we used the newly predicted
slot-value pairs to update previously predicted values. For example, a user enquired about
food = Italian at the current turn. However, if the cuisine does not exist then it will be
added as newly corresponding values. Likewise, if the user modified cuisine Italian into
food = Turkish then the corresponding values will be updated. Finally, we pass the last
hidden state Uh = UL

h (L = 12) to SBL and attention to predict the slot value pairs.

3.3. Stacked BiLSTM for Feature Extraction

To further learn better contextual and semantic features we deploy SBL on the top of
BERT's last hidden state. As stated earlier, SBL is the extension of LSTM stacked with multi-
ple layers of neural networks to learn the features from dialogue context deeply. It has been
perceived that multiple layers of LSTM reduce the validation loss more than single layer of
LSTM to enhance the accuracies of DST (Section 5.3). For better understanding of multiple
layers of Stacked BiLSTM, we will investigate the intuition of LSTM. LSTM is used to solve
the long-range dependency of the sequence and vanishing the gradient problem [72]. The
vanishing gradient problem occurs when the gradients are back propagated through the
network then the network can vastly rot or grow [73]. For example, when multiple layers
using the activation function are added to a network then the gradients of the loss function
approach toward zero, making its training a challenging task. The purpose of LSTM is to
add, delete or update dialogue context and candidate information in cells organized by
three gating mechanisms. Gating mechanisms at time step s renowned as input gate xs,
forget gate ys and output gate zs. These gating mechanisms with forward and backward
layers control the flow of information for reading, writing, and updating in the last hidden
states. The first step of the LSTM block is to decide which features from dialogue context
have to be excluded from the cell status, equipped by forget gate as shown in Equation (2).

ys = σ(V f Is + hs−1P f + b f ) (2)

Here, Is is the input V f and P f are the weight matrices, b f bias vector parameters, hs−1
is the hidden state of the previous state at the time step s. Then the next step for the LSTM
block is to decide what batch of new features from dialogue context and candidates has to
be stored in the cell state calculated by the input gate xs about the corresponding values
update and tanh layer that creates a vector of a new candidate Ĉs as shown in Equations (3)
and (4), respectively. Then, the status of the previously stored utterances and values are
updated and calculated by element-wise multiplication × between its inputs as shown in
Equation (5).

xs = σ(Vx Is + hs−1Px + bx) (3)

Ĉs = σ(VC Is + hs−1PC + bc) (4)

Cs = (Cs−1 × xs × ys × Ĉs) (5)

Lastly, the output gate zs decides what output from which part of the cell status
must be generated. This output is the updated version and mathematically represented in
Equation (6). At each turn, if the new corresponding value against slot occurred during
the current utterance then the input gate extracts the new value. Afterwards, the previous
state is forgotten by forget gate and new state is updated by Cs to produce hidden state as
shown in Equation (7).

zs = σ(Vz + hs−1Pz + bz (6)

hs = zs × tanh(Cs) (7)

To enhance the performance of typical LSTM, we have implemented forward and
backward layers of LSTM to encode past and future information of dialogue context and
candidate. The input It, which holds the last hidden state of BERT, is fed to the first BiLSTM
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block with the previous hidden state h(1)t−1 in the Stacked BiLSTM. We have used two stacked
layers of BiLSTM. The hidden state at the time step s is calculated as mentioned earlier.
Later, it moves to the next time step while also shifting up to the second block of Stacked
BiLSTM. The forward and backward stacked layers of LSTM read all the words in the last
hidden state Uh = UL

h (L = 12) generated by BERT to output the actual output rs, which
contains the whole hidden states. Meanwhile, the second output for hidden features of
the LSTM Hs is generated. Here, both rs and Hs contain the words with information of
contextual features in opposite directions at each time step. The two opposite direction-
hidden state

−→
H and

←−
H generated by forward and backward LSTM are concatenated as

shown in Equation (8).

