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Abstract: Community structure is one of the most important features of complex networks. Modularity-
based methods for community detection typically rely on heuristic algorithms to optimize a specific
community quality function. Such methods have two major limits: (1) the resolution limit problem,
which prohibits communities of heterogeneous sizes being simultaneously detected, and (2) divergent
outputs of the heuristic algorithm, which make it difficult to differentiate relevant and irrelevant
results. In this paper, we propose an improved method for community detection based on a scalable
community “fitness function.” We introduce a new parameter to enhance its scalability, and a strict
strategy to filter the outputs. Due to the scalability, on the one hand, our method is free of the
resolution limit problem and performs excellently on large heterogeneous networks, while on the
other hand, it is capable of detecting more levels of communities than previous methods in deep
hierarchical networks. Moreover, our strict strategy automatically removes redundant and irrelevant
results; it selectively but inartificially outputs only the best and unique community structures, which
turn out to be largely interpretable by the a priori knowledge of the network, including the implanted
community structures within synthetic networks, or metadata observed for real-world networks.

Keywords: community detection; resolution limit problem; modularity; multilevel community;
Louvain algorithm

1. Introduction

Community, also known as a network cluster, is a mesoscopic structure ubiquitous
in many real-world systems whose topologies are generally described by complex net-
works [1]. Since highlighted by Girvan and Newman in 2002 [2], the community structure
of a network has been of particular interest to physicists and mathematicians, as it char-
acteristically reveals functional [3,4], relational [1,5,6] or even social information [7–11] of
complex systems. Despite certain special definitions of community (for instance, the “disas-
sortative structures,” as studied in [12]), communities are most typically defined as groups
of nodes with the connections inside each group being denser than those between different
groups [13]. Community detection explores optimized divisions of a network. In previous
literature, it has become a standard practice to evaluate the effectiveness of a community
detection method by its performances in either recreating the implanted communities in
synthetic (i.e., artificial) networks, or recovering observed node attributes or metadata for
real-world networks. Properties of communities such as community resilience [14] and
community vulnerability [15,16] can be studied afterwards.

To detect the correct communities for a network is always a challenge. Related studies
can be traced back all along to “graph partitioning” in graph theory [17], or “hierarchical
clustering” in sociology [18,19]. For large graphs, finding an exact solution to a partitioning
task has been proven an NP-complete problem [13,17]. In the case of real-world complex
networks, it is even harder: the total number of communities is usually unknown [13],
the sizes of different communities may differ by orders of magnitude [20], and the overall

Appl. Sci. 2023, 13, 1774. https://doi.org/10.3390/app13031774 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13031774
https://doi.org/10.3390/app13031774
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2284-2375
https://arxiv.org/abs/2201.09544
https://doi.org/10.3390/app13031774
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13031774?type=check_update&version=1


Appl. Sci. 2023, 13, 1774 2 of 32

structure of the whole network is often multilevel or hierarchical [8,20,21]. Community
detection methods generally turn to heuristic algorithms for acceptably good solutions [13].
A good many community detection algorithms came out, among which the most well-
known ones include spectral clustering [22–24], stochastic block models [25,26], modularity-
based [13,27–30] or Hamiltonian-based [31–36] optimization methods, and information-
based approaches such as Infomap [37]. Within the scope of this paper, we focus on the
modularity-based methods. In a broad sense, modularity-based methods assess the validity
of each potential network division with a specific community quality function; a heuristic
algorithm is then employed to optimize the communities by maximizing this community
quality function.

Modularity-based methods, and also Hamiltonian-based methods, have been argued
to have two major limits. The first one is the well-known “resolution limit problem”
raised by Fortunato and Barthelemy in 2007 [3]. Depending on the numbers of intra
connections of communities and the total number of connections within the whole network,
a modularity optimization method tends to merge small communities (even if they are
well-defined clusters as complete graphs) into larger but sparser ones. This reveals a fact
that the modularity-based method cannot find communities of small sizes, much as a
microscope cannot find microbes beyond its resolution range. For quality functions other
than the modularity, the same phenomenon has also been observed [38]. On the other
hand, modularity-based methods may detect unreasonable community structures due to
inappropriate resolutions, for example, they detect communities for random graphs [39,40].
In order to overcome the resolution limit, a variety of “multiresolution” methods were
suggested. They use a tunable parameter to alter the resolution and detect communities of
different levels within different resolution scales [5,30,33,35,41]. However, a further study
by Lancichinetti and Fortunato [42] pointed out that the resolution limit problem is actually
induced by two opposite tendencies: the tendency of merging small communities, and
the tendency of breaking large ones. If the communities within the same network have
very different sizes, it becomes impossible for an optimization approach to avoid both
biases simultaneously. Multiresolution methods seemed to outperform other methods
only because the community sizes used in previous tests were “too close to one another,”
spanning less than one order of magnitude [42]. When the community sizes vary over up to
two orders of magnitude, as in many real-world networks [20,43], existing multiresolution
methods also fail to recover the expected community structures [42].

The second limit of modularity optimization method is that finding an optimal division
for any given network is normally infeasible. It has been recognized that the modularity
landscape of a network often includes an exponentially growing (with system size) numbers
of local maxima [42,44]. These local maxima may all be very close to the global maximum
in terms of modularity, but the corresponding divisions of the network can be topologically
utterly different from one another [44]. This implies that not only an exactly optimal
division for a network is intrinsically unreachable [42], but the available solutions in practice
can be largely unreliable. This problem is even more serious for multiresolution approaches:
communities detected in “blurring” resolution scales are often incomprehensible and, for all
practical purposes, uninformative. Although it has been argued that inquiring which is the
“best” or “most relevant” scale of resolution is an ill posed question [5], many methods still
manage to find out the most stable communities that can be detected within a persistent
range of resolution. The existence of such stable communities is an observed fact [5]:
they form strong “plateaus” in the diagram of community numbers versus the resolution
scale [35]. It has become popular in previous literature to rank the confidence of detection
results by their strengths of plateaus; community structures suggested by strong plateaus
have been demonstrated to be frequently consistent with the a priori knowledge about
the network [5,30,35].

Nevertheless, existing methods using the stability of plateaus are not yet satisfying.
On the one hand, a plateau was originally expected to reflect the multiple times of discovery
of exactly the same communities at different resolutions. However, no comparison on the
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community structure represented by each data point within the same plateau has been
explicitly conducted in previous literature, leaving a doubt that the same plateau may
not represent the same community structure at all. Some methods, as in [5,45,46], simply
define plateaus by the numbers of communities, some by the values of modularity [30],
while some others, as in [35], execute quantitative comparisons among the communities
detected at fixed resolutions—yet communities detected at different resolutions are still
not compared. As discussed in [44], none of such definitions can guarantee each plateau as
defined represents an identical community structure. On the other hand, evaluating the
stability of plateaus by their lengths is, by far, not sufficient. Although large plateaus are
almost always stable [5,30,35], stabilities of small plateaus are uncertain: some of them can
be stable and informative, but some others just emerge due to randomness (we will show
some examples later). Previous literature either ignores all small plateaus, or artificially
selects their preferred ones. Due to these facts, we propose a strict definition for the term
“plateau,” as well as an effective strategy to evaluate the stabilities of plateaus, as both are
urgently needed.

In this paper, we propose a new approach for multiresolution community detection.
We adopt a modified community fitness function [30] and a heuristic Louvain algorithm [47]
to find multilevel community structures for complex networks. The innovation of our
work includes: (1) we introduce a new scaling factor to enhance the scalability of the
community fitness function; (2) we suggest a strict strategy to automatically select the
outputs, as well as an explicit definition for the term “plateau,” and (3) we demonstrate
our community fitness function is scalable so that it can overcome the resolution-limit
problem. To summarize, our approach is scalable, selective, and resolution-limit-free, with
clean and inartificial outputs. It performs well on both synthetic benchmark networks and
real-world networks.

2. Method

Our method is modularity-based, and multiresolution. It includes three components:
(1) a modified community fitness function with a tunable resolution parameter and a scaling
factor, (2) a heuristic Louvain algorithm to maximize this community fitness function, and
(3) a strategy to filter the output and retrieve the most stable and significant results. Next,
we introduce these three components separately; at the end of this section we display the
whole framework of our approach.

2.1. Community Fitness Function

The so-called community fitness function was firstly proposed by Lancichinetti and
Fortunato [30]. Its original form is as following [30]:

f G =
kGin

(kGin + kGout)
α (1)

Here, G denotes a community given by a certain network division, f G quantifies the
fitness (i.e., quality) of community G: larger values of f G indicate more reliable communities.
kGin and kGout in the formula stand for the in-degree and out-degree of community G, defined
in the same way as those in previous literature, such as [8]. α (α > 0) is a resolution
parameter that tunes the resolution: large values of α yield small communities, while small
values of α deliver large communities [30].

Instead of the widely-used modularity function Q proposed by Newman [13,48], we
choose to use the community fitness function because it is, by design, scalable and is
promising to avoid the resolution limit problem. Its original form, as in Formula (1), can
be directly used in our method; actually, we do use it in many of our calculations in the
following part of this paper. Yet, for networks that have multilevel or hierarchical structures,
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it would be helpful to introduce an additional parameter β to rescale the varying range of
the resolution parameter α. In this paper, we suggest a modified form of f G as

(
f β
α

)G
=

(kGin)
β

(kGin + kGout)
α . (2)

Here, the power exponent β (β ≥ 1) is our newly introduced “scaling factor;” when

β = 1, Formula (2) degrades to Formula (1). When detecting communities with
(

f β
α

)G
, we

search for an optimized division of the network that maximizes the summative fitness of
all detected communities:

Fβ
α = ∑

G

(
f β
α

)G
= ∑
G

(kGin)
β

(kGin + kGout)
α (3)

Alternatively, maximizing the average fitness (i.e., Fβ
α divided by the total number of

communities), as in [30], also yields essentially equivalent results.
The scaling factor β amplifies the varying range of the resolution parameter α. For

each fixed β, we estimate in Appendix A that the varying range of α should be between
β − 1 and 2β − 1: α < 2β − 1 prevents unexpected splitting of large communities, while
α > β − 1 avoids inappropriate merging of small communities. For example, random
graphs exhibit no community structure within this resolution scale, and dense clusters
that are sparsely connected will not merge into one large community. Obviously, when
β = 1, α should vary between 0 and 1; when β > 1, the varying range of α has been amplified
β times.

