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Abstract: This paper investigates the potential of cloud-free virtual optical imagery generated using
synthetic-aperture radar (SAR) images and conditional generative adversarial networks (CGANs) for
early crop mapping, which requires cloud-free optical imagery at the optimal date for classification. A
two-stage CGAN approach, including representation and generation stages, is presented to generate
virtual Sentinel-2 spectral bands using all available information from Sentinel-1 SAR and Sentinel-2
optical images. The dual-polarization-based radar vegetation index and all available multi-spectral
bands of Sentinel-2 imagery are particularly considered for feature extraction in the representation
stage. A crop classification experiment using Sentinel-1 and -2 images in Illinois, USA, demonstrated
that the use of all available scattering and spectral features achieved the best prediction performance
for all spectral bands, including visible, near-infrared, red-edge, and shortwave infrared bands,
compared with the cases that only used dual-polarization backscattering coefficients and partial input
spectral bands. Early crop mapping with an image time series, including the virtual Sentinel-2 image,
yielded satisfactory classification accuracy comparable to the case of using an actual time-series image
set, regardless of the different combinations of spectral bands. Therefore, the generation of virtual
optical images using the proposed model can be effectively applied to early crop mapping when the
availability of cloud-free optical images is limited.

Keywords: crop classification; virtual image; deep learning; generative adversarial networks

1. Introduction

Timely crop condition monitoring and crop yield forecasting are essential for grain
supply and demand control, agricultural commodity price forecasting, and agricultural
policy establishment [1–3]. Since any risk in crop production greatly affects the international
grain market, the resulting volatility in international grain price significantly impacts
the domestic market of crop-importing countries [4,5]. Therefore, it is crucial that crop-
importing countries monitor crop growth conditions in major foreign crop-producing
regions in the context of food security. In particular, the early identification of crop types
before the end of crop seasons is a critical component in the timely forecasting of crop yield
and production [6,7].

Remote sensing imagery can be an effective information source for crop classification
in foreign countries because it can provide multi-temporal thematic information on the
spectral and scattering responses of different crop types in inaccessible regions at various
spatial scales [8–12]. Despite the great potential of crop classification using remote sensing
imagery, crop type maps derived from remote sensing imagery inevitably include errors
that significantly affect further crop yield prediction modeling; thus, it is critical to generate
reliable crop type maps [13].

There are practical issues to be resolved regarding the accurate identification of crop
types using remote sensing imagery, particularly for early crop mapping. Multi-temporal
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images are often used as inputs for crop classification to fully account for the phenological
status of crops [8–16]. However, an incomplete image time series is often available for early
crop mapping to identify crop types at the early crop growth stage, which may achieve poor
classification accuracy when compared to using a complete image time series [17]. Cloud
contamination, common in optical imagery, is a major obstacle to obtaining cloud-free
optical images at the dates optimal for early crop mapping. Synthetic-aperture radar (SAR)
imagery, which can be acquired regardless of the weather conditions, can be used for crop
mapping as an alternative to optical imagery [18–21]. However, it may be challenging to
achieve high classification accuracy comparable to optical imagery when specific crop types
have similar physical structures but different spectral responses. Furthermore, the difficulty
in the visual interpretation of SAR imagery compared with optical imagery is an obstacle
to collecting sufficient training samples for supervised classification in inaccessible regions,
such as in foreign countries. The joint use of SAR and optical imagery has often been
employed to improve classification performance by synergizing complementarity between
SAR and optical imagery [22–26]. However, the availability of cloud-free optical imagery
at the critical crop growth stage for early crop mapping is still limited in the multi-sensor
fusion approach.

Regarding early-season crop mapping using remote sensing imagery, most previous
studies have focused on the selection of multi-temporal image combinations [27,28], the
comparison of various classification methods [29], and the collection of reliable training
samples [13,30]. However, the difficulty in collecting cloud-free optical imagery at the
optimal date for early crop mapping has not been fully explored. From a data availability
perspective, the generation of cloud-free virtual optical images can be a feasible solution to
overcome the missing problems in optical image acquisition for early crop mapping, which
is the primary focus of this study. To this end, SAR imagery can be used as an important
source of information for virtual optical image generation. Since both optical and SAR
images have different imaging mechanisms and physical meanings, it is necessary to apply
advanced methods for such a heterogeneous image translation [31].

Due to the great potential of deep learning (DL) for remote sensing image processing,
many studies have attempted to generate virtual images using DL-based image-to-image
translation. Convolutional neural networks (CNNs), which have been widely applied
to image processing [32,33], lack a coordination mechanism appropriate for multi-sensor
image fusion [31] and manually design effective loss functions [34]. Meanwhile, inspired by
Goodfellow et al. [35], conditional generative adversarial networks (CGANs) [34,36] have
been employed for virtual image generation in the remote sensing community because of
their adversarial learning procedures suitable for image-to-image translation. The virtual
reflectance of visible bands from other bands and satellites was generated using a CGAN-
based prediction [37–39]. Regarding the optical image generation from SAR imagery,
many studies have also conducted SAR-to-optical image translations based on CGANs,
which have proven effective for virtual optical image generation [40–44]. Moreover, vari-
ants of CGAN, including cycle-consistent adversarial networks (CycleGANs) [45–47] and
DualGANs [48], have also been proposed for image-to-image translation.

The performance of the SAR-to-optical image translation depends on the effective
extraction of the key features that account for the quantitative relationships between optical
and SAR images. Thus, it is critical to quantify the different reflectance and scattering
characteristics of various land-cover types. Both scattering and spectral features that are
useful to discriminate different crop types should be used as inputs for CGANs in the
context of crop classification. Despite the potential of red-edge and shortwave infrared
(SWIR) spectral bands for crop classification [49–51], the generation of those spectral bands
has not yet been conducted using CGANs. For example, the spatial resolution of Sentinel-2
red-edge and SWIR bands is 20 m, which is different from the visible and near-infrared
(NIR) bands with a spatial resolution of 10 m. Thus, conventional CGAN models cannot
be applied to all spectral bands of Sentinel-2 without scale conversion. Most previous
studies focused on the generation of visible and NIR (VNIR) band images and only used
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backscattering coefficients as input variables [40,43,44,46–48]. Furthermore, the benefit
of using an additional feature derived from dual-polarization SAR data (e.g., Sentinel-1
images), such as the radar vegetation index [52,53], has not been thoroughly investigated.