−→
H = hs(UL

1 , UL
2 , . . . , UL

h )
←−
H = hs(UL

1 , UL
2 , . . . , UL

h )

Hs = [
−→
H
←−
H ]

(8)

3.4. Multiple Attention

The attention mechanism has been successful in various domains including machine
translation, NLP, and image processing. It analyzes a given input sentence to obtain relevant
contextual information about each word. In particular, the attention mechanism is applied
to the sentences to focus on information that is more important. We have applied multiple
attention to different parts of the sentence from different modules of the model. In the first
stage, we have used attention upon the whole hidden states rs = (h1, h2, . . . , hs) produced
by Stacked BiLSTM. The function of the attention block is to compute the context vector
at each time step lt using the weighted sum of the annotations αmn and hidden states as
described in Equation (9).

lt = ∑
k=1

rsαmn

←−α mn =
exp(STSn)

∑k=1 exp(STSn)

s = tanh(Wn pjk + bn)

(9)

where αmn is calculated by the dot product between ST and high-level representation of
node-level context vector sn using softmax activation function to generate normalized
adaptive weights. Wn and bn are trainable weight matrices and trainable bias, respectively.
Moreover, s represents and pjk denotes the input of multi-layer perceptron (MLP) which is
used to scale the values of hidden states s. In the second stage, we used the input IDs as
tokens instead of padding generated by the BERT tokenizer for masking to apply another
attention, i.e., the masking on non-zero elements of the sentence. At the same time, the
results of the first attention as context vector at each time step lt are concatenated

⊗
with

second attention, as described in Equation (10).

ATT = so f tware(ltm) (10)

Afterward, we concatenate the output of BERT, Stacked BiLSTM hidden features, and
multiple attention to calculate the probability value for the dialogue state as described in
Equation (11). Then, the classifier is built upon Ô for classification. Finally, the categorical
cross-entropy function is designed to calculate and minimize the loss between the actual
dialogue state and predicted dialogue state as described in Equation (12), where is is
the number of dialogue states, Oi is the actual dialogue state and Ôi is the predicted
dialogue state.

Ô = Um
h ⊗ Hs ⊗ Att (11)
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L(O, Ô) = −∑
i−1

OiÔi (12)

4. Experiments

This section presents the experimental and evaluation details including the datasets,
metrics, and baseline models used in the comparative analysis.

4.1. Datasets

We have used two datasets namely DSTC-2 and WoZ-2.0, which were provided by
thankful to Junfan Chen [34]. The motivation behind the selection of the dataset for this
study is to improve the transformer-based dialogue state-tracking performance on a single-
domain dataset. Currently, DSTC-2 and WoZ 2.0 are the two famous datasets utilized by
numerous researchers. Furthermore, they are easily publicly accessible and more suitable
for single-domain DST. Moreover, the aim behind the selection of single-domain datasets
is to provide a fundamental study in the domain of DST. The DSTC-2 dataset belongs to
the dialog system technology challenge (DSTC), which is an ongoing series of research
community challenge tasks. It is used in human-to-computer dialogues in the domain of
information about restaurants. Henderson, Thomson, and Williams organized DSTC-2
with the DSTC-3 dataset and the produced results were presented in sessions at SIDIAL
2014 and IEEE SLT 2014 (https://www.microsoft.com/en-us/research/event/dialog-state-
tracking-challenge/, accessed on 12 November 2022). The WoZ-2.0 dataset is also known as
the Cambridge Restaurant Corpus dataset, collected for developing neural network-based
dialogue systems. It was collected through the Wizard of Oz experiment on Amazon MTurk
similar to MultiWoZ corpus [12,35]. The WoZ-2.0 includes single-domain dialogues. Each
dialogue holds a goal label and several exchanges between the system and its customer.
Each user turn was labeled by a set of slot-value pairs that represent a coarse representation
of the dialogue state. Most of the dialogues are finished but some of the dialogues were
not in WoZ-2.0 dataset [74]. Table 2 presents the statistics of datasets as per domains
associated with the dataset in column 2, and the slots which are available for the assessment
of dialogue state trackers are shown in column 3. Moreover, in the following columns, we
have demonstrated the total utterances, average turns, total dialogues, total words, and
key points in the description column.

Table 2. Statistics of Used Datasets.