In practice, for networks having only one single community level, varying α within
(β − 1, 2β − 1) is already sufficient for the expected communities being detected. However,
for networks with multiple community levels, within range (β − 1, 2β − 1), only com-
munities of the lowest level (i.e., communities of smallest sizes that cannot split further)
can be detected. This is because higher levels of communities come from combinations
of lower-level communities; to allow such combinations, the lower bound β − 1 must be
relaxed. Therefore, in our calculation we run our algorithm with the resolution parameter
α varying between 0 and 2β − 1, which enables us to detect multiple levels of communities
within different resolution scales.

2.2. Heuristic Optimization Algorithm

Since optimizing a community quality function has been proven an NP-complete prob-
lem [13,17], heuristic algorithms are generally adopted to obtain the best available solutions.
Early methods, such as those in [2,13], usually have heavy demands on computational re-
sources, while more recently, a number of faster algorithms have been proposed [27,43,47–49].
Among them, the Louvain algorithm proposed by Blondel et al. [47] is widely accepted
due to its prominent efficiency and high accuracy. The label “Louvain” comes from the
authors’ affiliation (UCLouvain); alternatively, it is also called a “BGLL” algorithm, by the
authors’ initials. Originally, this algorithm was designed as a greedy algorithm to optimize
the standard modularity function Q proposed by Newman [48]; similar algorithms have
also been adopted to optimize the Potts Hamiltonian by some dynamical methods [35,36].

We employ the Louvain algorithm to optimize our community fitness function
(Formula (3)) in this paper. Here, we briefly describe its steps; for more details, please refer
to [47].

1. Initialize communities. At the very beginning, each node of the network is designated
to an individual community. A network consisting of N nodes is then divided into
N communities of size 1.

2. Optimize communities of the lowest level. Sequentially consider each node of the
network and scan its neighboring communities (i.e., communities sharing at least
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one edge with the node in focus). Calculate the potential gains of Fβ
α if the node in

focus was moved out of its original community and put into each of the neighboring
communities. Place the node in focus into the community that leads to a maximum
value of Fβ

α .
3. Iterate until convergence. Repeat step 2 until a maximum value of Formula (3) is

reached where no more moves of any node may further increase this value. During
this process, the sequence of node orders is randomized every time a new round of
iteration is started.

4. Merge communities to build a higher community level. Consider each community
obtained at the convergence of step 3 as a fixed module; hereafter, all its members
(nodes) must be moved together. Repeat the above steps 2 and 3 by taking each fixed
module as a node. During this process, connected modules gradually condense into
communities of higher levels, until a maximum value of Formula (3) is reached.

5. Iterate until convergence at the highest level. Repeat step 4 and detect communities
of all levels, until the highest level is detected where no further merging of any
communities can increase Fβ

α .
6. Output communities. Communities of all levels detected by the above steps 1 to 5 form

a hierarchical structure; each level can be independently outputted. Customarily, only
the output of the highest level is adopted since it has a maximum value of Fβ

α among
all levels.

2.3. Strategy to Filter the Output

We adopt a strict filtering strategy to ensure the selectivity of our method. As a
heuristic approach, the Louvain algorithm optimizing our community fitness function
often converges to different solutions in different realizations. Many of these solutions are
“local maxima”, which emerge only by chance. To retrieve from messy outputs the most
relevant solutions that can be persistently detected, previous methods customarily rely on
the stability of plateaus [5,30,35,44–46], only the term “plateau” was, so far, everywhere
loosely defined (see our arguments in the Introduction). In this section, we suggest a
much stricter definition for plateaus and, correspondingly, a strict strategy to identify
them. By our definition, a plateau is a continuous scale of resolution within which the best
solutions found by a heuristic optimization algorithm uniformly converges to an identical
topological structure of community. To detect such plateaus, it is required to compare not
only the topologies of solutions obtained at each fixed resolution, but also those at different
resolutions. We suggest the following strategy to discover our plateaus:

1. At each fixed resolution (i.e., with fixed values of parameters α and β), we implement
the Louvain algorithm on the same network in multiple realizations. Among the
outputs of all realizations, we adopt the ones with the highest value of Fβ

α as our
best solutions obtained at this resolution. In addition, we require the topology of
these best solutions to be unique: in case two or more solutions have equally highest
values of Fβ

α , but represent different topological structures of community, all solutions
obtained at this resolution will be abandoned, and the corresponding resolution will
be considered “irrelevant” and not contributing to any potential plateau.

2. At different resolutions, with varying values of α (during which the value of β is still
fixed), we run the above step 1 and obtain the best-and-unique solutions at all relevant
resolutions. Then we compare the topologies of these best-and-unique solutions, and
classify them into different plateaus; solutions classified to the same plateau must
represent exactly the same topological structure of community.

The above step 1 compares the topologies of communities detected at each fixed
resolution. We require topological uniqueness of all our best solutions because otherwise
they might be the results of randomness due to the Louvain heuristic; below, we will show
some examples. Step 2 compares the topologies of the best-and-unique solutions obtained
at varying resolutions. Plateaus defined and identified as above strictly fulfil “one plateau,
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one topological structure of community”. Our strict strategy guarantees such plateaus
are truly stable, since random outputs of the algorithm have all been filtered out. Only
then can the stability (or say, “robustness”) of solutions be measured by the lengths of
their corresponding plateaus. It is common in previous literature [5,30,35,44–46] to either
take the communities detected by the longest plateaus as the most relevant results, or
artificially select favored structures that best fit the a priori knowledge about the network.
To our viewpoint, all best-and-unique solutions represented by the our strictly-defined
plateaus should have their own particular information: they discover different structures
that represent different aspects of the given network. Thus in this paper, we do not select
plateaus simply by their lengths. Instead, we output and interpret “only the stable plateaus,
and all the stable plateaus”.

Figure 1 shows the whole framework of our proposed approach, with all the three
components discussed above settled in place.
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unique” solution, if all best solutions represent the same network division, or no output at all. Step 2
classifies the “best-and-unique” solutions obtained at varying resolutions into plateaus: each plateau
represents an identical network division.

3. Results

In this section, we firstly demonstrate the effectiveness of our approach in recovering
implanted community structures for synthetic benchmark networks, including multilevel
communities within hierarchical networks (Section 3.1), and communities of distinct sizes
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in heterogeneous networks (Section 3.2). Then, we apply our method to some well-studied
real-world networks, exhibiting both its consistency and discrepancy with the observed
node attributes or metadata (Section 3.3). Finally, we implement our algorithm to certain
extremely large networks with ground truth communities to test its performance as the
network’s size increases (Section 3.4).

3.1. On the Hierarchical Ravasz-Barabasi (RB) Networks

We first of all introduce the structure of the Ravasz–Barabasi (RB) networks [20]. The
smallest RB network is RB5, which is a complete graph consisting of 5 nodes and 10 edges,
see Figure 2a. To facilitate our discussion, we call node 0 the central node, while all other
nodes are peripheral nodes of the RB5 network. RB5 is a basic unit to constitute larger
RB networks. Five RB5 units, one in the center and four on the periphery, constitute an
RB25 network, as shown in Figure 2b,c. According to [20], these RB5 units should be
connected in such a way: every peripheral node of the peripheral RB5 units is connected
to the central node of the central RB5 unit, but the peripheral RB5 units themselves are
not connected to one another. Note that in Figure 2b,c, for easy drawing we did not shift
the central node of each RB5 unit slightly off its center as in Figure 2a: each RB5 unit
in Figure 2b,c is still a complete graph containing 10 edges, only the diagonal edges are
invisible by overlapping with other edges. Following the same way, five RB25 units
constitute an RB125 network, as shown in Figure 3. Obviously, the RB networks are fractal-
like and hierarchical, which can grow infinitely. We choose these networks to test our
method because they can provide hierarchical structures of any depth—deep enough to
test the limit of any multiresolution method for community detection.

As synthetic/artificial networks, the implanted community structures within the
RB networks are apparent: an RB network with 5n nodes (hereafter, we call it an “RB5n

network”) is expected to be naturally divided into 5n−1 RB5 units on the lowest community
level, or 5n−2 RB25 units on a higher level, and so on, constructing a hierarchical structure
of n levels. However, such “natural” divisions should not be taken for granted. One
problem is, within each RB5m unit (2 ≤ m ≤ n), the central node (e.g., see the hollow red
circles in Figures 2c and 3b–d is connected to every peripheral node of the same unit. By
the natural division, this central node always has a larger out-degree than in-degree (for
example, the central node of an RB25 network, as in Figure 2b, has an out-degree of 16 but
an in-degree of 10), which violates the customary definition of community in a strong
sense [50]. Moreover, within larger networks, this problem gets even more serious: when
n ≥ 3 the natural division further violates the definition of community in a weak sense [50].
Figure 3a shows an example: the central RB5 community (solid red circles) within an
RB125 network has a total out-degree of 80 (all contributed by its central node), but a total
in-degree of only 20. Therefore, it seems reasonable to break up the central RB5 community
and segregate its central node as an individual community, as we did in Figure 2c, which
has also been suggested previously by [4].