From a practical perspective, the virtual optical image should be used as the input
for specific tasks such as land-cover classification or change detection. However, most
studies have focused solely on virtual optical image generation with improved accuracy.
They have not analyzed the impacts of the virtual image on specific applications when
optical imagery is unavailable at the desired time. Very few studies have been conducted
where the generated virtual optical image is directly applied to classification tasks, except
for Bermudez et al. [42], where crop classification and wildfire detection were conducted.
Despite the great importance of early crop mapping, to the best of our knowledge, the
value of virtual optical imagery generated at the optimal date has not yet been evaluated.

The objectives of this study are to generate cloud-free virtual optical images using
SAR images and CGANs and explore the effects of using the generated virtual optical
image for early crop mapping. More specifically, this study demonstrates (1) how well the
CGAN model predicts the reflectance of spectral bands from SAR imagery using additional
information and (2) how predicted virtual imagery could be helpful for early crop mapping.
The main contributions of this study are summarized in the following points:

(1) Specific feature representation and extraction procedures tailored to image translation
in croplands are considered in this study. Various features extracted from Sentinel-1
SAR and Sentinel-2 multi-spectral optical images are utilized for virtual Sentinel-2
image generation.

(2) Unlike most previous studies that focused on virtual optical image generation it-
self, the benefits of virtual optical imagery for a real application, such as early crop
mapping, are demonstrated.

The rest of this paper is organized as follows. The study area and data sets are
described in Section 2. Section 3 presents the methodological framework and experimental
settings employed in this study. Experiment results of virtual image generation and
early crop mapping are presented in Section 4, followed by a discussion in Section 5 and
conclusions in Section 6.

2. Materials
2.1. Study Area

A crop classification experiment for both virtual Sentinel-2 optical image generation
and crop classification was conducted in the subarea in Illinois within the US Corn Belt.
Illinois was selected because Korea mainly imports corn and soybean from the US [54] and
Illinois is one of the core producing states of corn and soybean in the US [5,55].

In this study, the subarea in the southwest agricultural statistics district, where diverse
crops are grown [56], was first selected as a pilot study area considering the diversity of land-
cover types. Both the quantitative evaluations of the virtual Sentinel-2 imagery generated
by the CGANs and the effect analysis of the generated virtual Sentinel-2 imagery on early
crop mapping require multi-temporal cloud-free images. Hence, we finally selected the
small pilot study area where cloud-free Sentinel-2 images in 2019 were available (Figure 1).

From the cropland data layer (CDL) provided by the National Agricultural Statistics
Service (NASS) of the United States Department of Agriculture (USDA) [57,58], the crops
in the study area consist of five types, including corn, soybean, wheat, alfalfa, and double
cropping of winter wheat and soybean (Figure 1). The non-crop class includes developed
areas, deciduous forests, grassland, and water. Corn and soybean, as major crops in the
study area, occupy approximately 71.6% of the study area.
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Figure 1. Location of the study area. The black box denotes the subarea where virtual image
generation and crop classification are conducted. The background in the left image is the Sentinel-2
image on 30 July 2019, and the cropland data layer in 2019 in the study area is enlarged.

2.2. Data

Multi-temporal Sentinel-2 images taken in 2019 that covered the study area were
considered for the crop classification task. Using a twin-satellite constellation, the Sentinel-
2A and -2B images can be acquired in the same area every two or three days. The Sentinel-2
level-2A Bottom-of-Atmosphere (BOA) products covering the study area were downloaded
from the Copernicus Open Access Hub [59]. The reflectance values of nine spectral bands
in Table 1 were considered inputs for the experiment by considering their effectiveness for
crop classification. The spatial resolutions of the nine multi-spectral bands of the Sentinel-2
images vary from 10 m to 20 m. To match the spatial resolution of all the spectral bands,
three red-edge bands and two SWIR bands with a spatial resolution of 20 m were resampled
to 10 m using bilinear resampling.

Table 1. Specification of Sentinel-2 multi-spectral bands (RE: red-edge; NIR: near-infrared; SWIR:
shortwave infrared).

Spectral Band Central Wavelength (nm) Spatial Resolution (m)

B1 Blue 492.4
10B2 Green 559.8

B3 Red 664.6
B4 RE1 704.1

20B5 RE2 740.5
B6 RE3 782.8
B7 NIR 832.8 10
B8 SWIR2 1613.7

20B9 SWIR3 2202.4

The Sentinel-2 images acquired from June to October were first collected by consider-
ing the growing stages of the corn and soybean in the study area. Before the selection of the
Sentinel-2 images to be used for the experiment, the normalized difference vegetation index
(NDVI) values for corn and soybean parcels were first calculated using multi-temporal
Sentinel-2 images and the CDL data in the study area. In cases where the Sentinel-2 images
covering the study area contained cloud-contaminated areas such as clouds and shadows,
the NDVI values were only computed using cloud-free subareas. The temporal variations in
the average NDVI values for corn and soybean were then analyzed to identify the optimal
date for early crop mapping.
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Figure 2 shows the temporal profiles of the average NDVI values for corn and soybean.
The corn in the study area begins to grow from the end of June. After reaching the mature
stage by the end of August, harvesting begins in mid-September. On the other hand, the
growing stage of soybean begins later than corn (mid-July). Soybean grows continuously
until the end of August and is harvested from mid-September, similar to corn. Based on
the growth cycles of corn and soybean identified in Figure 2, the optimal date for early
crop mapping is either the end of July or early August. As fewer images are preferred for
early crop mapping, the Sentinel-2 images acquired from June to July should be used for
crop classification.
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Figure 2. Temporal profiles of NDVI values for corn and soybean in 2019.