S. No. Name Topic Slots Total
Utterances

Average
Turns

Total
Dialogues

Total
Words

1 DSTC-2 Restaurant area, food, name, price
range, address, phone,
postcode, signature

24,049 7.88 3000 432 K

2 WoZ-2.0 Restaurant food, price range, area 3452 4.24 1200 22,347

4.2. Training Setup

We used BERT-based-Uncased model (https://s3.amazonaws.com/models.huggingface.
co/bert/bert-base-uncased-vocab.txt, accessed on 12 November 2022) for the DST clas-
sification with 12 transformer layers, 12 attention heads, 768 hidden states, and 110 M
parameters. We utilize linear learning rate scheduler method with initial fixed learning rate
of 2× 10−5 to optimize the lose function. That regulate the batch size at each iteration while
moving to process the loss function. Moreover, a warm-up proportion of 0.1 is set to reduce
the primary effect of early training. Our proposed model trained on AdamW and SGDW
optimizer [75], used for optimizing the loss with linear learning rate. The batch size is 16
with BiLSTM 256 hidden dimensional layers for contextual representation of words features
extraction. Furthermore, a dropout of 0.1 was used to avoid overfitting in the model for
BERT’s all fully connected layers and attention probabilities. The dropout for other layers
of the model is set to 0.25. In addition, 22 epochs have been used for training. Both two
datasets have negative examples greater than positive examples. To handle this issue, we

https://www.microsoft.com/en-us/research/event/dialog-state-tracking-challenge/
https://www.microsoft.com/en-us/research/event/dialog-state-tracking-challenge/
https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt
https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt
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utilize the conversion of negative examples into positive examples for data imbalance.
Class imbalance problem is a common issue faced by researchers in classification tasks
during the machine learning algorithms [76,77] that lead to reduced accuracies such as
precision, recall, turn request, turn goal, and joint goal. For example, the sentences from
corpus have been taken as positive examples; however, segments from Bert (i.e., produced
wrong slot-values or failed to update slots) have been taken as negative examples or false
class labels. Thus, we use random oversampling to solve the class imbalance problem.
Furthermore, We populated the existing data to keep the ratio the same during training.
A summary of the hyper-parameters used for our experiments is given in Table 3.

Table 3. Hyper-Parameters Used in Experiments.

Layer Hyper-Parameter Size

BERT dimension 786
LSTM hidden Layer 256

number of Layers 2
Learning Rate learning rate 2 × 10−5

LSTM Dropout dropout 0.25
Number of Labels output for input sample 2

Dropout dropout rate 0.25
Warmup-Proportion warmup steps 0.1

4.3. Evaluation Metrics

This section presents the metrics used in evaluating the results of the experiments.
These metrics include the following.

4.3.1. Turn Goal Accuracy

A user may inform the system about certain goals (e.g., Inform (food = Indian),
(area = center)) given during each turn. For instance, food and area are examples of the
informable slots in the WoZ-2.0 and DSTC-2 datasets. On the other hand, Indian and center
are examples of values corresponding to their slots. DST uses context from previous turns,
goals from user utterances at each turn, other external details, and the system’s output at
every turn. The turn goal accuracy [8] is the fraction of user turns for which goals have been
correctly predicted by the model. To incorporate information regarding each slot, there are
BERT, BiLSTM, and self-attention networks for each slot. In this way, to pay attention to
the slot-only information in the input sequence X, the computed attention is conditioned
on the slot embedding.

4.3.2. Turn Request Accuracy

The turn request slots used by [8,16,21,78] refer to requests and its value is the category
that the user demands, e.g., phone, area. The turn request accuracy is the accuracy of the
information requested by the system or user in each requestable turn that arises during
the dialog conversation [16]. It calculates the percentage of turns in a dialogue where the
user’s requests were correctly identified [79]. The turns with no requested slots in ground
truth and predictions are skipped [80].