Through literature investigation (such as on [4]), as well as numerical simulation,
for the RB networks, we propose a plausible revision to their “natural divisions”, i.e., on
each community level, preserve the peripheral communities, but further divide the central
communities. More specifically, on the lowest community level, instead of 5 communities
(as in Figure 2b), we divide each RB25 unit into 6 communities (as in Figure 2c). Thus,
an RB5n network (n ≥ 2) will be divided into 6 × 5n−2 communities (since it contains
5n−2 RB25 units); Figure 3b shows an example that an RB125 network is so divided into
30 communities. Similarly, on a higher level, we find each RB125 unit tends to split into
10 communities as in Figure 3c: 4 peripheral RB25 units make 4 communities, while the
central RB25 unit splits to 6 communities as in Figure 2c. On this level, an RB5n network
(n ≥ 3) will be divided into 10 × 5n−3 communities. Following this regulation, on the m-th
community level (2 ≤ m ≤ n, here m = 1 stands for the lowest level), it is each RB5m+1 unit
that splits into 4 m + 2 communities, thus, an RB5n network (n ≥ m + 1) will be divided into
(4 m + 2) × 5n−m− 1 communities. Supplementary Figure S1a visualizes an RB625 network
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being divided into 14 communities on the third community level, and Table 1 summarizes
the numbers of communities on different levels of the RB networks given by the above
divisions. Next, we demonstrate how such divisions would be discovered by our method.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 36 
 

 

Figure 2. Communities in the RB25 network. (a) An RB5 network is a complete graph consisting of 

5 nodes and 10 edges. We call node 0 the central node, and all other nodes peripheral nodes of the 

RB5 network. (b) An RB25 network is composed of five RB5 units, one in the center and four on the 

periphery. Every peripheral node of the peripheral unit is connected to the central node of the cen-

tral unit, but different peripheral units are not connected to one another. Ideally, an RB25 network 

is expected to be divided into 5 communities: each RB5 unit makes a community. (c) A plausible 

revision to (b), which divides the RB25 network into 6 communities. Four peripheral RB5 units make 

four communities, and the central RB5 unit is divided into two communities: the central node makes 

one community and all peripheral nodes make the other. (d,e): Plateaus identified by our method 

with β = 1 and β = 2. The resolution parameter α varies from 0 to 2β − 1, with a stepwise increment 

Δα = 0.01. At each resolution, we implement 1000 realizations of the Louvain algorithm, and identify 

the best-and-unique solutions and plateaus by the strategy described in Section 2.3. 

Figure 2. Communities in the RB25 network. (a) An RB5 network is a complete graph consisting
of 5 nodes and 10 edges. We call node 0 the central node, and all other nodes peripheral nodes of
the RB5 network. (b) An RB25 network is composed of five RB5 units, one in the center and four on
the periphery. Every peripheral node of the peripheral unit is connected to the central node of the
central unit, but different peripheral units are not connected to one another. Ideally, an RB25 network
is expected to be divided into 5 communities: each RB5 unit makes a community. (c) A plausible
revision to (b), which divides the RB25 network into 6 communities. Four peripheral RB5 units make
four communities, and the central RB5 unit is divided into two communities: the central node makes
one community and all peripheral nodes make the other. (d,e): Plateaus identified by our method
with β = 1 and β = 2. The resolution parameter α varies from 0 to 2β − 1, with a stepwise increment
∆α = 0.01. At each resolution, we implement 1000 realizations of the Louvain algorithm, and identify
the best-and-unique solutions and plateaus by the strategy described in Section 2.3.

We first try with β = 1, i.e., the original form of the community fitness function
(Formula (1)). For all RB networks, with β = 1, we only detect two community levels: the
highest (but trivial) level that merges the whole network into one single community, and the
lowest level that divides the network into smallest communities that cannot split further;
intermediate levels, if exist, are all missed. On the other hand, with β = 1, we detect different
divisions for the lowest level. Except for our proposed divisions as listed in the first column
of Table 1, we also detect the natural divisions, but only for two small RB networks: RB25 and
RB125 (see Figures 2b and 3a); for larger RB networks, the natural divisions can no longer
stand, since they violate the customary definitions of community too seriously. Moreover, with
β = 1, an RB125 network can be divided into 26 communities—this can be done by breaking
up only the central RB5 community of each RB125 unit (rather than each RB25 unit) into
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2 communities, but preserving all other RB5 communities (as in Figure 3d). Compared to
the divisions listed in Table 1, this alternative division can be understood as a result of a
“relaxed stringency”, with which an RB5n network (n ≥ 3) can be divided into 26 × 5n−3

communities; this explains the plateaus representing 26, 130, 650 and 3250 communities
that emerge in Figure 3e and Supplementary Figures S1b and S2a,c. Since all these plateaus
have similar community sizes (≤5), we classify them all to the lowest community level.
Moreover, with an even further relaxed stringency, where only the central RB5 community
of each RB625 unit is broken up into 2 communities, an RB625 network can be divided
into 126 communities. Yet such stringency has been over-relaxed so that it only produces a
very tiny plateau for the RB625 network in Supplementary Figure S1b, but has not been
observed anywhere else.

Table 1. Numbers of communities on different community levels in our proposed divisions for the
RB networks. Here, m = 1 stands for the lowest community level, which divides the network into
smallest communities that cannot split further; m is restricted to be no larger than n. Numbers in
this table all follow our proposed formula: (4m + 2) × 5n−m−1. Our method detects all levels of
communities when the network is not extremely large (n ≤ 5). When n = 6 (an RB15625 network),
the second and fifth levels, which are expected to contain 1250 and 22 communities, turn out to be
undetectable by our method.

RB5n Networks
Community Levels (m)

1 (Lowest) 2 3 4 5 6

RB25 (n = 2) 6 1 / / / /
RB125 (n = 3) 30 10 1 / / /
RB625 (n = 4) 150 50 14 1 / /

RB3125 (n = 5) 750 250 70 18 1 /

RB15625 (n = 6) 3750 1250
(undetectable) 350 90 22

(undetectable) 1

The above results detected with β = 1 are still not satisfying; one major problem
is that the highest and lowest community levels have occupied almost all the resolu-
tion scales; intermediate levels are seriously compressed and cannot be observed at
all. To fix this problem, we take β ≥ 2. It turns out, that with β ≥ 2 our method dis-
covers all community levels including the intermediate ones for the RB networks; see
Figures 2e and 3f, Supplementary Figures S1c and S2b for the plateaus obtained with β = 2.
With β > 2, we simply obtain similar results. As observed, for RB networks with no more
than 5 levels, our method accurately and exclusively recovers the divisions suggested in
Table 1. As for the potential variants due to relaxed stringencies, in some realizations we
did detect some of them as “local best solutions.” Yet globally (i.e., over all realizations),
these variants are not best-and-unique, thus, they are discarded by our filtering strategy.
In contrast, the divisions suggested in Table 1 perform more robustly, and our filtering
strategy accurately hits on these “robust divisions”. On the other hand, our results also
confirm that the scaling factor β does rescale the community fitness function effectively,
which facilitates our detections on multilevel community structures.

Yet our method also has a limit. We notice that with the increase of β, the resolution
ranges for different community levels span differently: the highest and lowest levels
always occupy a majority of the resolution scales, while intermediate levels only emerge
within a limited region (when β = 2, it displays as 1 < α < 1.6). For RB networks deeper
than 5 community levels, some intermediate levels will be compressed and cannot be
detected by our method. For example, for an RB15625 network, plateaus for the second
and fifth community levels, which are expected to represent 1250 and 22 communities, are
both missing, see Supplementary Figure S2d. Within the resolution scales where these
community levels are expected to emerge, the Louvain algorithm fails to converge to a
best-and-unique solution. Further increasing β does not solve this problem. As shown
in Supplementary Figure S3, with the increase of β, resolution scales for intermediate
community levels do not expand remarkably. Within the scope of this paper, the limit of
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our method is to detect up to five community levels for the RB networks; to detect more
community levels, an improved method that rescales the resolution ranges for different
community levels more evenly, should be worth studying in the future.
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Figure 3. Communities in the RB125 network. (a–d): Four different community structures detected
by our method within the RB125 network. In each subfigure, we exhibit different communities with
different colors and shapes of nodes (note triangles in different directions also represent different
communities). (a) shows a “natural” division for the network: each RB5 unit makes a community;
(b) shows our proposed division in Table 1 on the lowest community level: each RB25 unit is
divided into 6 communities as in Figure 2c, and the whole network is divided into 30 communities;
(c) shows our proposed division on the second community level, which divides the network into
10 communities; (d) shows an alternative division of the network into 26 communities with a “relaxed
stringency” on the lowest community level: only the RB5 unit in the center of the whole network is
divided into 2 communities, while all other RB5 units are kept intact. (e,f): Plateaus obtained by our
method with β = 1 and β = 2. In (e), with β = 1 only the first community level can be detected, but
there emerge three different plateaus representing three different divisions for it: 30 communities (our
proposed one as in (b)), 25 communities (the “natural” division as in (a)) and 26 communities (the
“variant” as in (d)). In (f), with β = 2, all community levels are successfully detected: the first level
exhibits only the 30-community division, and the second level only the 10-community division (as in
(b,c), respectively); we believe these divisions are the most stable and “robust” among all potential
divisions on the corresponding levels of the RB networks.
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Lastly, we show the performances of some earlier methods on the RB networks for
comparison. The RB networks have two distinctive features: hierarchical and symmetrical.
Methods without a tunable resolution parameter are not expected to detect multiple levels
of communities from the RB networks, but they should be expected to perform well in
recovering at least one level of community. In Supplementary Figure S4, we show the com-
munities detected for an RB125 network by two well commended methods: (1) the standard
modularity Q proposed by Newman [48], optimized through a Louvain algorithm, and
(2) Infomap [37]. We find both these methods inevitably produce divisions with random-
ness through breaking the symmetry of the network: all communities in Supplementary
Figure S4 are detected in a random manner. For example, in Supplementary Figure S4a,
the central RB25 unit is divided into three communities by randomly combing two of its
four peripheral RB5 units with the central unit, and each of the peripheral RB25 units is
divided into two communities by randomly choosing one of its peripheral RB5 units as an
individual community—such a division could be the best in terms of modularity, but it is
definitely not unique. In the context that network nodes are distinguishable, considering
the symmetry of the network, we can easily calculate there exist 1536 divisions that are
equivalent to Supplementary Figure S4a; within 1000 independent realizations, almost ev-
ery single realization suggests a different division. Similar is the division given by Infomap
in Supplementary Figure S4b, which has 256 equivalents. In contrast, community levels
detected by our method, as in Table 1, retain both the hierarchy and the symmetry of the
network. We emphasize that the divisions given by modularity Q and Infomap through
breaking the network symmetry are not necessarily wrong; they can be useful in some
scenarios. Yet our method is designed to selectively output the best-and-unique solutions;
in our context, we believe the best-and-unique solutions are better correlated to the node
attributes that we are interested in as in real-world networks.