A total of 24 Sentinel-2 images were acquired from June to July, corresponding to
the growing seasons of corn and soybean. However, as shown in Table 2, only seven
cloud-free Sentinel-2 images were available in the study area, emphasizing the necessity of
virtual cloud-free optical image generation for crop classification. Considering the temporal
interval between the cloud-free Sentinel-2 images, four images, including two June images
and two July images, were considered for crop classification (Figure 3). The 30 July Sentinel-
2 image was selected as a target image for the virtual image generation because this image
was acquired at the optimal date for early crop mapping. That is, the 30 July Sentinel-2
image was assumed to be unavailable or heavily contaminated by cloud. This image was
considered the unavailable actual image to evaluate the predictive performance of virtual
Sentinel-2 image generation using CGANs. The multi-temporal Sentinel-2 images and the
virtual Sentinel-2 image were also used as inputs for crop classification.

Table 2. List of the availability of cloud-free Sentinel-2 images in the study area from June to July
2019 (×: cloud-free image unavailable; #: cloud-free image available; l: cloud-free image used for
the experiment; *: target image for virtual image generation).

Date Availability Date Availability

3 June × 3 July ×
5 June # 5 July ×
8 June × 8 July ×

10 June l 10 July ×
13 June × 13 July l

15 June × 15 July ×
18 June × 18 July ×
20 June × 20 July ×
23 June × 23 July #
25 June l 25 July ×
28 June # 28 July ×
30 June × 30 July l *
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Figure 3. Sentinel-2 true color composite images in the study area.

C-band (5.4 GHz) Sentinel-1 SAR images with dual-polarization modes (VV and VH)
were also collected for the virtual Sentinel-2 image generation. The Sentinel-1A image
in an ascending mode on 29 July was finally selected to be input into the CGAN model
in consideration of the target date established for virtual image generation (i.e., 30 July).
The level-1 Ground Range Detected (GRD) high-resolution product with a pixel size of
10 m in the interferometric wide (IW) swath mode was downloaded from the Copernicus
Open Access Hub [59]. Several preprocessing procedures, including the update of the
orbit state vectors, thermal noise removal, border noise removal, radiometric calibration,
speckle filtering, range Doppler terrain correction, and projection, were employed using
the Sentinel Application Platform (SNAP) software [60]. After preprocessing, the cali-
brated backscattering coefficients in the dB unit for both VV and VH polarizations were
finally prepared. As the geometric errors between the Sentinel-1 and -2 images affect
the predictive performance of virtual image generation, the geometric correction of the
Sentinel-1 image was implemented using ground control points manually extracted from
the Sentinel-2 image.

The CDL in 2019 in Figure 1 was used as the ground truth data for the extraction
of crop parcels and crop classification. The original 30 m CDL data were resampled to
10 m using nearest neighbor resampling to match the spatial resolution of the Sentinel
images. All of the land-cover types in the study area were reclassified into six classes: corn,
soybean, wheat, alfalfa, double cropping of winter wheat and soybean, and non-crop. As
crop classification is the main objective, water, built-up, and forest classes were merged
as the non-crop class. The CDL data were used to extract training and test samples for
crop classification.

3. Methods

The entire data processing procedures applied in this study consist of two analysis
steps, including virtual Sentinel-2 image generation using CGAN and crop classification
using random forest (RF). The virtual image generation step includes (1) the extraction
of paired training patches and (2) feature extraction and prediction using the CGAN
(Figure 4). The effectiveness of the virtual Sentinel-2 image generation is evaluated through
crop classification.
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3.1. Extraction of Paired Training Patches

The procedure for extracting the SAR-optical training patches is illustrated in Figure 5.
Prior to patch extraction, all of the images with different data value ranges were normalized
to have a value between 0 and 1 to be used as inputs for the CGAN. In the first processing
step, the training patches were extracted from the paired Sentinel-1 (29 July) and Sentinel-2
(30 July) images to train the generation model. As the Sentinel-2 image on 30 July was
assumed to be unavailable in the pilot study area, the training patches were extracted from
the cloud-free regions outside of the pilot study area within the full scenes of Sentinel-1
and -2 images. After the clouds and shadows were masked out by visual inspection, the
Sentinel-1 and -2 training patches were manually extracted from the cloud-free regions.
The size of the training patches was experimentally set to 512 by 512 pixels.
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Figure 5. Workflow for the preparation of paired training patches employed in this study. Not all
training and validation patches are shown in this figure.

As the generated virtual Sentinel-2 image will be used for crop classification, the
training patches should include crop areas and be extracted from the regions with similar
spatial characteristics to the pilot study area. To this end, regions containing more than
70% of crops within the patch window were extracted using the CDL and then selected
as training patches. To avoid over-fitting and find the optimal hyperparameters of the
generation model, the extracted 1120 training patches were divided into two disjoint
groups, including training (1000) and validation (120) patches for the model training and
the selection of optimal parameters of the generation model, respectively. Furthermore,
data augmentation (DA), which artificially enlarges the number of training data [42,61],
was applied to improve the generalization ability of the trained model by increasing the
diversity of the training patches. Four DA schemes, including rotations and flips in the
vertical and horizontal directions, were applied to expand the number of training patches
intentionally. Finally, 4000 pieces of training data were considered for the model training.

3.2. Virtual Image Generation
3.2.1. Conditional Generative Adversarial Network (CGAN)

As a base model of a CGAN, a generative adversarial network (GAN) is a CNN-based
architecture that consists of a generator and a discriminator [35], where the former generates
virtual images after learning from the input images, and the latter distinguishes the virtual
images from real images. The virtual output images can be generated through such an
adversarial learning procedure.

A CGAN was proposed to overcome the limitations of the GAN, including the genera-
tion of unconditional or uncontrolled random images [34,36]. As implied from its name,
the CGAN is an extended model of GANs, where both the generator and discriminator are
conditioned on additional data [62]. More specifically, the generator combines the prior
input noise (z) and an additional condition variable (y) in joint hidden representation, and
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input data (x) and y are utilized as inputs for the discriminator [36]. The objective function
of CGAN is defined as

LCGAN(G, D) = Ex, y[log D(x, y)] + Ez,y[log(1 − D(G(z, y), y))], (1)

where G and D are the generator and the discriminator, respectively. E[·] is an expectation
operator. G tries to minimize the above objective function, whereas D tries to maximize it
through the two-player min-max game [34].