4.3.3. Joint Goal Accuracy

The joint goal accuracy evaluates the effectiveness of DST [8,21,34,55]. It compares
the predicted dialogue states with the ground truth at each dialogue turn [81]. It is the
percentage of turns where the user’s informed joint goals are considered correct if all
the predicted values exactly match the ground truth [79]. The joint goals are the set of
accumulated turn goals up to the current turn [8].
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4.4. Baseline Models

This section discusses and compares the following baseline models to assess the
performance of our proposed model.

• NBT Neural Belief Tracker (NBT) [20] updates its internal representation of the states
of conversion at each turn in data driver fashion. It was the first neural-based approach
for DST, and used word embedding performing on par with the models developing
engineered lexical rules.

• GLAD Global Locally Self Attentive Dialogue State Tracker (GLAD) [8] consists of two
modules. The global module shares parameters among slots through self-attentive
RNNs. The local module learns features that consider specific slots. The model uses
the previous actions of the system and the current utterance of the user as input to
compute meaningful similarities with predefined ontological terms.

• Statenet Universal dialogue state tracker (Statenet) [16] generates a fixed length repre-
sentation of the dialogue history and compares the distance between the representation
and the value vectors in the candidate sets. It uses the original ASR information of the
user utterances, information about the machine’s acts, and literal names of slots and
their corresponding values. The values from candidate sets are set to be dynamically
changed in the model.

• GSAT Global encoder and Slot-Attentive decoders (GSAT) [82] is a highly robust
dialogue state tracker that predicts the dialogue states with or without using pre-
trained embeddings. In addition, GSAT consists of a recurrent neural network-based
single global encoder and slot-attentive decoders as classifiers. The encoder module
encodes the current user utterance and previous system action from history to output
the context vector and hidden representation for each token. The classifier module
processes the hidden representations of the encoder and possible slot values to provide
the probability distribution for each possible slot value.

• COMER Conditional Memory Relation Network (COMER) [25] uses two sequential
decoders to formulate dialogue state as a sequence generation problem instead of a
pair-wise prediction problem. First, its encoder–decoder network generates the slot
sequences in the dialogue state and then for each slot generates the corresponding
value sequences by conditioning on the dialogue history. The parameters are shared
across all the decoders to overcome the scalability of the hierarchical structure of the
dialogue state.

• Full Bert is a simple but effective BERT-based model [21] proposed for recourse-
limited systems to track the dialogue states. The full BERT approach uses BERT to
control the parameters to not grow when the ontology changes. It takes candidate and
dialogue contexts and produces a score that indicates the relevance of the candidate
by considering a dialogue context and a candidate slot-value pair.

• TEN Neural dialogue state tracking with temporally expressive networks (TEN) [34]
maintains the state of the system for tracking the progress of dialogue. In this ap-
proach, two aspects of state tracking were iterated to improve results. These include
(a) temporal feature dependencies in model design and (b) uncertainties in state
aggregation more expressively modeled.

• SUMBT Slot-utterance matching for universal and scalable belief tracking [55] focuses
on developing a scalable and universal DST. It uses an encoder to encode the system
and user utterances. It provides the contextualized semantic representation of sen-
tences. The encoder also encodes the slots and their corresponding values. It also
learns the slot value relationships that appear in dialogues.

• Seq2Seq-DU A sequence-to-sequence approach to dialogue state tracking (Seq2Seq-
DU) [61] transforms all the utterances in dialogue into semantic frames. It employs
encoding of utterances and schema descriptions sequentially to generate pointers in
decoding of dialogue states.

• AG-DST Amendable generation for DST [66] takes the dialogue of the current and
previous turns as input. This same process of taking input is in a two-pass process as
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basic generation and amending generation to output the primitive dialogue state for
basic generation and amended dialogue state for amending generation.

• BLA implements SBL to exploit contextual information from the last hidden state of
BERT. The global attention is used over the overall output of SBL, and local attention
on the non-zero words from the BERT tokenizer input IDs to extract the words features.
Finally, the overall outputs from three modules BERT, SBL, and multiple attentions
are concatenated to generate the dialogue state.

5. Results and Discussion

This section presents the comparative analysis of the experimental results to under-
stand how the proposed system improved performance compared to the selected baselines.
It also presents an ablation study to understand the impact of different constituent compo-
nents on performance.