As for methods with tunable resolutions, we choose the multiresolution version of
modularity Q generalized by Reichardt and Bornholdt [33]; other methods as those in [5,35]
essentially perform identically [42]. The multiresolution modularity tunes the resolution
through a parameter γ:

Qγ = ∑
G

[
kGin
2M
− γ

(
kG

2M

)2]
; (4)

Here, M represents the total number of edges within the whole network; kGin and kG

represent the in-degree and total degree of community G, and the modularity is summed
over all communities. In Supplementary Figure S5, we exhibit the plateaus detected by
Qγ for three RB networks. Only for the smallest RB125 network, Qγ detects all three
community levels. For larger networks such as RB625 and RB3125, Qγ detects no more
than two levels of communities for each of them. Therefore, our method outperforms
previous multiresolution methods on deep hierarchical networks—as we will suggest in
the Discussion, the scalability of our community fitness function plays an important role.

3.2. On the Heterogeneous Lancichinetti-Fortunato-Radicchi (LFR) Benchmark Networks

Benchmark networks with implanted communities generated by early methods, in-
cluding the traditional stochastic block model (SBM) [25,26], and the GN benchmark [2],
differ substantially from their real-world counterparts: real-world networks typically have
heterogeneous distributions of node degree and community size [51]. The LFR benchmark
network was proposed to address the issue. Its node degrees and community sizes follow
different power-law distributions, and may both span more than one order of magnitude.
Each node is planted into a community: it shares a fraction of 1 − µ of its connections
with the other nodes of the same community, and the rest fraction µ with nodes in other
communities; µ is called a mixing parameter [52]. Large values of µ weaken the validity of
the implanted communities. Especially, when µ ≥ 0.5, the implanted communities violate
the customary definitions of community in both a strong sense and a weak sense, which,
respectively, require kin > kout for every node, or Σkin > Σkout for every community [50].
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However, many community detection methods keep recovering the implanted commu-
nities perfectly even when µ is near 0.8; the reasonability is based on the fact that most
nodes in the network still retain more connections within its own community than sharing
connections with any other communities, as suggested by [53]. In previous literature, it is
typical to employ a normalized mutual information (NMI) [54] to evaluate the consistency
between the detected communities and the implanted ones. Formula (5) displays the
definition of NMI between two divisions (A and B) of a given network; NMI equals to 1
indicates that divisions A and B agree with each other perfectly.

NMI(A, B) =
−2∑kA

i=1 ∑kB
j=1 nAB

ij log
(

nAB
ij .N

nA
i .nB

j

)
∑kA

i=1 nA
i log

(
nA

i
N

)
+ ∑kB

j=1 nB
j log

(
nB

j
N

) (5)

where N is the size of the network, kA and kB are the numbers of communities contained in
divisions A and B. nA

i and nB
j denote the sizes of the i-th community of division A and the

j-th community of division B, while nAB
ij represents the number of nodes shared between

these two communities (see [54] for more details).
In [42], the authors argued on an LFR network, when the community sizes vary

enormously, all previous multiresolution methods lose their effectiveness. Multiresolution
methods are reported to outperform other methods only because the community sizes used
in their tests were too close to one another. In larger networks with more heterogeneous
community sizes, multiresolution methods all fail to detect the expected communities
even when µ is far below 0.5. In contrast, Infomap, having a lack of a tunable resolution
parameter, performs much better (see Figures 6–9 in [42]).

We test the effectiveness of our method under the same conditions: on LFR networks
built with exactly the same parameters as those in Figures 6–9 of [42], we exhibit in
Figures 4 and 5 the NMIs between the implanted communities and the communities
detected by our strongest (shown in red squares) and second strongest (shown in blue
circles) plateaus with different values of µ. Networks in Figure 4 are relatively small and
contain communities of similar sizes, while networks in Figure 5 are larger and more
heterogeneous. Since the LFR networks contain no multilevel structure, for each network
we only run 1000 realizations of the Louvain algorithm with β = 1; β ≥ 2 simply yields
the same results. For comparison, we show in the same figures the NMIs for communities
detected by Infomap (shown in black triangles). We use µ1 in each figure to indicate the
threshold at which the NMIs of our strongest plateaus start to deviate from perfection:
when µ ≤ µ1, the NMIs always equal to 1. When µ > µ1, our strongest plateaus detect
the whole network as one community, thus, the NMIs suddenly decrease to 0. However,
our second strongest plateaus still recover the implanted communities perfectly and retain
high levels of NMIs, until µ becomes really large. Similarly, we use µ2 to indicate the
same threshold for Infomap: when µ > µ2, the whole network is detected as one single
community. Since for Infomap, there is no “secondary solutions,” thus, when µ > µ2, the
NMI always equals to 0.

Previous multiresolution methods tested in [42] mostly perform well on the “small”
networks in Figure 4—but they all perform much worse on the large and heterogeneous
networks in Figure 5. In contrast, our method, being also a multiresolution method,
recreates the implanted communities for all networks in Figures 4 and 5 as perfectly as
Infomap within the range µ ≤ µ2; their NMI curves roughly overlap with each other. More
specifically, when µ ≤ µ1 or µ > µ2, our strongest plateaus yield exactly the same results
as Infomap; when µ1 < µ < µ2, our second strongest plateaus and Infomap recover the
implanted communities to the same extent of perfection. Compared to previous methods
of multiresolution that are tested in [42], our method performs more robustly on large
heterogeneous networks. It seems to have overcome the resolution limit problem caused
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by network heterogeneity. As we will suggest in the Discussion, such an outperformance,
too, can be attributed to the scalability of our community fitness function.
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Figure 4. Normalized mutual information (NMI) between the communities detected in relatively
small LFR networks by our method and Infomap against the implanted communities with varying µ.
The following network parameters are shared among all subfigures: average node degree 〈k〉 = 20,
maximum node degree kmax = 50, power-law exponent of the degree distribution of nodes τ1 = −2,
and that of the community size τ2 = −1. Other parameters including the network size N and the
range of community size s are labelled in each subfigure: (a) N = 1000, 10 ≤ s ≤ 50; (b) N = 1000,
20 ≤ s ≤ 100; (c) N = 5000, 10 ≤ s ≤ 50; (d) N = 1000, 20 ≤ s ≤ 100.

In addition, our best-fit NMIs shown in Figures 4 and 5 are not artificially selected.
For a given network, usually it is our strongest plateau that suggests the most significant
result. In case the strongest plateau suggests to trivially merge the whole network into
one community, the second strongest plateau is the most informative. This means that our
best-fit solutions are detected automatically, without the need of knowing any information
about the implanted communities. In contrast, previous methods including that in [35],
rely on the a priori knowledge to judge from a mess of detection results which ones are the
best—without knowing the implanted communities, there is no clue to pick out the results
with the “strongest correlations” [35]. The automaticity of our method should be attributed
to the filtering strategy suggested in Section 2.3, which guarantees both the stability, and
the significance, of all our final outputs.
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Figure 5. Normalized mutual information (NMI) between the communities detected in larger and more
heterogeneous LFR networks by our method and Infomap against the implanted communities with
varying µ. The following network parameters are shared among all subfigures: average degree 〈k〉 = 20,
maximum degree kmax = 100, power-law exponent of the degree distribution of nodes τ1 = −2, range
of community sizes s ~ [10, 100]. Other parameters including the network size N and the power-law
exponent of the community size distribution τ2 are labelled in each subfigure: (a) N = 10,000, τ2 = −2;
(b) N = 10,000, τ2 = −3; (c) N = 50,000, τ2 = −2; (d) N = 50,000, τ2 = −3.

3.3. Applications to Real-World Networks

Unlike synthetic networks, real-world networks have no implanted communities.
Instead, there are observed discrete-valued node attributes, or metadata, being customarily
used as a proxy of the ground truth [51,55]. In early literature, it was common to validate
the effectiveness of a community detection algorithm by its success in recovering the
metadata: if the detected communities correlate with the metadata, then one can reasonably
conclude that the corresponding algorithm is promising to work effectively in practice—but
its opposite has been realized more recently as being not true; i.e., failing to fit the metadata
does not necessarily signify the failure of the algorithm [55]. Since synthetic (i.e., artificial)
networks may not be well representative of naturally occurring interactions, applications
to real-world networks are still worth checking for community detection algorithms.

In this section, we investigate three real-world networks: Zachary’s karate club net-
work [56], Lusseau et al.’s dolphins social network [57], and the American college football
network [2]. We detect communities for these networks with our method, and compare our
results with the metadata or “standard divisions” given by previous studies. Considering
the recent viewpoint on metadata [55,58], we do not intend to validate the effectiveness of
our method by its performance on these real-world networks—or not merely that. Thus,
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we do not manage to fit our results unconditionally to the metadata; instead, we try to put
some insight into the differences between them. As “the scientific value of a method is as
much defined by the way it fails as by its ability to succeed” [55], a different but reason-
able outcome to the metadata can hopefully help us understand a different aspect of the
network structure.

Figure 6 shows the community structures within the karate club network. This network
consists of 34 nodes representing 34 members of a karate club; connections between nodes
imply consistent interactions between the corresponding members outside the club. Due
to a disagreement between the club president (John A.) and a part-time instructor (Mr.
Hi), the original club later split into two parts, the officers’ club and Mr. Hi’s; members
of the original club also diverge to follow their own favorite leader (see the communities
split by the dashed line in Figure 6a, which are referred to by the “metadata division” in
the next paragraphs). Community detection methods in previous literature attempted to
recreate such a division by various models; among them the result given by Newman and
Girvan [13] is often taken as a “standard” division for the karate club network.
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Figure 6. Communities detected in the karate club network. (a) Divisions given by our 4-community
level and Newman–Girvan [13]. Our division is shown by nodes of different shapes (octagon,
circle, square, and hexagon), while Newman and Girvan’s is by nodes of different colors (yellow,
red, blue and green). (b) Divisions given by our 5-community level and Medus et al. [59]. Our
division is shown by nodes of different shapes (octagon, circle, square, hexagon and diamond), while
Medus et al.’s is by nodes of different colors (yellow, red, blue and green). The dashed line drawn in
both (a,b) divides the network into two parts, corresponding to a fission which had actually happened
to the club. (c,d) Plateaus detected by our method from 1000 realizations of the Louvain algorithm
at each resolution with β = 1 and β = 2. Numbers above the plateaus indicate the corresponding
numbers of communities.