The L1 loss function for training the generator is also introduced to alleviate blurring as

LL1 = Ex,y,z[
∣∣∣∣x − G(z, y)

∣∣∣∣1]. (2)

Finally, both the objective function in Equation (1) and the L1 loss function in Equation
(2) are simultaneously optimized [29] as

min
G

max
D

LCGAN(G, D) + λLL1, (3)

where λ is the hyperparameter that controls the weights of the two functions.

3.2.2. Two-Stage CGAN Model

In this study, a two-stage CGAN model (hereafter referred to as CGAN2S), including
representation and generation stages, is presented to generate the virtual Sentinel-2 image
(Figure 6).
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1 SAR image).

A representation stage for feature extraction is particularly designed to utilize all
available information from Sentinel-1 and -2 images (Figure 7). The features extracted in
the representation stage are fed into a CGAN-based generation stage to create the virtual
Sentinel-2 image.
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In the representation stage, various inputs, which are helpful in representing scattering
characteristics in croplands, were first considered from the Sentinel-1 images. The dual-
polarization-based radar vegetation index (RVI) was considered an additional SAR-based
feature. The RVI was considered an indicator of the vegetation growth dynamics [52,63,64]
and is defined as

RVI = 4σ0
VH/(σ0

VV + σ0
VH), (4)

where σ0
VH and σ0

VV are the backscattering coefficients for VH and VV polarizations, respec-
tively.

Figure 8 shows the dual-polarization backscattering coefficients and RVI of the Sentinel-
1 imagery on 29 July 2019. Three inputs, including two backscattering coefficients for VH
and VV polarizations, and RVI, were utilized as SAR-based features.
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In addition to the above SAR-based features, multi-spectral bands in Table 1 were also
used as inputs for feature extraction. The core part of Sentinel-2-based feature extraction
is to extract optical features from all of the spectral information via a convolution oper-
ation. After concatenating five resampled red-edge and SWIR band images with VNIR
band images, the convolution operation was applied to generate Sentinel-2-based features
(see Figure 7). Consequently, the extracted features provide useful information to the
discriminator of the CGAN model compared to that of each original spectral band.

The Pix2Pix architecture [34] shown in Figure 9 was adopted in this study because it
can adequately reproduce spectral information [37–39,47]. The Pix2Pix model requires a
paired set of SAR-based and optical-based features. The convolution layer in the represen-
tation stage is regarded as the input layer of the discriminator in the Pix2Pix model.
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A U-Net architecture with a specific encoder-decoder scheme [65] was utilized as the
generator in this study (Figure 9). Virtual images are predicted from the generator through
down-sampling for feature extraction and up-sampling for the reconstruction from the
extracted features. Skip-connection was applied to mitigate the loss of detailed information
during feature extraction. As shown in Figure 9, the down-sampling and up-sampling
include several processing layers, such as convolution, batch normalization, and activation
functions. Thus, many hyperparameters must be optimized. In this study, the optimal
hyperparameters were determined through a trial-and-error approach. The structure and
optimal hyperparameters are listed in Table 3. For feature enhancement and dimension
reduction, we extracted the features by reducing their dimensions with the predefined
kernel size of the patch and strides (4 and 2, respectively). Moreover, dropout was applied
during the up-sampling instead of the input noise in Equation (1) [34].

Table 3. List of the structures and hyperparameters of the U-Net-based generator (P: patch size; F:
number of features; Conv: convolution; BN: batch normalization; L: leaky ReLU; Deconv: transposed
convolution and cropping; D: dropout; R: ReLU).

Down-Sampling Up-Sampling

Layers Output Dimension
(P,P,F) Layers Output Dimension

(P,P,F)

Conv, L (256,256,64) DeConv, BN, D, R (2,2,1024)
Conv, BN, L (128,128,128) DeConv, BN, D, R (4,4,1024)
Conv, BN, L (64,64,256) DeConv, BN, D, R (8,8,1024)
Conv, BN, L (32,32,512) DeConv, BN, D, R (16,16,1024)
Conv, BN, L (16,16,512) DeConv, BN, D, R (32,32,1024)
Conv, BN, L (8,8,512) DeConv, BN, D, R (64,64,512)
Conv, BN, L (4,4,512) DeConv, BN, D, R (128,128,256)
Conv, BN, L (2,2,512) DeConv, BN, D, R (256,256,128)

Conv, R (1,1,512) DeConv, R (512,512,9)

The discriminator is a CNN-based model that discriminates the validity of the gen-
erated images from the generator. A PatchGAN, which tries to determine whether the
generated images are real or fake in a predefined patch unit [34], not in an entire image, was
adopted as the discriminator in this study. As the neighboring pixels in the remote sensing
images are more similar than distant pixels, PatchGAN was applied to determine whether
they are real or fake with an appropriate patch size that maintains the autocorrelation
between the pixels.
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The discriminator includes convolution, batch normalization, and activation function
layers to extract local features from the input image. The Sentinel-2-based features extracted
through the convolution operation were utilized as inputs for the discriminator. Both the
kernel size and strides of the convolution layer were set to 1 to maintain the size of the
input patch. A sigmoid activation function was also applied to distinguish between real (1)
and fake (0) (Table 4). Similar to the generator, the features were extracted by reducing the
dimension with the kernel size and strides set to 4 and 2, respectively.

Table 4. List of the structures and hyperparameters of the PatchGAN-based discriminator (P: patch
size; F: number of features; Conv: convolution; BN: batch normalization; L: leaky; S: sigmoid; Z: zero
padding; *: convolution operation in the representation stage).

Layers Output Dimension (P,P,F)

* Conv, L
Conv, L

(512,512,9)
(256,256,32)

Conv, BN, L (128,128,64)
Conv, BN, L, Z (66,66,128)
Conv, BN, L, Z (63,63,256)

Conv, S (62,62,1)

The virtual Sentinel-2 image was finally created using the Sentinel-1 image acquired
on the prediction date as the input for the trained CGAN model.

