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Abstract: Parts feeding is a complex logistic problem that is further complicated by the market
demand for more product variety, which forces companies and manufacturers to adopt the mixed
model approach in their assembly systems. Among the parts feeding policies for mixed-model
assembly systems, there is the so-called “station-sequence” policy, where stationary kits are prepared
using sequences of parts that follow the sequence of the production models. This policy can reduce
stocks at the assembly stations but can also lead to potential production stops due to its low robustness.
The aim of this paper is to study the station-sequence parts feeding policy, focusing on its dynamic
time dependence and analyzing the effects of time and model mix perturbations on the performance
of the assembly system. The study was conducted through a simulation model and a statistical
analysis. The final discussion also provides a set of Industry 4.0 (I4.0) enabled solutions that are able
to address the negative effect of variability on the performance of the system.
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1. Introduction

Mixed-model lines are being increasingly used within productive systems due to
two related factors: (1) the increasing market demand for a greater variety of products
[NO_PRINTED_FORM], and, consequently, (2) the tendency of companies and manufac-
turers to re-organize their processes according to the ATO (Assembly-To-Order) paradigm.
Mixed-model lines allow to produce a large number of variants of a base product with the
same assembly system but, at the same time, they increase the pressure on internal logistics
processes. In practice, the time and productivity losses generated by missing or defective
parts are far greater than for single-model assembly lines, making the correct and on-time
delivery of parts to the assembly system even more crucial. Correspondingly, parts feeding
systems must become more reactive to volume and mix fluctuations and they must also be
able to easily accommodate the introduction of new models and components. Therefore, it
is critical to study how different parts feeding policies perform in a mixed-model environ-
ment. In particular, this paper, which is an extension of the work of [1] that was presented
at the 21st IFAC World Congress in 2020, will focus on the “Station-Sequence” policy.

In general, the definition of the parts feeding policy is already a significant challenge
within modern assembly systems [2]. Modern parts feeding policies can be grouped into
three main categories:

• The Kanban system, where assembly stations are refilled using the pull Kanban
method that is based on bins that contain a fixed quantity of the same item [3].

• The travel kit system, where different parts required for the assembly of the same
product are arranged in kits that follow the assembly process of the product through
multiple assembly stations.

• The stationary kit, where different parts required for the assembly of multiple products
are arranged in kits that are directed to a fixed assembly station.
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One of the variants of the stationary kit category is the so-called “Station-Sequence”
policy: in this approach, the stationary kits are created with sequences of homogeneous
parts (both in terms of typology and physical attributes) that match the sequence of models
that are going to be assembled. Figure 1a and 1b show the station-sequence concept and an
industrial example, respectively.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 16 
 

• The stationary kit, where different parts required for the assembly of multiple 
products are arranged in kits that are directed to a fixed assembly station. 
One of the variants of the stationary kit category is the so-called “Station-Sequence” 

policy: in this approach, the stationary kits are created with sequences of homogeneous 
parts (both in terms of typology and physical attributes) that match the sequence of 
models that are going to be assembled. Figure 1a and 1b show the station-sequence 
concept and an industrial example, respectively. 

  
(a) (b) 

Figure 1. (a) A scheme of how the station-sequence policy works; (b) An industrial example of 
station-sequence application. 

The station-sequence policy (from now on lowercase and without quotes), is based 
on the prediction of transportation orders derived from the production sequence. The 
predicted transportation orders are then used to dynamically generate the tours for the 
supply of the required parts from the warehouse to the assembly stations. Reference [4] 
showed that the main differentiating parameter between different parts feeding policies 
is represented by the total handling time: it includes both the time spent at the warehouse 
(material handling time at the warehouse), mainly in material preparation, and the time 
spent at assembly stations (material handling time at assembly stations) for parts picking 
and placing. With regard to the variation of these two material handling times across the 
aforementioned categories of parts feeding policies, the literature shows two opposing 
trends: 
a. The material-handling time at the warehouse increases moving from a Kanban 

system to a kitting system, due to the increased number of picks that are necessary 
for the creation of the kits [5,6]. 

b. The material-handling time at assembly stations decreases moving from a Kanban 
system to a kitting system. In a kitting system, in fact, fewer materials are stored at 
the assembly station, meaning they can be placed closer to the operator, reducing the 
fetching time and hence increasing productivity [7]. 
The station-sequence parts feeding policy is particularly interesting since it retains 

the low material-handling time at assembly stations typical of kitting systems and 
combines it with a reduced material-handling time at the warehouse. The low handling 
time at the warehouse is achieved since the parts that are picked for the preparation of the 
kits, that belong to the same station sequence, are of the same typology, which are usually 
stored close to each other. The proximity of the picked parts has a strong positive effect 
on the picking time because it significantly reduces the distance traveled by the picker. In 
fact, according to [8], traveling activity accounts for roughly 50% of the total manual 
picking time.  