Applying our method to the karate club network, we find a distinctive difference
between real-world networks and synthetic networks—that is, in terms of the number
of communities, synthetic networks are implanted with discrete levels of communities,
while real-world networks may display more “continuous” community levels. As shown in
Figure 6c,d, with varying resolution, our method detects 11 levels of communities with β = 1,
and 10 levels with β = 2 in the karate club network; the numbers of communities include every
value from 1 to 12. Surprisingly, these community levels are all stable and unique, whose
topologies are exhibited in Supplementary Figure S6, forming roughly a hierarchical structure,
with only minor “reassembling” of communities in the 5- and 6-community levels (detected
with β = 1 only, denoted by the dashed rectangles in Supplementary Figure S6). Among all
these levels, our 2-community division differs from the metadata—but it is fully consistent
with the division suggested in [60,61], which has also been known as the only way to divide
the karate club network into communities all defined in a strong sense [62]. Except for the
2-community level, communities of all the other levels can be properly combined to recreate
the metadata division. For example, in Figure 6a,b, we exhibit our 4- and 5-community
divisions, respectively, by nodes of different shapes. Obviously, combining circles and
octagons in both Figure 6a,b roughly recovers Mr. Hi’s club, while combing squares and
hexagons (and also diamonds in Figure 6b) roughly recreates the officers’.

Now, we compare our divisions with previous ones. The same as previous methods [13,59],
our method also subdivides the metadata division into more communities. As shown in
Figure 6a, our 4-community division is largely consistent with the division given by
Newman and Girvan through their shortest path betweenness method [13], except one
node: node 10. We notice that node 10 has only two neighbors: node 3 joined Mr. Hi’s
club, and node 34 joined the officers’. It seems difficult to determine which choice for
node 10 should be better than the other based on the network structure. On the other
hand, compared to the metadata division, both our result and Newman–Girvan’s have
misclassified node 9 to the officer’s club, since node 9 evidently has more connections to
the officers’ club than to Mr. Hi’s. Actually, in the original literature of Zachary’s [56], there
are two metadata attributes recorded: the political leaning of each of the members and the
faction they finally joined after the club fission. Previous literature on community detection
only used the latter to evaluate the results, so that node 9 is almost always mislabeled.
Considering the metadata on the political leaning of members (see Table 1 in [56]), node 9
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was actually a weak supporter of the officer, but he chose to join Mr. Hi’s club only for the
convenience of a coming exam for his black belt. Meanwhile, node 10 was identified as a
member of no faction, who may have probably chosen the faction randomly. As suggested
by [55], the detected communities and the metadata may capture different aspects of
the network structure, thus, some misclassification of nodes may also provide worthy
information about the network.

Alternatively, the simulated annealing approach applied by Medus et al. results in
a different division for the karate club network [59]. In Figure 6b, we demonstrate that
Medus et al.’s division is fully consistent with our 5-community division, if we combine the
smallest community (diamonds, i.e., nodes 27 and 30) with a larger community (squares).
On this community level, node 10 is correctly classified (to the officer’s club). Our result
suggests that although Newman–Girvan and Medus et al.’s divisions look different, they
are probably results observed at different resolutions: they represent different community
levels, and are basically both correct.

Next, we move to the dolphins’ social network (hereafter, we call it the “dolphins’
network” for short). The dolphins’ network was compiled by Lusseau and his collaborators
from seven years of filed studies on a bottlenose dolphin society living in Doubtful Sound,
New Zealand [57,63]. To our knowledge, the first version of this network was established
in [63], including 40 individuals of dolphins. After that, an extended version including
62 nodes and 159 edges was published in [57], which is the “dolphins’ network” widely
studied by community detection literature, including this paper. Nodes of the network
represent the population of dolphins, while edges reflect associations between dolphin
pairs occurring more often than expected by chance [57,64]. Newman and Girvan firstly
divided this network into two communities in [13], which allegedly correspond to a “known
division” of the dolphins’ society. However, as far as we know, such a “known division”
was not included in the metadata recorded in [57,63], thus, previous literature actually
took Newman and Girvan’s division as a standard division. The larger community of
Newman–Girvan’s can be further divided into four smaller communities [13], as visualized
in Figure 7a. Such divisions have been cited later by both Newman and Lusseau [64,65].
In [64], the smallest community containing only two nodes (Zipfel and TSN83, i.e., the
purple community at the top of Figure 7a) was merged into a larger community (the red
community right in the middle of Group 1), so that the total number of communities
decreased to four [64,65].

Applying our method to the dolphins’ network, we obtain similar results to the karate
club network. Among the multiple community levels, our 2-community level exhibits
the strongest plateau (except the trivial single-community level, see Figure 7c,d. The
corresponding network division is visualized in Figure 7b by nodes of different shapes
(rectangles and ellipses). Compared to the standard division given by Newman and Girvan,
our 2-community division misclassifies only one node, SN89, among all 62 nodes, to a
different group. We notice that SN89 has only two connections: one to SN100, the central
node with the highest betweenness [64] in Group 1, and the other to Web, an individual in
Group 2. It was said that the “known division” between the two groups of dolphins was
due to a temporary leave of SN100: interactions between the two groups were restricted
while SN100 was away and became more common when it reappeared [13,64]. We argue
that when SN100 was away, presumably the interaction between SN89 and Group 1 should
also be cut off—however, its interaction with Group 2 can be maintained through the
connection to Web. Therefore, on the 2-community level, our classification for SN89 should
be more reasonable, which fits the ground truth better.

However, shifting to a higher resolution, the result is different. In Figure 7b, we exhibit
our 7-community division by nodes of different colors; the corresponding communities are also
enclosed in different boxes for better visibility. It turns out that two of our smallest communities
(yellow and green, on the bottom middle and upper right of Figure 7b) can be merged into the
blue and red communities to perfectly recreate Newman and Girvan’s 5-community division.
On this level, node SN89 has also been reclassified to the “right” group.
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The last network we study in this section is the American college football network
(for short, we will call it the “football network”); it was constructed from the schedule of
the Division I games of the 2000 season of United States college football [2]. This network
consists of 115 nodes representing 115 college football teams, distinguished by their college
names. Among all teams, 107 were affiliated with 11 different conferences each containing
6 to 13 teams, and the rest 8 teams were independent of any conference. Edges of the
network represent scheduled games between the connected teams during the 2000 season,
which turned out to be much more frequent between teams of the same conference than
between those of different conferences. Since Girvan and Newman firstly recreated the
conference assignments correctly for most teams with their algorithm in 2002 [2], the football
network has been cited and investigated repeatedly in community detection literature.
However, in 2010, Evans pointed out there was a serious error in Girvan’s and Newman’s
metadata recorded in Figure 5 of [2]: the conference assignments for those teams seemed
to be collected during the 2001 season rather than the 2000 season [55,66]. In Figure 8a,
we exhibit the conference assignments corrected by Evans in Appendix C2 of [66] with
nodes of different colors; especially, independent teams are denoted by red hexagons.
We also annotate the corresponding name of the conference beside each group of nodes.
For comparison, we exhibit in Supplementary Figure S7 the metadata of Girvan’s and
Newman’s [2]; validity of the metadata has been demonstrated in [66].

With our method, we also detect multilevel communities in the football network, see
Figure 8b,c for the plateaus. Among them, the strongest plateau suggests a 12-community
division, which is naturally displayed in Figure 8a with edges inside communities being
shorter than those between different communities. Obviously, our division perfectly
recovers the members for all 11 conferences: teams of the same conference are all classified
into the same community. As for the 8 independent teams, 5 of them have been put into
an individual community (“Independents” in Figure 8a), and the other 3 are assigned
to two conferences that they played most of their games with. Girvan’s and Newman’s
division agrees with ours, except only one node (node 37, representing team “Central
Florida”) is assigned to conference “Mid America” [2], which, to our viewpoint, is only a
minor difference.
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Apparently, detection “errors” observed in Supplementary Figure S7, as well as those
reported by Girvan and Newman in [2], are both due to the errors in the metadata [66],
rather than the failure of the community detection algorithms [55].
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3.4. Tests on Extremely Large Networks with Ground Truth Communities

To test the performance of our method as the network’s size increases, in this section
we implement our approach to two very large real-world networks: the Amazon product
co-purchasing network [67], and the DBLP collaboration network [67]. Table 2 shows the
sizes, numbers of edges and numbers of communities contained in these networks. Both
networks have metadata (i.e., “ground truth” communities) suggested in [67]. We observe
these ground truth communities contain “nesting” structures, namely, some communities
are proper subsets of other communities, implying that the ground truth communities are
probably a mixture of communities detected at different resolutions. So, when we compare
the ground truth communities to communities detected by other methods, we remove all
the communities nested in other communities to avoid repeat counting.

Table 2. Network sizes (numbers of nodes), numbers of edges and numbers of communities contained
in the Amazon and DBLP networks.

Network Size
Number
of Edges

Numbers of Communities Suggested by

“Ground
Truth” 1 Q Infomap Fβ

α (β=1) 2

Amazon 334,863 925,872 4097 243 141,557 3373
DBLP 317,080 1,049,866 12,878 213 302,402 114,049

1 The “ground truth” communities suggested in [67] contain nesting communities, i.e., communities that are
proper subsets of other communities. Numbers of the “ground truth” communities shown in this table have
excluded all such properly nested communities. Figure S8 exhibits the distributions of sizes of the ground truth
communities for these two networks. 2 Our method (Fβ

α with β = 1) detects different numbers of communities
with different resolution parameter α. Numbers of communities shown here are detected at the resolutions having
the highest values of normalized mutual information (NMI) to the ground truth communities.