3.3. Crop Classification Using Random Forest

In this study, the validity of the virtual image generation was assessed in relation
to crop classification using the generated Sentinel-2 image as one of the inputs. Of the
various machine learning-based classifiers, RF was employed as a classifier because of
its superior classification performance in remote sensing image classification [66–68]. It
should be noted that the main objective of crop classification is to analyze the impact of the
virtual image on the classification performance, not the selection of the best classifier. As an
ensemble classifier, RF maximizes the diversity of decision trees through the bootstrapping
of training samples and the random subsampling of input features to improve classification
performance [69]. The optimal values of the two hyperparameters, including the number
of trees to be grown in the forest and the number of variables for the node partitioning,
were determined using a grid search.

The training samples for the RF-based supervised classification were extracted from
the CDL in 2019. In early crop mapping in foreign countries, it is often difficult to collect
sufficient training samples through visual inspection. To mimic this early crop mapping
case, a very small number of pixels were extracted as training samples. From the prelimi-
nary test, 1056 training samples (approximately 0.1% of the total pixels in the study area)
were finally utilized as training samples for RF-based classification. The number of training
samples for each class was determined by considering the relative proportions of classes in
the study area (Table 5). As a result, the number of training samples for minor crops in the
study area, including wheat and alfalfa, is very small. Furthermore, to mitigate a biased
sampling problem of major classes in supervised classification [13], we set the number of
training samples for the double cropping class equal to corn and soybean. All of the pixels
except the training samples were considered test samples for the accuracy evaluation. As
very small training samples were extracted, the relative proportion of training samples to
test samples was still approximately 0.1%, which is suitable for thoroughly evaluating the
classification results for early crop mapping.
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Table 5. Numbers of training and test samples for five crop types. The percentage value in parentheses
of the training samples indicates the relative proportion for each class.

Class Training Samples Test Samples

Corn 314 (29.7%) 352,473
Soybean 314 (29.7%) 397,161
Wheat 41 (3.9%) 274

Double cropping 314 (29.7%) 51,511
Alfalfa 73 (7.0%) 3407

Total 1056 1,047,520

3.4. Experimental Setup and Evaluation
3.4.1. Virtual Image Generation

The prediction performance of the CGAN-based virtual image generation was evalu-
ated in relation to the different input combinations. Since the virtual Sentinel-2 imagery
is predicted using the SAR-based features as inputs after training the CGAN model, the
effect of using different SAR-based features was investigated by comparing the case using
RVI with the case of only using the dual-polarization backscattering coefficients. Moreover,
due to the fact that the CGAN2S presented in this study utilizes the features extracted
from all spectral bands of the Sentinel-2 imagery (i.e., VNIR, red-edge, and SWIR bands),
two CGAN models using different input spectral bands were additionally considered for
comparison purposes. The first CGAN model only utilized four 10 m VNIR bands as inputs
for generating virtual VNIR bands (hereafter referred to as CGANVNIR). As for the second
CGAN model (hereafter referred to as CGANRESW), five resampled red-edge/SWIR band
images were utilized to generate virtual red-edge and SWIR bands. Thus, the prediction
performance of CGAN2S was compared with CGANVNIR and CGANRESW to generate
virtual VNIR and red-edge/SWIR bands, respectively (Table 6).

Table 6. Comparison cases for virtual Sentinel-2 image generation.

Cases Input Features

CGAN2S Sentinel-1 SAR features and all Sentinel-2 spectral bands
CGANVNIR Sentinel-1 SAR features and Sentinel-2 VNIR bands
CGANRESW Sentinel-1 SAR features and Sentinel-2 red-edge/SWIR bands

The prediction accuracy of the generated virtual images was quantitatively evaluated
using an actual Sentinel-2 image on 30 July. Two accuracy statistics, including the root-mean-
square error (RMSE) and the correlation coefficient (CC), were used as the quantitative
measures of prediction accuracy. The structural similarity (SSIM) and the peak signal-to-
noise ratio (PSNR) [70] were also used to measure the spatial similarity between the actual
and the virtual images. The larger CC, PSNR, and SSIM values and the smaller RMSE value
indicate that the virtual image is more similar to the actual image.

3.4.2. Crop Classification

An incremental classification approach, frequently applied to classification using multi-
temporal images [17,71], was employed for crop classification since early crop mapping
was the primary purpose of crop classification. The five incremental classification cases
were considered in this study, as shown in Table 7. By starting the classification using
only the 10 July Sentinel-2 image (case 1), the new Sentinel-2 image was added as an
input along with all of the previously acquired Sentinel-2 images. As the optimal date for
early crop mapping was at the end of July (see Figure 2), the 30 July Sentinel-2 image was
considered the last image to be used for the incremental classification (case 4). The effect of
using the virtual Sentinel-2 image on early crop mapping (case 5) was evaluated through
comparisons with cases 3 and 4. In particular, the quality of the virtual Sentinel-2 image
generation can be indirectly assessed by comparing case 5 with case 4.
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Table 7. Incremental classification cases considered for early crop mapping.

Case Input Images

1 10 June
2 10 June + 25 June
3 10 June + 25 June + 13 July
4 10 June + 25 June + 13 July + 30 July (actual Sentinel-2 image)
5 10 June + 25 June + 13 July + 30 July (virtual Sentinel-2 image)

The crop classification accuracy was quantitatively evaluated using the reference
samples shown in Table 5. After preparing a confusion matrix, the overall accuracy (OA)
was calculated and used as a quantitative accuracy measure for five incremental classifica-
tion cases.

3.5. Implementation

Virtual image generation was implemented using the Pix2Pix-based code [34], Tensor-
Flow [72], Keras [73], and NumPy [74] libraries on Python 3.6.7. The Scikit-learn library [75]
was utilized for RF-based classification. In addition, ENVI software version 5.6 (L3Harris
Technologies, Broomfield, CO, USA) and Python programming were used for data prepro-
cessing, visualization, and quantitative accuracy evaluation. All the procedures were run
on the CentOS 7.0 operating system with an Intel XEON E5–2630 v4 @ 2.2 GHz CPU and
two NVIDIA GTX1080ti GPUs with 11 GB of memory.