5.1. Comparative Analysis of Experimental Results

The experimental results in Table 4 show the performance of proposed model in this
study against the selected baselines on DSTC-2.0 and WoZ-2 datasets. It can be observed
that the proposed model outperforms the baseline models on DSTC-2 in terms of joint goal
and request accuracies. NBT performed poorer due to its use of dense embeddings and
mapping directly from turns to states. Furthermore, it suffers from scalability problems
to large output unbound space and requires a separate model to train for each slot type
in the domain ontology. These limitations led to the model not sharing parameters across
slots. Additionally, the slots are trained independently without sharing information among
them. The second best results in Table 4 on the DSTC-2 dataset are produced by Seq2Seq-
DU, bearing a sequence-to-sequence scalable architecture that can share the parameters
across all slots and domains for single and multi-domain datasets. It uses contextual
embeddings that produce better results in DST. However, it is unable to focus more on
the feature extraction over the BERT output and attention over all the non-zero words
of input IDs from pre-trained contextual embeddings. However, the proposed model
performed 2.2% better than Seq2Seq-DU in terms of joint goal accuracy. This is because
our model is more prominent in the feature extraction from the dialogue context through
Stacked BiLSTM. Additionally, it considers the significance of relations among the values
to their corresponding slots. The results produced on WoZ-2.0 in Table 4 are better than
the DSTC-2 dataset. It is because the WoZ-2.0 dataset has less ambiguity with additional
annotation corrections. The second-best results among the all other baseline models are
produced by AG-DST in terms of joint goal accuracy. The reason behind the great impact
on the results by AG-DST is that it utilizes the input sequence to compose the current turn
dialogue from the previous dialogue state. Our proposed framework is scalable to share
the parameters and create relations between values and their corresponding values. In
contrast, NBT and GLAD produced poor results as compared to other models in respect of
turn request and joint goal accuracies. NBT and GLAD have some limitations as compared
to other latest frameworks in the way that the number of parameters is proportional to
the number of slot types. Furthermore, they operate on fixed domain ontology and the
neural architecture is heavily engineered and conceptually complex. However, our model
produced high turn request and joint goal accuracies in comparison to the aforementioned
baselines by 0.13% and 1.67%, respectively. Our model performed well because it can learn
better contextual and semantic features as well as slot types, and possible values defined in
advance and do not change dynamically. Furthermore, we convert the negative examples
into positive examples to balance the datasets by random oversampling that decreases the
errors. Additionally, the model does not require feature engineering such as lexicon and
delexicalization due to the deployed Stacked BiLSTM and multiple attention mechanism.
Another strength of the model is that it does not depend upon ontology size increase, given
that the vocabulary does not change. Thus, the model is robust in terms of less computation
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as a consequence of the BiLSTM and multiple attention instead of complex architecture
with feature engineering.

Table 4. Joint Goal Accuracy and Turn Request Accuracy on DSTC-2 and WoZ-2.0. † is used for
reproduced results from official codes. ‡ is used for the reported results in respective papers.

Models
DSTC-2 WoZ-2.0

Turn Request Joint Goal Turn Request Joint Goal

NBT † 97.50 73.40 91.60 84.20
GLAD † - 74.50 97.10 88.10

Statenet ‡ - 75.50 - 88.90
GSAT † 96.50 84.81 96.74 90.48

COMER ‡ - - 97.10 88.60
Full Bert † - 74.50 97.70 90.40

TEN † - 77.30 97.10 90.80
SUMBT ‡ - - 97.10 91.00

Seq2Seq-DU ‡ 85.00 74.50 - 91.2
AG-DST ‡ - - - 91.37

BLA 99.56 87.31 97.83 93.73

5.2. Ablation Study

This section discusses the variants of neural networks to show the effectiveness of
models on DSTC-2 and WoZ-2.0 datasets in Table 5 to compare the results with the proposed
BLA model. We compose BSL with the last hidden state of BERT for input to SBL and then
concatenate the outputs of BERT and SBL. It decreases the joint goal accuracies on both
datasets as well as the turn requests on the DSTC-2. In contrast, SBL has no effect on both
datasets regarding turn goal accuracies. However, the turn request accuracy on WoZ-2.0
dataset produces the highest results among all models. Later we used the combination of
input to Stacked BiGRU (SBG) from the last hidden state of BERT, and then BERT and SBG
output concatenation to formalize BSG. It produced the same results on WoZ-2.0 dataset for
turn goal accuracy but improves the turn goal accuracy as higher than all models. However,
the accuracies for both datasets’ joint goal and DSTC-2 turn goal decreased.