We choose the Amazon and DBLP networks for our test because they have differ-
ent types of ground truths: the ground truth of the Amazon network contains relatively
fewer communities, while the ground truth of the DBLP network contains much more
communities. We select three state-of-the-art algorithms, including the standard modular-
ity Q of Newman [27] and its multiresolution version Qγ generalized by Reichardt and
Bornholdt [33] (see Formula (4)), as well as Infomap [37], to compare with our method
proposed in this paper. We observe Infomap and Q perform differently: Infomap tends
to split the network into more communities while Q tends to split it less, so we anticipate
Q may work better for the Amazon network while Infomap would be more suitable for
the DBLP network. Figures 9 and 10 exhibit the normalized mutual information (NMI,
see Formula (5)) among the detected communities; here, we adopt the NMI as a statistical
quality metric for our method comparison because on large networks it is not convenient
to compare any detection results node by node. As expected, for the Amazon network,
Q recovers the ground truth better than Infomap; the corresponding NMIs are 0.44 (Q) and
0.40 (Infomap); see Figure 9a. However, for the DBLP network, NMIs between the ground
truth and the communities detected by Q and Infomap are, respectively, 0.37 and 0.69 (see
Figure 10a), implying that Infomap performs better.

Being a multiresolution approach, our method shows high consistencies to Q at low
resolutions (i.e., with small values of α), while performs more like Infomap at high resolutions.
Since both the Amazon and the DBLP network are not multilayer, in this section we detect
their communities with β = 1 (with β > 1 we obtain similar results). Figures 9b and 10b exhibit
the NMIs between our communities and those detected by Infomap and Q. The best fits
between our method and Q emerge at α = 0.03, NMI = 0.73 for the Amazon network, and
α = 0.05, NMI = 0.64 for the DBLP network. It should be noted that these NMIs already
imply a high consistency between the compared methods, because when we check the
results detected all by Q in multiple realizations for the same networks, the NMIs between
two detection results with very close values of modularity (∆Q < 10−3) turn out to be
0.80 for the Amazon network and 0.63 for the DBLP network, which are close to the
NMIs between our method and Q. On the other hand, consistency between our method
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and Infomap keeps increasing with the increase of α, until it exceeds the upper bound
2β − 1. To show this trend, we expand the varying range of α from (0, 1) to (0, 1.5) for
β = 1 in Figures 9b and 10b. When α approaches 1.5, the NMI between communities
detected by our method and Infomap comes up to 0.81 for the Amazon network, and
0.96 for the DBLP network. Therefore, within proper scales of resolution, our detection
results for both networks are highly consistent with those detected by Infomap and Q.
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Figure 9. Normalized mutual information (NMI) among the communities detected in the Amazon
product co-purchasing network by different methods. (a) Q (blue dashed line), Infomap (red dashed
line) and our method (Fβ

α with β = 1 and varying α) versus the ground truth suggested in [67].
(b) Our method (Fβ

α ) versus Q and Infomap. (c) Qγ versus the ground truth at varying γ, where
the red horizontal dashed line signs the level of NMI of the best fit between our result and the
ground truth.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 24 of 36 
 

and the communities detected by Q and Infomap are, respectively, 0.37 and 0.69 (see Fig-

ure 10a), implying that Infomap performs better. 

Table 2. Network sizes (numbers of nodes), numbers of edges and numbers of communities con-

tained in the Amazon and DBLP networks. 

Network Size 
Number 

of Edges 

Numbers of Communities Suggested by 

“Ground 

Truth” 1  
Q Infomap 

F  (β = 1) 2 

Amazon 334,863 925,872 4097 243 141,557 3373 

DBLP 317,080 1,049,866 12,878 213 302,402 114,049 
1 The “ground truth” communities suggested in [67] contain nesting communities, i.e., communities 

that are proper subsets of other communities. Numbers of the “ground truth” communities shown 

in this table have excluded all such properly nested communities. Figure S8 exhibits the distribu-

tions of sizes of the ground truth communities for these two networks. 2 Our method ( 
F  with β 

= 1) detects different numbers of communities with different resolution parameter α. Numbers of 

communities shown here are detected at the resolutions having the highest values of normalized 

mutual information (NMI) to the ground truth communities. 

 

Figure 9. Normalized mutual information (NMI) among the communities detected in the Amazon 

product co-purchasing network by different methods. (a) Q (blue dashed line), Infomap (red dashed 

line) and our method ( 
F  with β = 1 and varying α) versus the ground truth suggested in [67]. 

(b) Our method ( 
F ) versus Q and Infomap. (c) Qγ versus the ground truth at varying γ, where 

the red horizontal dashed line signs the level of NMI of the best fit between our result and the 

ground truth. 

 

Figure 10. Normalized mutual information (NMI) among the communities detected in the DBLP
collaboration network by different methods. (a) Q (blue dashed line), Infomap (red dashed line) and
our method (Fβ

α with β = 1 and varying α) versus the ground truth suggested in [67]. (b) Our method
(Fβ
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vertical dashed line signs the resolution γ at which Qγ starts to outperform our method.

Considering the metadata (i.e., “ground truths”) suggested by [67], our best recovery to
the ground truth of the Amazon network is achieved at α = 0.021, β = 1; the corresponding
NMI = 0.47, which is greater than the NMIs achieved by all other three methods; see
Figure 9a,c. On the other hand, our best recovery to the ground truth of the DBLP network
emerges at an α that slightly exceeds the upper bound 2β − 1: when β = 1 and α = 1.06,
our best NMI = 0.69. This implies that the ground truth of the DBLP network somewhat
tends to over-split the network into more communities, just as Infomap does. Our method
recovers the ground truth of the DBLP network better than Q, nearly to the same level as
Infomap; see Figure 10a.
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As for the multiresolution modularity Qγ on the Amazon network, its performance is
not as good as, but still to the same level as, our method. The best NMI of Qγ is achieved
at γ = 0.35, and the corresponding NMI = 0.46; see Figure 9c. However, on the DBLP
network, at very high resolutions, Qγ outperforms our method in fitting in the ground
truth. As shown in Figure 10c, when γ > 30,000, NMIs achieved by Qγ are above ours.
When γ varies between 0 and 200,000, the best NMI achieved by Qγ is 0.70, which is a little
bit higher than the best NMI achieved by our method (α = 1.06, NMI = 0.69). This may,
on the other hand, reveal one shortcoming of Qγ, which is also true for other equivalent
methods such as the multiresolution Potts models [32–36]. That is, there does not exist
a finite varying range for the resolution parameter γ. For instance, the Amazon and
DBLP networks have similar sizes and similar numbers of edges, but the optimized values
of γ that best recover their ground truth communities differ enormously: for Amazon
γ = 0.35 and for DBLP γ > 200,000—over six orders of magnitude. Without knowing the
sizes of “expected” communities, it would be really challenging to locate such optimized
values of γ that may well recover the metadata, especially for large real-world networks.

However, the above problem does not apply to our approach. The tunable parameter
α enables our method to fit in different metadata (i.e., ground truths) within different
resolution scales. Especially, the explicit varying range of α within (0, 2β − 1) substantially
facilitates our searching on any expected community structures. Even if in some special
cases we need to expand the varying range of α (as we did in Figures 9b and 10b), the
expanded range is still finite. In summary, on extremely large networks with ground truth
communities, our method remains performing effectively and efficiently, at least to the
same level as the widely accepted state-of-the-art algorithms such as Q, Qγ and Infomap.

4. Discussion

Above, we have validated the effectiveness of our method on synthetic benchmark
networks, including the hierarchical RB networks and the heterogeneous LFR networks.
We also investigated its applications on real-world networks, and exhibited the consistency
and discrepancy between our results and the metadata. The outperformance of our method
can be attributed to two distinctive features: (1) the scalability of the community fitness
function, and (2) the stability of the outputs. Next, we make some discussions on the
features of our method.

4.1. Scalability of the Community Fitness Function

The scalability of our community fitness function (Formula (2)) originates from two
aspects. First, its original form (Formula (1)) as introduced in [30] is, by design, more
scalable than other community quality functions, for example, the standard modularity
Q proposed by Newman [27], which is generally reformulated as [3,5,8,42]

Q = ∑
G

QG = ∑
G

[
kGin
2M
−
(

kG

2M

)2]
(6)

Here, M is the total number of edges within the whole network; QG , kGin and kG = kGin + kGout
are the modularity, in-degree and total degree of community G. Obviously, the value of QG

depends heavily on the community size: in an LFR network, since kGin/kG = 1− µ (µ is the
mixing parameter),

QG =
kGin
2M
−
(

kG

2M

)2

=
kGin
2M

[
1− kG

2M(1− µ)

]
. (7)

In large networks, it can be expected that 2M� kG , so kG
2M(1−µ)

≈ 0, thus QG ≈ kGin
2M ∝ kGin.

This reflects a fact that the modularity QG increases almost linearly with the community
size (here, without loss of generality, we measure the community size by the in-degree
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rather than the number of nodes). Large gaps of QG exist between communities of different
sizes in a heterogeneous network, which inhibits simultaneous detections on communities
of distinct sizes. In contrast, the community fitness function (Formula (1)) is

f G =
kGin

(kG)α = (1− µ)α(kGin)
1−α ∝ (kGin)

1−α (8)

Since α > 0, apparently f G increases not as fast as QG with the community size: it tends
to narrow the gap between large and small communities. As a result, in a heterogeneous
network, communities having close densities of inner connections but far different sizes
can be simultaneously identified by the community fitness function f G , but not by the
modularity function Q. The multiresolution version of Q proposed by Reichardt and
Bornholdt [33] does not solve the problem: it introduces a resolution parameter γ as
in Formula (4):

Qγ = ∑
G

[
kGin
2M
− γ

(
kG

2M

)2]
(9)

However, since
(

kG
2M

)2
is a minor item of the formula, γ is not effective enough to

rescale Qγ and overcome the resolution limit problem [42]. A similar problem also holds
for a majority of previous multiresolution methods, including the popular Hamiltonian-
based Potts models [32–36]. That explains why previous multiresolution methods perform
poorly on heterogeneous networks, as argued by [42], while our method in this paper has
outperformed all of them (see Section 3.2).