4. Results
4.1. Virtual Image Generation Results
4.1.1. Prediction Performance for SAR-Based Feature Combinations

When comparing the prediction performance of the different SAR-based features
of CGAN2S, the inclusion of the RVI to the dual-polarization backscattering coefficients
exhibited the best prediction accuracy for all of the spectral bands (Table 8). The maximum
improvement in the RMSE of the case using all of the SAR features over the case without
RVI was 8.97% for the green band. When comparing the relative improvement in the
different spectral bands, the relative improvement in RMSE was substantial for the VNIR
bands compared to the red-edge and SWIR bands. The structural similarity and PSNR were
also improved by adding the RVI as additional feature information. The RVI improved the
SSIM by 3.2%p and 2.4%p for the NIR and red-edge3 bands, respectively.

Table 8. Accuracy statistics for different SAR feature combinations (RE: red-edge; NIR: near infrared;
SWIR: shortwave infrared; RMSE: root mean square error; CC: correlation coefficient; SSIM: structural
similarity; PSNR: peak signal-to-noise ratio).

Band
CGAN2S without RVI CGAN2S with RVI

RMSE CC SSIM PSNR RMSE CC SSIM PSNR

Blue 0.021 0.557 0.934 33.410 0.020 0.614 0.945 34.192
Green 0.022 0.615 0.932 33.021 0.020 0.673 0.944 33.848
Red 0.028 0.661 0.894 31.190 0.025 0.708 0.913 31.987
NIR 0.070 0.766 0.688 23.152 0.064 0.799 0.720 23.846
RE1 0.024 0.778 0.920 32.583 0.020 0.815 0.931 33.197
RE2 0.045 0.789 0.811 26.947 0.043 0.820 0.828 27.435
RE3 0.061 0.798 0.732 24.332 0.057 0.833 0.756 24.816

SWIR2 0.029 0.844 0.906 30.862 0.027 0.864 0.921 31.376
SWIR3 0.024 0.811 0.921 32.350 0.023 0.832 0.932 32.856

Figure 10 shows the prediction results with the actual Sentinel-2 imagery zoomed
in on the subarea for a visual comparison. The local details in the actual imagery were
not perfectly depicted in the two prediction results. However, the prediction using RVI
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as additional feature information could reproduce the overall patterns better than the
prediction using only backscattering coefficients. In particular, the parcel boundaries
were well depicted in the prediction using RVI, as confirmed by the higher SSIM value in
Table 8. These comparison results confirm the potential of using the RVI for the extraction
of valuable information for vegetation discrimination.
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Figure 10. Comparison of prediction results for different SAR-based features with the actual Sentinel-
2 imagery. The first and second rows represent the true and false color composite (NIR-red-green as
RGB) images, respectively.

4.1.2. Prediction Performance for Sentinel-2-Based Feature Combinations

Table 9 summarizes the comparison results of the three CGAN models with different
Sentinel-2 band combinations, as listed in Table 6. Based on the comparison results of the
SAR-based feature combinations, three SAR-based features, including two backscattering
coefficients and RVI, were used for the three CGAN models.

Table 9. Accuracy statistics of three CGAN models with different Sentinel-2 feature combinations
(RE: red-edge; NIR: near infrared; SWIR: shortwave infrared; RMSE: root mean square error; CC:
correlation coefficient; SSIM: structural similarity; PSNR: peak signal-to-noise ratio).

Band
CGANVNIR CGANRESW CGAN2S

RMSE CC SSIM PSNR RMSE CC SSIM PSNR RMSE CC SSIM PSNR

Blue 0.032 0.600 0.853 30.027 0.020 0.614 0.945 34.192
Green 0.036 0.649 0.865 28.874 0.020 0.673 0.944 33.848
Red 0.050 0.691 0.745 26.087 0.025 0.708 0.913 31.987
NIR 0.141 0.771 0.569 17.040 0.064 0.799 0.720 23.846

RE1 0.027 0.687 0.904 31.379 0.022 0.815 0.931 33.197
RE2 0.055 0.662 0.767 25.167 0.043 0.820 0.828 27.435
RE3 0.076 0.675 0.664 22.351 0.057 0.833 0.756 24.816

SWIR2 0.036 0.751 0.882 28.782 0.027 0.864 0.921 31.376
SWIR3 0.028 0.730 0.900 30.928 0.023 0.832 0.932 32.856

When comparing the conventional CGAN models that utilized inputs with a single
spatial resolution (CGANVNIR and CGANRESW), the prediction using CGAN2S showed
superior predictive performance across all the spectral bands. In particular, the effect of a
multi-band combination was much more significant for the prediction of the VNIR bands.
The use of red-edge and SWIR bands as additional features could improve the RMSE from
37.5% to 54.61%. The maximum improvement in RMSE was achieved in relation to the
NIR band. Although the resampled red-edge and SWIR bands were utilized as inputs,
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the features from the highly correlated red-edge2 and red-edge3 bands could improve
the prediction accuracy of the NIR band. The SSIM values for the red and NIR bands
were also improved by 16.8%p and 15.1%p, respectively. The accuracy improvement was
relatively minor when comparing the predictive performance of CGAN2S with CGANRESW.
However, the accuracy values of the red-edge and SWIR bands predicted by CGAN2S
were still much greater than that of CGANRESW. The use of the VNIR bands with finer
spatial resolutions could improve the predictive accuracy of the red-edge and SWIR bands.
These comparison results demonstrate the necessity of a multi-band combination to predict
optical imagery.