Next, we used the last hidden state of BERT for SBL, then the hidden state of SBL
to SBG to concatenate the outputs of BERT and SBG to design BLG. It produced the
highest turn goal on DSTC-2; however, it lowered the accuracies of turn request and joint
goal on DSTC-2, and turn goal, turn request, and joint goal on WoZ-2.0. In BLC, we
used the last hidden state of BERT to give input in SBL, and then all the hidden states
of SBL for the conditional random field (CRF) to concatenate outputs of BERT and CRF.
Next, we deployed BLCA similar to BLC with slightly difference in addition of multiple
attentions over the overall hidden states of SBL and then the concatenation of BERT, CRF,
and multiple attentions. We observed that the performance on all accuracies across both
datasets poorly decreased for BLC and BLCA. The second last model BCLA in Table 5
produced insignificant results upon all accuracies than other models on WoZ-2.0 datasets
and decreased all accuracies for DSTC-2 as compared to the proposed model. BCLA is
composed with the last hidden state of BERT as input to CNN, then the output of CNN
embeds to SBL. Later, self-attention applies to the overall hidden states of SBL. Finally,
BERT, SBL, and self-attention outputs were concatenated.

• Effect of Stacked BiLSTM Network We used variants of neural networks to investi-
gate the performance of BLA in the ablation study. We replaced Stacked BiLSTM with
Stacked BiGRU and run the model on Dev and Test parts of the WoZ-2.0 datasets. It
clearly indicates that the joint goal accuracy on Dev, and joint goal, turn goal, and turn
request accuracies on the Test part improve and utilize more accurate representations
regarding SBL.

• Effect of Attention Mechanism To investigate the effect of attention, we conduct
multiple attention and self-attention variants with different models. In Table 5, we
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remove multiple attention from BERT and SBL that lessens the performance on joint
goal accuracy on Dev, and on turn request and joint goal accuracies on Test in respect
of BLA. Later, multiple attention eliminates from CRF which indicates the insignificant
results over turn goal and joint goal Dev accuracies, and upon all three accuracies on
the Test dataset. We use self-attention instead of multiple attention in BCLA, which
generates the poorest results among all models. It can be perceived clearly from
the ablation study that multiple attention enhances the performance of all models
wherever in practice.

Table 5. Performance Evaluation on DSTC-2 and WoZ-2.0 Datasets.

Models
DSTC-2 Accuracies WoZ-2.0 Accuracies

Joint Goal Turn
Request Turn Goal Joint Goal Turn

Request Turn Goal

BSL 86.95 99.33 99.11 92.48 98.19 95.54
BSG 86.55 99.38 99.16 92.65 97.83 95.66
BLG 87.13 99.31 99.18 92.16 97.59 94.57
BLC 81.74 98.55 96.92 85.66 96.86 92.28

BLCA 82.96 98.93 97.3 88.07 97.22 91.73
BCLA 87.01 99.03 97.48 37 74.11 72.23

BLA 87.31 99.56 99.11 93.73 97.83 95.54

5.3. Hyper-Parameters

In this section, the results produced by hyper-parameters are examined. The settings
for hyper-parameters used in this research study are shown in Table 4. The most important
parameters of the proposed architecture are learning rate, hidden states, Stacked BiLSTM,
and dropout rate. We have used a learning rate from 2.5 × 10−5 to 0.00005 as cited in
Figure 5 to optimize the model. It indicates that the model produces poor results on a
learning rate of 0.00005. Therefore, it is evident that the model is unable to converge on
high learning rates. In contrast, the model produced joint goal accuracy of more than
87.20% and 93.70% on a low learning rate of 2× 10−5 for DSTC-2 and WoZ-2.0, respectively,
which are the highest among other learning rates. Similarly, the results on DSTC-2 for turn
request accuracy are higher on 2 × 10−5 except the results for turn request on WoZ-2.0
are increased only by 0.02%. Thus, it is better to elect an adequate small learning rate of
2 × 10−5 in BLA.