The second origination of the scalability is the scaling factor β: to some extent
β makes the fitness function “re-scalable”. As we have discussed in Section 2.1, the original
community fitness function has β fixed to 1, and the varying range of the resolution param-
eter α is between 0 and 1. According to our estimation in Appendix A, such a varying range
is a “relevant” scale of resolution, within which both the merging of small communities
and the splitting of large communities are restricted. Therefore, in multilevel networks,
only the lowest community level can be detected, while all intermediate levels are invisible.
In contrast, when β > 1, it rescales the whole resolution range by a multiple factor β, which
amplifies the resolution scales of different community levels, and effectively enables our
detections on all levels of communities. As a result, for the RB hierarchical networks, our
method successfully detects up to five levels of communities with β = 2, which to our
knowledge, has not been done by any other methods reported in previous literature.

Yet the deficiency of our scaling factor β is that it rescales the resolutions unevenly:
comparing to the lowest and highest (but trivial) levels, expansions for the resolution scales
of the intermediate community levels are relatively minor. As a result, for networks having
too many community levels, our method fails to detect some of them. Additionally, when
the network size is too large, it becomes more and more difficult for the original Louvain
algorithm to converge to a best solution. Improved methods and algorithms are to be
studied in the future.

4.2. Stability of the Outputs

Stability of the outputs is mainly due to our strict stringencies of both defining and
identifying the plateaus. It has been popular to rank the significance of outputs by the per-
sistence of plateaus in previous literature. However, as we have argued in the Introduction,
if the term “plateau” was only loosely defined, which cannot guarantee “one plateau one
topology,” the related ranks are not surely trustworthy. Although we believe most plateaus
in previous literature did have consistent topologies, such an important issue has not been
stated, even once.

In this paper, we suggested a strict stringency that requires not only “one plateau
one topology”, but also a “best-and-unique” solution for each relevant resolution. With
this stringency, we removed the above suspicions on plateaus, and also rejected unstable
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results of detection automatically. Here, we raise a simplest example: for an RB25 net-
work, resolution scales exhibited in Figure 11e,f, i.e., 0.14 ≤ α ≤ 0.25 for β = 1, and
1.27 ≤ α ≤ 1.37 for β = 2, only yield unstable divisions of the network. Within these
resolution scales, best solutions detected by the Louvain algorithm do not have unique
topologies. For instance, Figure 11a–d show four different 4-community divisions for an
RB25 network. In the context that nodes of the network are distinguishable, due to the
network symmetry, these different divisions all have the same value of Fβ

α , and in certain
resolution scales, as shown in Figure 11e,f, they can all be detected as best solutions—but
not unique. To our viewpoint, these divisions are unstable because different realizations
yield different solutions. When the network is more complex, there exist large numbers
of such equivalent divisions, none of which are really the best (see our discussion in
Section 3.1 on Figure S4). In Figure 11e,f, the central RB5 units are combined with randomly
chosen peripheral units, namely, these communities result from random convergences
of the heuristic algorithm, and cannot be expected to contain any useful information on
the node attributes of the network. Similar phenomena also exist for asymmetrical net-
works; in both the LFR and the real-world networks, we also observed large numbers of
“best-but-non-unique” solutions in our junks. Our strategy is designed to automatically
reject such random solutions and obtain a clean diagram of plateaus: all our plateaus are
stable, and relevant to known community structures. Our selection is inartificial, and the
selected results are largely interpretable. In contrast, previous methods did not require
the uniqueness of solutions; plateaus for the same networks detected by these methods
are much more redundant. Small plateaus emerge within the transitional regions between
large plateaus (as the unstable resolution scales shown in Figure 11e,f); see Figure 1 in [5],
Figure 2 in [35], Figure 3 in [36], Figures 2 and 3 in [46], and so on. These small plateaus
are mostly uninterpretable; one has to rely on the a priori knowledge about the network to
select the most interpretable results, and arbitrarily ignore all the rest.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 28 of 36 
 

divisions, none of which are really the best (see our discussion in Section 3.1 on Figure 

S4). In Figure 11e,f, the central RB5 units are combined with randomly chosen peripheral 

units, namely, these communities result from random convergences of the heuristic algo-

rithm, and cannot be expected to contain any useful information on the node attributes of 

the network. Similar phenomena also exist for asymmetrical networks; in both the LFR 

and the real-world networks, we also observed large numbers of “best-but-non-unique” 

solutions in our junks. Our strategy is designed to automatically reject such random solu-

tions and obtain a clean diagram of plateaus: all our plateaus are stable, and relevant to 

known community structures. Our selection is inartificial, and the selected results are 

largely interpretable. In contrast, previous methods did not require the uniqueness of so-

lutions; plateaus for the same networks detected by these methods are much more redun-

dant. Small plateaus emerge within the transitional regions between large plateaus (as the 

unstable resolution scales shown in Figure 11e,f); see Figure 1 in [5], Figure 2 in [35], Fig-

ure 3 in [36], Figures 2 and 3 in [46], and so on. These small plateaus are mostly uninter-

pretable; one has to rely on the a priori knowledge about the network to select the most 

interpretable results, and arbitrarily ignore all the rest.  

 

Figure 11. Unstable community structures for the RB25 network. (a–d): Four different 4-community 

divisions for the RB25 network: the central RB5 unit is randomly combined with one of the periph-

eral RB5 units. All these divisions have the same value of fitness or modularity, and in certain reso-

lutions scales, they can all be detected as best solutions. However, in the context that nodes of the 

network are distinguishable, these “best solutions” are non-unique, thus, are not qualified to be 

classified to any plateau. (e,f): Unstable resolution scales for the RB25 network detected with β = 1 

and β = 2. Solid circles exhibit parts of the plateaus shown in Figure 2d,e, and the resolution scales 

between them only yield best but non-unique solutions, whose numbers of communities are tagged 

on the corresponding subintervals of resolution. 

4.3. Multilevel Communities in Real-World Networks 

 In previous literature, real-world networks are rarely considered as multilevel net-

works. Even when studying with multiresolution methods and obtaining various network 

divisions, people often artificially select their favorite communities to interpret, and ignore 

all the rest. Our study in this paper reveals that, even filtered by our strictest strategy, real-

world networks still exhibit multilevel structures, whose topologies are surprisingly all 

best and unique. To our viewpoint, communities suggested by stable plateaus should all 

Figure 11. Unstable community structures for the RB25 network. (a–d): Four different 4-community
divisions for the RB25 network: the central RB5 unit is randomly combined with one of the peripheral
RB5 units. All these divisions have the same value of fitness or modularity, and in certain resolutions
scales, they can all be detected as best solutions. However, in the context that nodes of the network
are distinguishable, these “best solutions” are non-unique, thus, are not qualified to be classified to
any plateau. (e,f): Unstable resolution scales for the RB25 network detected with β = 1 and β = 2.
Solid circles exhibit parts of the plateaus shown in Figure 2d,e, and the resolution scales between
them only yield best but non-unique solutions, whose numbers of communities are tagged on the
corresponding subintervals of resolution.
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4.3. Multilevel Communities in Real-World Networks

In previous literature, real-world networks are rarely considered as multilevel net-
works. Even when studying with multiresolution methods and obtaining various network
divisions, people often artificially select their favorite communities to interpret, and ignore
all the rest. Our study in this paper reveals that, even filtered by our strictest strategy,
real-world networks still exhibit multilevel structures, whose topologies are surprisingly
all best and unique. To our viewpoint, communities suggested by stable plateaus should
all have their own particular information [5]: some of them have been interpreted as be-
ing relevant to the a priori knowledge, or metadata of the network, while the rest still
await proper interpretations. We believe that for real-world networks, resolution scales
are essential: communities detected within different resolution scales capture different
aspects of the network structure, and should be interpretable by different node attributes
or metadata. For example, for the karate club network, our detection on the 2-community
level captures the communities all in a strong sense, while on the 4-community level it
recovers the metadata. For the dolphins’ network, our 2-community level corresponds
to a “known division” during the absence of individual SN100, while our 7-community
level is consistent with Newman–Girvan’s division, which is presumably for the period
that SN100 was present. Exploring the relationship between the detected communities and
the metadata is a challenging work, yet it is believed to be promising to yield insights of
genuine worth [55]. Multiple resolutions apparently provide more information than fixed
resolutions, thus investigating real-world networks in a multi-resolution inspection should
be worth considering in future studies.

4.4. Computational Complexity of Our Approach

Our method has exactly the same computational complexity as the Louvain algorithm.
It has been reported that the Louvain algorithm has linear complexity on typical and

sparse data [47], which has not been altered in this paper because we directly use the openly
accessed code provided by the authors of the Louvain algorithm (see Vincent Blondel’s
webpage: https://perso.uclouvain.be/vincent.blondel/research/louvain.html, accessed
on 25 December 2022). Computational complexity that can be possibly introduced by our
approach is mainly due to the calculations of multiple realizations.

1. For each group of fixed parameters (α, β), we run the algorithm in 1000 realizations
to make sure there are always some realizations converging to a best solution. In
practice, this is usually not necessary; 100 realizations will be sufficient for most
practical purposes.

2. For some networks whose fitness landscape is really complex, involving large num-
bers of local maxima [42], it is sometimes difficult to filter out unstable solutions
within finite realizations. Then, a little trick may help to reduce the computational
burden. We can run our computations in multiple batches. Each batch consists of
a certain number of realizations, and produces an independent set of plateaus by
the strategy proposed in Section 2.3. Next, we take an intersection over all sets of
plateaus obtained in different batches: if at a certain resolution different batches
yield different network divisions, this resolution will be considered irrelevant and
knocked out from the plateaus in the final output. Namely, by such an intersection
we are requiring not only “one plateau one topology,” but also the uniqueness of
this topology over multiple batches of computations. We tested on all the synthetic
and real-world networks studied in this paper. By 20 batches of 100 realizations of
computations, we can efficiently remove unstable results that may sometimes require
almost 10,000~20,000 realizations in a single batch to remove them. Yet, for most
networks, running multiple batches is not necessary for practical purposes.