The visual comparison results in two subareas are shown in Figure 11. The NIR
and red-edge3 bands were selected for the visual comparison because their sensitivity to
vegetation vitality is helpful for crop classification. For the NIR band prediction, CGANVNIR
and CGAN2S generated similar results in this subarea, although their RMSE values over the
study area were significantly different. In contrast, CGANRESWIR generated much-degraded
prediction results for the red-edge3 band. In particular, spectral distortion in the prediction
results was severe in the left subarea consisting of lakes, developed areas, and grassland.
CGANRESWIR utilized resampled input images to consider the spatial resolution difference
between Sentinel-1 and -2 images. Hence, it has a limitation to properly learn the complex
spatial patterns from the pair images. Furthermore, the Sentinel-1 SAR imagery with a
spatial resolution of 10 m and speckle noise filtering may be responsible for the failure to
depict the spatial patterns of small objects. On the other hand, CGAN2S could overcome
such limitations by considering the fine-scale VNIR bands as additional features, which
yielded much better prediction results for both subareas with different land-cover types.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 22 
 

When comparing the conventional CGAN models that utilized inputs with a single 
spatial resolution (CGANVNIR and CGANRESW), the prediction using CGAN2S showed su-
perior predictive performance across all the spectral bands. In particular, the effect of a 
multi-band combination was much more significant for the prediction of the VNIR bands. 
The use of red-edge and SWIR bands as additional features could improve the RMSE from 
37.5% to 54.61%. The maximum improvement in RMSE was achieved in relation to the 
NIR band. Although the resampled red-edge and SWIR bands were utilized as inputs, the 
features from the highly correlated red-edge2 and red-edge3 bands could improve the 
prediction accuracy of the NIR band. The SSIM values for the red and NIR bands were 
also improved by 16.8%p and 15.1%p, respectively. The accuracy improvement was rela-
tively minor when comparing the predictive performance of CGAN2S with CGANRESW. 
However, the accuracy values of the red-edge and SWIR bands predicted by CGAN2S were 
still much greater than that of CGANRESW. The use of the VNIR bands with finer spatial 
resolutions could improve the predictive accuracy of the red-edge and SWIR bands. These 
comparison results demonstrate the necessity of a multi-band combination to predict op-
tical imagery. 

The visual comparison results in two subareas are shown in Figure 11. The NIR and 
red-edge3 bands were selected for the visual comparison because their sensitivity to veg-
etation vitality is helpful for crop classification. For the NIR band prediction, CGANVNIR 
and CGAN2S generated similar results in this subarea, although their RMSE values over 
the study area were significantly different. In contrast, CGANRESWIR generated much-de-
graded prediction results for the red-edge3 band. In particular, spectral distortion in the 
prediction results was severe in the left subarea consisting of lakes, developed areas, and 
grassland. CGANRESWIR utilized resampled input images to consider the spatial resolution 
difference between Sentinel-1 and -2 images. Hence, it has a limitation to properly learn 
the complex spatial patterns from the pair images. Furthermore, the Sentinel-1 SAR im-
agery with a spatial resolution of 10 m and speckle noise filtering may be responsible for 
the failure to depict the spatial patterns of small objects. On the other hand, CGAN2S could 
overcome such limitations by considering the fine-scale VNIR bands as additional fea-
tures, which yielded much better prediction results for both subareas with different land-
cover types. 

 
Figure 11. Prediction results of NIR and red-edge3 bands for different CGAN models with the actual 
Sentinel-2 imagery. The two subareas marked with white boxes in the Sentinel-2 imagery are en-
larged. 

As the actual Sentinel-2 imagery is available, the errors per pixel for the NIR and red-
edge3 bands were calculated and further analyzed using the CDL (Figure 12). For both 
spectral bands, the magnitude of errors of CGAN2S was relatively smaller than those of 
CGANVNIR or CGANRESWIR. As expected, the superiority of CGAN2S over CGANRESWIR was 

Figure 11. Prediction results of NIR and red-edge3 bands for different CGAN models with the
actual Sentinel-2 imagery. The two subareas marked with white boxes in the Sentinel-2 imagery
are enlarged.

As the actual Sentinel-2 imagery is available, the errors per pixel for the NIR and
red-edge3 bands were calculated and further analyzed using the CDL (Figure 12). For both
spectral bands, the magnitude of errors of CGAN2S was relatively smaller than those of
CGANVNIR or CGANRESWIR. As expected, the superiority of CGAN2S over CGANRESWIR
was substantial in relation to the red-edge3 band. The overestimation (red color) and un-
derestimation (purple color) of spectral reflectance were significantly reduced for CGAN2S.
However, despite the significant reduction in errors when using CGAN2S, there still exist
relatively significant errors in the western, northwestern, and northeastern parts of the
study area. The land-cover types in the western part include developed areas. Thus, the
land-cover distributions in this area are relatively more complex than the other crop parcel
areas, which resulted in scattered error distributions in the NIR band prediction. The
clustered errors in the northwestern and northeastern parts indicate the parcel-unit errors,
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mainly due to the learning process in a patch unit for all of the CGAN models. The different
spatial distributions and data ranges of the SAR-based features within each patch unit may
be responsible for the failure to restore the actual spectral reflectance values. These effects
were relatively severe for the urban areas, including complex land-cover types and objects
of different sizes. Since more than 70% of the pixels in the training patch are composed
of crops, large errors may occur in the developed areas and roads. The errors at road and
parcel boundaries were also more significant than those in the interior of the crop parcels,
mainly due to the use of the features generated by a convolution operation in the generator.
Despite these intrinsic errors, CGAN2S showed the best prediction performance.
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4.2. Crop Classification Results

The virtual spectral bands predicted using CGAN2S were used as inputs for the
incremental classification (case 5 in Table 7). The classification accuracy values of the
incremental classification results for different Sentinel-2 input spectral bands are shown in
Figure 13. As more input Sentinel-2 images were used for classification, the classification
accuracy increased regardless of the CGAN model type. When comparing the effects of
using different input spectral bands, the poorest OA was achieved for the case using VNIR
bands for all cases. Except for cases 1 and 2, the difference in OA between using red-edge
and SWIR bands and all of the spectral bands was insignificant for cases 3 to 5.