Figure 5. Impact of Learning Rate.
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Furthermore, we used the different numbers of layers of Stacked BiLSTM, i.e., 2, 3, 4,
5, and 6 to find the best suitable number of layers for BLA. We noticed that when the neural
network increased in depth, it reduced the results of the model as cited in Figure 6. When
the number of layers is more than two, the results for joint goal accuracy are produced
at less than 93.73% for WoZ-2.0 dataset and less than 87.31% for DSTC-2. Similarly, the
performance of the model is decreased on turn request accuracy for the DSTC-2 dataset.
However, the performance on the WoZ-2.0 dataset increased by 0.02% for turn request
accuracy after setting up the number of layers to 4 and 6. Thus, it is perceived from the
experiments that keeping the number of layers smaller is sufficient. We attained better
results after setting up the two layers for the Stacked BiLSTM layers module of the model.

Figure 6. Impact of Stacked BiLSTM.

We used the dropout layer as cited in Figure 7 to analyze the effect on neural network
regularization. We observed that the model significantly improved the results between 0.2
and 0.4. On the other hand, when the dropout rate is first decreased and then increased,
the model performed poorly among the joint goal accuracies and turn request accuracies
on both datasets. The model produced the best results when the dropout is set up to 0.25.
We picked values that are beneficial for the model to produce better results upon joint goal
accuracy. It demonstrated that Stacked BiLSTM layers and learning rate have a significant
impact on the model during the learning of features. We also observed that when the
learning rate is larger, i.e., 0.001, 0.01, and 0.1, the model was unable to produce joint goal
accuracy and remained at 0%. Meanwhile, the turn request accuracies are less than 70% for
both datasets on a large learning rate.
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Figure 7. Impact of Dropout Rate.

6. Conclusions and Future Work

In this study, we have proposed a new framework BLA to find the accurate states for
dialogue state tracking. The model is composed of BERT, Stacked BiLSTM, and multiple
attention mechanisms to encode the dialogue context and candidate for feature extraction
from utterances of the user and system to predict the dialogue state. Additionally, BLA
allows parameters to share across the slots and slot-specific feature learning. BLA improves
model performance by minimizing the mistakes from examples loaded from datasets after
the conversion of negative examples into positive examples. To evaluate the performance
of the model, we conducted experiments on two publicly available datasets WoZ-2.0 and
DSTC-2, and analyzed the experiments with variants of the proposed model and baseline
model. The result shows that BLA achieves state-of-the-art results on both datasets. The
main findings and observations of the study include the following:

• The proposed model, upon evaluation on two datasets, revealed that it extracts features
more effectively due to the use of Stacked BiLSTM as compared to other DL-based
and traditional approaches.

• We experimented with variants of the attention mechanism. The weaker performance
of the model on the self-attention layer suggests that the multi-attention mechanism is
helpful for understanding the features and phrases for dialogue state tracking.

• During hyper-parameter selection, we noticed that the learning rate was the most
important parameter for the proposed model because the model regulates the number
of allocated errors for updating weights to perfectly calibrate the accuracies.

Besides these findings, the proposed framework bears some limitations. These include
the need to be more flexible, scalable, and simple in order to work faster on multi-domain
datasets. The parameter sharing can be further developed to render it more efficient for
multi-domain datasets. Thus, we intend to incorporate a graph attention network to build
the relationship between slots and their values that can enhance the performance of BLA.
The decrement of parameters with the usage of BERT variants such as RoBERTa, DistilBERT,
and ELECTRA may increase the robustness in DST, which is also under consideration. We
plan to extend our model and conduct experiments on publicly available multi-domain
datasets in the near future.
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