However, the station-sequence feeding policy also suffers from three main 
drawbacks, which are all related to low levels of the station-sequence stock: 
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station-sequence application.

The station-sequence policy (from now on lowercase and without quotes), is based
on the prediction of transportation orders derived from the production sequence. The
predicted transportation orders are then used to dynamically generate the tours for the
supply of the required parts from the warehouse to the assembly stations. Reference [4]
showed that the main differentiating parameter between different parts feeding policies is
represented by the total handling time: it includes both the time spent at the warehouse
(material handling time at the warehouse), mainly in material preparation, and the time
spent at assembly stations (material handling time at assembly stations) for parts picking
and placing. With regard to the variation of these two material handling times across the
aforementioned categories of parts feeding policies, the literature shows two opposing
trends:

a. The material-handling time at the warehouse increases moving from a Kanban system
to a kitting system, due to the increased number of picks that are necessary for the
creation of the kits [5,6].

b. The material-handling time at assembly stations decreases moving from a Kanban
system to a kitting system. In a kitting system, in fact, fewer materials are stored at
the assembly station, meaning they can be placed closer to the operator, reducing the
fetching time and hence increasing productivity [7].

The station-sequence parts feeding policy is particularly interesting since it retains the
low material-handling time at assembly stations typical of kitting systems and combines
it with a reduced material-handling time at the warehouse. The low handling time at the
warehouse is achieved since the parts that are picked for the preparation of the kits, that
belong to the same station sequence, are of the same typology, which are usually stored
close to each other. The proximity of the picked parts has a strong positive effect on the
picking time because it significantly reduces the distance traveled by the picker. In fact,
according to [8], traveling activity accounts for roughly 50% of the total manual picking
time.

However, the station-sequence feeding policy also suffers from three main drawbacks,
which are all related to low levels of the station-sequence stock:

• A lack of flexibility to the change of sequence and mix of the assembled models. If
the stock of the station sequence is low, the probability to stop the assembly as a
consequence of even one missing part increases when the sequence of assembled
models changes.
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• A lack of flexibility toward variations in the assembly line cycle time. If the stock of
the station sequence is low, the probability to stop the assembly as a consequence of
even one missing part increases when the assembly line cycle time has significant
variations.

• A lack of flexibility with respect to the variation of the parts feeding period. If the stock
of the station sequence is low, the probability to stop the assembly as a consequence
of even one missing part increases when the parts feeding period has significant
variations.

In this paper we are going to study the station-sequence parts feeding policy con-
sidering its dynamic time-dependence and we are going to analyze how its performance
is affected by perturbations of both the assembly line cycle time and the parts feeding
period, as well as by changes in the model mix. This study was carried out through a set
of simulations, as suggested in other contributions such as [9], implemented on Siemens’
Plant Simulation. The main results are the quantitative definition of the main influencing
factors and their impact on system performance. Finally, we provide a brief discussion
on how Industry 4.0 technologies can improve the operations of a company that adopts a
station-sequence parts feeding policy.

The rest of the paper is structured in this way: Section 2 reports the literature review,
Section 3 describes the simulation model, Section 4 discusses the results of the simulation,
Section 5 introduces the main possibilities according to I4.0 implementation and Section 6
presents the conclusions.

2. Literature Review

In mixed-model assembly lines, planning problems can be grouped into two main
categories: medium-long-term problems and short-term problems. The former category
includes the design of the assembly line, line balancing, production planning, or materials
procurement. The latter category can be further divided into three other sub-problems [10]:

• Production sequencing: defining the best sequence of models for each production interval.
• Material flow control: ensuring the timely release of parts from suppliers as well as

the timely delivery of parts to the right assembly stations.
• Resequencing: applying changes to the production sequence in case of disruptions.

The parts feeding problem theoretically belongs to the material flow control sub-
category. However, according to [11], the parts feeding problem ends up being strongly
related also with the production sequencing and resequencing sub-categories. Moreover, all
three short-term problems sub-categories show a clear dynamic time-dependence, which
becomes even more critical when the adopted parts feeding policy is the station sequence,
as shown in the Introduction. However, the literature has addressed the parts feeding
problem in mixed model assembly lines mainly from a static perspective, neglecting the
dynamic aspects and focusing instead on variables and parameters such as parts attributes,
frequency of parts consumption, or parts cost. In practice, many contributions have adopted
this perspective, starting from [12]. For a comprehensive literature review of parts feeding
policy selection, it is possible to look at [13] as well as [14]. Qualitative factors, such as
product and component volume, variety, and size, were adopted as policy selection criteria
in [15]. Conversely, many other works adopted quantitative comparison models for the
selection of the most appropriate parts feeding policy ([4,6,16,17]). More recent examples
include [18], which focused on the development of a cost model for kitting, Kanban, and
line stocking, that was based on qualitative parts features: unit size and cost. Reference [19]
developed a combined methodology, which starts with a hierarchical cluster analysis that
is followed by an activity-based costing methodology, able to select the best-performing
parts feeding system.