Cases 1 to 2, where the Sentinel-2 images acquired before July were used as inputs
for classification, achieved poor classification accuracy values of less than 80%. The OA
of case 3 using the Sentinel-2 image on 13 July was larger than that of case 2; however, it
was still lower than cases 4 and 5. The inclusion of the Sentinel-2 imagery on 30 July for
cases 4 and 5 could significantly increase the classification accuracy, achieving an OA value
of more than 90%. The best OA was achieved for case 4, which used the actual Sentinel-2
imagery on 30 July. Case 5, which used the virtual Sentinel-2 imagery predicted by CGAN,
yielded an OA comparable to case 4. The difference in OA between cases 4 and 5 was
approximately 1.72%p on average for the three different inputs. When comparing case 3, the
inclusion of all of the spectral bands of the virtual Sentinel-2 imagery on 30 July increased
the OA by 5.03%p. Despite the errors in the virtual spectral bands predicted by CGAN2S,
the promising accuracy for case 5, which is higher than case 3 and comparable to case 4,
indicates the feasibility of the virtual optical image generation for early crop mapping.
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To further analyze the classification result, the classification map of case 5 using all
of the spectral bands was compared with the CDL, which was regarded as the ground
truth, and a classification error map was generated (Figure 14). As only crop parcels were
considered for classification, non-crop areas were masked in the error map. Notably, the
parts with large error values in Figure 12 were correctly classified, which implies that the
errors in spectral reflectance did not significantly affect the classification performance. From
the error map in Figure 14, most misclassification occurred along the parcel boundaries,
except for some crop parcels. The resampling of the original 30 m CDL to 10 m may not
fully represent the actual land-cover type near the parcel boundary, which resulted in
misclassification along the parcel boundaries. The actual crop type in the misclassified
crop parcels in Figure 14 (black color) was mostly soybean and was misclassified as alfalfa.
However, as alfalfa is a minor crop type in the study area, this misclassification did not
significantly affect the overall accuracy. From both the quantitative and the qualitative
evaluation results, it can be concluded that the cloud-free virtual imagery generated at the
optimal date for early crop mapping could be a practical input for crop classification and
generate reliable results.
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5. Discussion

Concerning virtual image generation, this study utilized all of the available spectral
bands as inputs in the representation stage for Sentinel-2-based feature extraction. From
the experiment results, the use of VNIR bands could improve the prediction accuracy for
the prediction of the red-edge and SWIR bands, and vice versa. The feature extraction from
highly correlated additional spectral bands could improve prediction accuracy. In this study,
after resampling the red-edge and SWIR bands with a spatial resolution of 20 m to 10 m, the
resampled bands were fed into the representation stage, which extracted features, including
all the spectral information, via a convolution operation. When multi-spectral bands have
different spatial resolutions (i.e., Sentinel-2), a simple resampling method, such as nearest
neighbor and bilinear, may not properly account for the differences in the spatial resolution.
Although the improved prediction accuracy could be obtained from CGAN2S, the CGAN2S
prediction still included the blurred spectral reflectance of the red-edge and SWIR bands.
To generate fine-scale band images that maintain the original spectral information, it is
necessary to apply advanced spatial downscaling and super-resolution methods, including
area-to-point regression kriging [76] and deep neural networks [77,78]. In future work, it
will be worthwhile to analyze the effects of spatial resolution enhancement on the prediction
of reflectance.

Previous studies on the virtual optical image generation using SAR imagery and
CGANs reported that loss of texture information of surface objects and distortion in
reflectance were still observed in the generated optical imagery [40,79]. A significant
increase in prediction performance was achieved in the CGAN2S prediction in this study.
However, relatively large errors at parcel boundaries and distortion in reflectance were also
observed in the CGAN2S prediction, as shown in Figure 12. Higher prediction errors did
not directly result in misclassification in this study. Since virtual spectral bands are directly
used as inputs for crop classification, the generation of virtual imagery with fewer errors
is a prerequisite for reliable early crop mapping. In this study, the comparison between
CGAN2S and other CGAN-based models was not performed because the main focus was
on the evaluation of prediction performance with respect to the different input feature
combinations, which was adopted in previous CGAN-based and application-oriented
studies [42,53]. Despite the promising early crop mapping results, it is still challenging
to create reliable virtual optical imagery due to the difference in imaging mechanism
between SAR and optical images. From a methodological point of view, reliable virtual
optical images can be generated through the use of previous time pairs of SAR and optical
images as additional information [40], the modification of model structures, and loss
functions [79–81]. Thus, further methodological developments and comparisons with
other advanced CGAN-based models should be performed to improve the prediction
performance of virtual image generation.

In this study, the subarea in Illinois state was selected as the experimental pilot study
area. Early crop mapping results are usually used as inputs for crop yield forecasting
and crop acreage estimation on a regional scale (e.g., state unit) [2,3,5]. Several aspects
of virtual image generation should be further considered when extending the study area.
When the virtual optical imagery should be generated over a large region, several images
must be stitched to generate the large-scale optical imagery. Stitching several virtual
images acquired along different paths inevitably includes uneven seam lines of reflectance
between the scene boundaries. Hence, the generation of large-scale seamless virtual optical
imagery requires seam elimination, such as weighted averaging [47]. Furthermore, different
growth environments and stages of the same crop types within a large study area [56]
require a sophisticated design for collecting training pairs of SAR and optical images. Such
specific considerations for an extension of the study area should be reflected in future
work so that the findings of this study could be more practical for early crop mapping in
foreign countries.
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6. Conclusions

Cloud contamination in optical imagery is a critical obstacle to constructing a complete
optical image time series for crop classification, particularly for early crop mapping. In
this study, the benefits of using virtual cloud-free optical imagery using CGANs were
investigated in the context of early crop mapping. This study presented a two-stage CGAN
approach, including feature representation and extraction procedures tailored to SAR-to-
optical image translation in croplands. The quality of the generated virtual optical imagery
was assessed via early crop mapping using the virtual optical imagery as inputs for crop
classification. The major findings from a crop classification experiment using Sentinel-1
and -2 images are summarized as follows:

(1) The use of various available inputs for feature extraction in CGANs, including the
radar vegetation index and all of the correlated spectral bands, achieved a significant
improvement in prediction performance compared to conventional CGAN models,
which only used the backscattering coefficients from Sentinel-1 SAR imagery and the
prediction target bands of Sentinel-2 imagery as inputs.

(2) The use of the predicted virtual spectral bands taken at the optimal date as inputs for
early crop mapping led to a classification accuracy comparable to the classification
case using actual cloud-free optical imagery.

Based on the above findings, with further development, virtual optical image gen-
eration from the presented CGAN model could be beneficial for reconstructing missing
information in the cloud-contaminated optical imagery and for thematic mapping tasks
using an optical image time series.
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