3. For each fixed β, we vary α from 0 to 2β − 1 with a stepwise increment ∆α = 0.01, in
order to search every inches of the resolution scales and discover all potential plateaus.
In practice, to reduce the computational burden, we suggest to firstly use a relatively

https://perso.uclouvain.be/vincent.blondel/research/louvain.html
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larger value of increment ∆α for a global and coarse-grained search, and then use
smaller values for detailed searches in the focused regions found in the global search.

To summarize, with a classical Louvain algorithm, our method can be implemented
efficiently on various classes of complex networks with acceptable computation time.

5. Conclusions

Based on the community fitness function firstly proposed in [30], we made two
improvements. First, we introduced a scaling factor β to amplify the varying range of
the resolution parameter α, which also improves the scalability of the community fitness
function. With this improvement, our method outperforms previous methods since it
not only performs excellently on large heterogeneous networks without being affected by
the resolution limit problem (Section 3.2), but also detects more multilevel communities,
including the intermediate levels, in deep hierarchical networks (Section 3.1).

The second improvement we made is that we suggested a strict definition for the
term “plateau,” as well as a strict strategy to identify them. It has, on the one hand,
avoided the ambiguous use of the term as in previous literature, and, on the other hand,
remarkably improved the stability of our outputs. Our strategy automatically removes
unstable results including the randomly detected communities as shown in Figure 11,
selectively but inartificially. As a result, our outputs are very clean: all plateaus are stable,
representing best and unique solutions obtained at each relevant resolution, without any
redundancies or junk.

Applied to real-world networks, our method discovers multilevel community struc-
tures, which are all stable and unique. Some of them have recovered known attributes, or
metadata of the given network, and the rest are promising to inspire new insights into the
network structure. Especially, we demonstrated that some different divisions suggested by
previous literature actually reflect different aspects of the network structure under different
resolution scales (Section 3.3).

On extremely large networks, our method continues to detect communities effectively
and efficiently. Its performance is at least equally as good as the widely accepted state-of-the-
art algorithms such as modularity Q, Qγ and Infomap. Comparing to other multiresolution
methods, the explicit and finite varying range of our resolution parameter substantially facilitates
our searching on any expected community structures suggested by the metadata (Section 3.4).

Finally, our method can be implemented with any fast heuristic algorithm. In this
paper, we carried it out with a classical Louvain algorithm, which turns out to be both
effective and efficient in detecting communities for various types of complex networks.

Our work in this paper has revealed the potential advantages of one class of “scalable”
methods for community detection. Their outperformance on both large heterogeneous and
deep hierarchical networks notwithstanding, for community detections in extremely deep
or large networks, measures on the quality of communities that are specially developed
(such as higher sensitivity, or the ability of zooming in on certain intermediate commu-
nity levels), as well as more advanced heuristic optimization algorithms, are both worth
pursuing in future studies.
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Appendix A. Relevant Range of the Resolution Parameter α

In this section, we make a rough estimation on the relevant range of the resolution
parameter α for each fixed scaling factor β in the community fitness function

Fβ
α = ∑

G

(kGin)
β

(kGin + kGout)
α

It has been discussed in [42] that the resolution limit problem in community detection
is due to two opposite tendencies (or biases): the tendency of merging small communities
into larger ones, and the tendency of breaking large ones into smaller pieces. These
tendencies/biases can often occur simultaneously. A strict deduction for a “relevant”
resolution range, within which both biases can be avoided, is not straightforward—nor is it
necessary for our purpose in this paper. In this section, we investigate each bias separately,
and then give a rough estimation on the bounds of the relevant range for the resolution
parameter α in Formula (3) in the main text. It should be noted that our purpose is very
simple: all we need is a rough range for α to vary in. Therefore, we only investigate
necessary conditions, rather than sufficient or necessary-and-sufficient conditions.

Appendix A.1. Upper Bound of α: Splitting a Random Graph

With fixed β, since large values of α deliver small communities, the upper bound
of α can be estimated by the limit at which the fitness function Fβ

α starts to split a graph
inappropriately into smaller parts. For such an estimation, one useful reference is the
random graph: since a random graph is believed to have no communities, by any algorithm
it should not be split into smaller pieces [42].

Suppose we have a random graph consisting of N nodes, with probability p, each
pair of nodes shares an edge between them. Consider splitting the graph into two parts:
subgraphM contains m nodes (0 ≤ m ≤ N), while subgraph N contains N − m nodes.
BothM and N are random graphs with identical connection probability p.

Subgraph M (containing m nodes) is expected to have m(m−1)
2 p intra-connections,

thus it has a total in-degree kMin = m(m− 1)p. Each node ofM shares with each node of
N a connection with probability p, thus the out-degrees kMout = kNout = m(N −m)p. Then,
the fitness of communityM can be calculated as

(
Fβ

α

)M
=

[m(m− 1)p]β

[m(m− 1)p + m(N −m)p]α
=

mβ−α(m− 1)β pβ−α

(N − 1)α (A1)
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Similarly, the fitness of community N can be calculated as

(
Fβ

α

)N
=

(N −m)β−α(N −m− 1)β pβ−α

(N − 1)α (A2)

Then, the fitness of the whole network (with respect to a division toM and N ) is(
Fβ

α

)M
+
(

Fβ
α

)N
= [mβ−α(m− 1)β + (N −m)β−α(N −m− 1)β]pβ−α(N − 1)−α (A3)

In comparison, if the whole network is recognized as one community (indicated by
M + N ), its fitness can be calculated as(

Fβ
α

)M+N
= Nβ−α(N − 1)β pβ−α(N − 1)−α (A4)

We do not hope the random graph M + N be split into subgraphs M and N ,
which requires (

Fβ
α

)M+N
>
(

Fβ
α

)M
+
(

Fβ
α

)N
(A5)

Substitute (A3) and (A4) into (A5), we obtain

Nβ−α(N − 1)β > mβ−α(m− 1)β + (N −m)β−α(N −m− 1)β, for any 0 < m < N (A6)

Inequality (A6) is equivalent to the following statement, i.e., the maximum of the function

f β
α (m) = mβ−α(m− 1)β + (N −m)β−α(N −m− 1)β (A7)

should be reached at m = 0 or m = N.
Equation (A8) is a (2β − α)–order polynomial on variable m; a full set of its extrema

(either maxima or minima) is difficult to solve. Here, we simply make a very rough
estimation on the solution of (A6): we notice that due to symmetry, f β

α (m) has an extremum
at m = N/2 (we do not care it’s a maximum or a minimum). As a necessary condition,
(A6) at least requires

f β
α (0) = f β

α (N) > f β
α (

N
2
) (A8)

Substitute (A7) into (A8) we obtain

Nβ−α(N − 1)β > 2α−2β+1Nβ−α(N − 2)β (A9)

2α−2β+1 < (1 +
1

N − 2
)

β

(A10)

Obviously, when α ≤ 2β − 1, (A10) can be always satisfied. In other words, when
α ≤ 2β − 1, at least a random graph would not be split into two subgraphs of the same
size. This makes a necessary condition for avoiding the first bias (inappropriate splitting
of large communities); in this paper, we simply take 2β − 1 as the upper bound of the
resolution parameter α.

Appendix A.2. Lower Bound of α: Merging Complete Graphs

Merging small and dense communities into larger but sparser ones, reflects the reso-
lution limit problem at the other end of the resolution scale: small values of α may cause
this problem. Suppose we have a couple of complete graphs: M consisting of m nodes and
N consisting of n nodes. IfM and N are identified as two independent communities, it is
straightforward to calculate their in-degrees: kMin = m(m− 1), kNin = n(n− 1). As for their
out-degrees, for simplicity, we assumeM and N are disconnected, i.e., kMout = kNout = 0.
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Then, the fitness of the network withM and N identified as separate communities can be
calculated as (

Fβ
α

)M
+
(

Fβ
α

)N
= mβ−α(m− 1)β−α + nβ−α(n− 1)β−α (A11)

For convenience, denote m(m− 1) = a, n(n− 1) = b, β− α = k, then (A11) becomes(
Fβ

α

)M
+
(

Fβ
α

)N
= ak + bk (A12)

On the other hand, ifM and N are merged into one large community (indicated by
M + N ), the in-degree, out-degree and fitness of this large community can be calculated as

kM+N
in = m(m− 1) + n(n− 1) = a + b,

kM+N
out = 0,(

Fβ
α

)M+N
= [m(m− 1) + n(n− 1)]β−α = (a + b)k (A13)

We expectM and N be identified as two independent communities, which requires(
Fβ

α

)M
+
(

Fβ
α

)N
≥
(

Fβ
α

)M+N
(A14)

i.e., ak + bk ≥ (a + b)k (A15)

Consider a function of k: f (k) = ak + bk − (a + b)k, (A15) is equivalent to finding out
a range of k, within which f (k) ≥ 0.

Since d f
dk = ak ln a + bk ln b− (a + b)k ln(a + b), without loss of generality, we assume

m ≤ n, a ≤ b, then

d f
dk
≤ ak ln b + bk ln b− (a + b)k ln b = [ak + bk − (a + b)k] ln b = f (k) ln b

Since f (1) = 0, then d f
dk

∣∣∣
k=1
≤ f (1) ln b = 0, indicating that f (k) is not increasing in the

neighborhood of k = 1. Therefore, when k < 1, i.e., α > β − 1, presumably f (k) ≥ 0, so that
(A15) would be satisfied. In this paper, we take β − 1 as the lower bound of α.

Combining the above Appendices A.1 and A.2, we estimate a “relevant range” for
the resolution parameter α with a fixed value of the scaling factor β: β − 1 < α < 2β − 1. It
should be noted that this range of α was roughly estimated through necessary conditions
rather than sufficient or necessary-and-sufficient conditions: the “real” relevant scale of
resolution can be expected to fall in this range, as a proper sub-region probably—but
resolution limit problems can still exist in the rest of this range since a sufficient condition
is not guaranteed here.
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