Fewer works have attempted to integrate the study of parts feeding policies in mixed-
model assembly lines with the inclusion of dynamic elements. The first contribution of this
kind is [20], which proposed a two-stage heuristic procedure; in the first of the two stages,
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transportation orders were determined according to the expected part consumption rates.
Reference [21] explored the optimal loading of tow trains from a Just-In-Time perspective.
A mathematical model was developed with two objective functions, aimed at minimizing
the number of bins at the stations and the number of surplus bins. A computational study
was also conducted, introducing variability into elements such as parts demand or bin
capacity. The results showed that increasing the delivery frequency reduces inventory or
requires fewer wagons per train. This effect diminishes when delivery schedules become
denser. Reference [10] focused on a paced mixed-model line. A mixed integer model
was developed, and it was tested in a simulation scenario that included various dynamic
elements of variability: three levels of problem instances (number of stations, models, and
line sections), three degrees of parts variability, and two levels of load length of bins, buffer
storage at the stations, size of unit loads and initial inventory at the stations. The results
showed that the high variability of parts demand at the line stations, derived from the
continuous changes in the daily production sequences, represents an additional difficulty in
the management of station-sequence assembly lines. As a consequence, the exact timing of
the material supply acquires even more importance. Reference [22] developed a framework
for the design of an integrated supermarket and feeding system for mixed-model assembly
lines that included, in the second stage, the evaluation of the dynamic aspects of the
problem. A case study based on an automotive production line was presented, and an
analysis of the effects of the variability of fleet size, tow train capacity, and tow train loading
interval was conducted.

The most recent contributions that included the dynamic aspect within the parts
feeding problem in mixed-model assembly lines focused on two main directions: (1) the
scheduling problem of internal vehicles and (2) the development of multi-objective models
that include the evaluation of energy consumption, which is part of a broader tendency
towards the incorporation of sustainability within the productive sector [23]. Works that
fall within the first research direction are: [24–27]. For example, reference [25] investigated
the dynamic scheduling of tow trains in an automotive assembly line, with the objective of
minimizing the weighted sum of the assembly line throughput and the material delivery
distance. A simulation model of the real assembly line was developed using Plant Simula-
tion in order to generate training samples based on the system parameters configuration;
reference [27] studied the dynamic parts feeding scheduling problem in an automotive
mixed model assembly line under a Kanban-based parts feeding policy, considering also
the dynamic disturbances of the assembly lines. The considered dynamic disturbances
were: variations of the production mix, variations in the weights of the scheduling criteria,
maintenance of AGVs, and short-term adjustment of the production sequence. Contribu-
tions that followed the second research direction are: [28–30]. For example, reference [30]
aimed to improve the scheduling algorithm that governs mobile robots by including their
energy consumption in the operational criteria, in order to optimize the overall energy
efficiency and sustainability of the parts feeding system. Two other recent contributions did
not follow the two mentioned directions but explored other themes: reference [31] studied
the concept of line-integrated supermarkets combining station assignment and operator
scheduling problems, including in their work the dynamic variability of the demand at
the stations and the variability in the capacity of both bins and operators; reference [32]
focused on an even more short-term decision level: the launch control of a new car model
in a mixed-model assembly line under real-time conditions (which include variations of
the processing times and setup costs).

In conclusion, in the extant literature on parts feeding policies for mixed-model
assembly lines, there are a few gaps that can be summarized as follows:

• Few studies focused on the dynamic aspect of the parts feeding problem.
• The studies that included dynamic elements, especially the most recent ones, fo-

cused almost exclusively on the scheduling problem of internal vehicles or on the
development of multi-objective models that include energy consumption.
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• There are no studies on the station-sequence policy, despite its wide adoption in the
industrial world.

Considering these gaps, we can therefore state that, to the best of our knowledge,
this paper represents the first work to perform a deep assessment of the station-sequence
feeding policy, as well as being the first to study its dynamic time dependence and the
evaluation of the impact of such dependence on the performance of the system.

3. Modeling of the Station-Sequence Feeding Policy

In order to analyze how the performance of a mixed model assembly system, working
under the station-sequence parts feeding policy, is affected by dynamic time perturbations
and variations of the model mix, an assembly line is modeled with the aid of simulation
software. The chosen software was Plant Simulation

The simulation model includes five assembly stations where three different models
(M1, M2, and M3) can be assembled. The assembly system, represented in Figure 2, was
modeled according to the following set of assumptions:
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• The modeled system is a mixed-model assembly line that includes a buffer between
the parts feeding system and each assembly station. This buffer stores the sequences
of parts that constitute the “station sequence”.

• There is a buffer along the assembly line between each pair of assembly stations.
• The station sequence follows the predicted models mix of the assembly line.
• The sequence for each station considers one part for each model at a time.
• The time distribution of both the assembly line cycle time and the parts feeding period

are considered stochastic with uniform distribution (this assumption will be clarified
below once the input parameters of the simulation model are introduced).

Reference [10] suggested that the variations of the model mix alongside the pertur-
bations of the timing of the materials supply to the stations can have a significant impact
on the performance of the assembly system when the parts feeding policy is the station
sequence. Therefore, in order to examine this link in depth, the following parameters were
considered as variables in our simulation model:

• The assembly line cycle time.
• The parts feeding period.
• The sequences of the model mix.

These variables were formalized with the five following inputs of the simulation
model (the complete set of notations adopted in the simulation are reported in Table 1):

• ALCTi, average assembly line cycle time.
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• ALCTVi, variation in the assembly line cycle time.
• FPi, average parts feeding period.
• PFCTVi, variation of the parts feeding period.
• SEQi, variation in the model sequence.

Table 1. Adopted notations.

Symbol Description

id = 1, . . . I Simulation scenario ID Index
n = 1, . . . , N Assembly station index

ALCTi Assembly Line average Cycle Time of scenario i [s/piece]

ALCTVi
Assembly line cycle time variation compared to the average cycle time of

scenario i [± s/piece]
FPi Average parts feeding period of scenario i [s/sequence]

PFCTVi
Parts feeding period variation compared to the average parts feeding

period of scenario i [±s/sequence]
PFQi Parts fed for each feeding period [parts/feeding period]
SEQi Models sequence of scenario i

PFSEQi Parts feeding sequence of scenario i

BSn,i
Maximum parts quantity within the parts buffer for station n of scenario i

[pieces]
BSi Total Maximum parts quantity within the parts buffers of scenario i [pieces]

Wn,i Working time for station n of scenario i [%]
THRi Total throughput during the simulation period of scenario i [pieces]

MinBS Minimum value of the total buffer content [pieces]
Max Maximum value of the total throughput [pieces]
Wi Average stations working time of scenario i [%·100]
Ti Relative total throughput [%·100]
Bi Relative total Buffer Content [%·100]

Different levels of the input parameters were defined. For example, the variation of the
assembly line cycle time (ALCTVi) can assume three different values: 0, 30, or 60 s/piece.
These values correspond respectively to a 0%, 50%, or 100% variation of the assembly
line cycle time. This approach allows the normalization of the results: the output of a
simulation run can be interpreted as the output of a generic multi-model assembly line
characterized by 0%, 50%, or 100% variation of the assembly line cycle time, providing a
normalized outlook of the results for practitioners. A similar approach was adopted for the
definition of the levels of variation in the parts feeding period. A complete overview of the
input parameters and their variability is offered in Table 2. The input parameters and their
variability were then combined in order to conduct a multi-scenario analysis. The total
number of tested scenarios was I = 486, where each scenario corresponds to a complete
run of the simulation model. An overview of the simulation results is offered in Table 3,
where each row corresponds to a specific scenario, while the columns report both the input
parameters and the simulation results.

Table 2. Simulation parameters.

Parameter Value Parameter Value

Simulation time 4 h FPi [180; 1800; 3600] s/sequence
Assembly Stations 5 Stations PFCTV ±[0; 30; 60; 900; 1800; 3600] s/sequence
Models Number 3 Models PFSEQi [1M1, 1M2, 1M3]

ALCT 60 s/piece SEQi
[1M1, 1M2, 1M3]; [1M1, 1M2, 2M3]; [1M1, 1M2, 3M3];

[1M1, 2M2, 2M3]; [1M1, 3M2, 3M3]; Random
ALCTV ± [0; 30; 60] s/piece
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Table 3. Example of the simulation inputs and outputs for each tested scenario. The first column represents the scenario index, columns 2 to 6 collect the different
values of the input parameters, and the remaining columns list the simulation results.

ID ALCTi ALCTVi FPi PFCTVi SEQi BS1i BS2i BS3i BS4i BS5i W1i W2i W3i W4i W5i THRi BSi PFQi Wi Ti Bi

1 60 0 180 0 1 M1,1 M2,1
M3 4 4 4 4 4 99.6% 99.2% 98.7% 98.3% 97.9% 233 20 3 98.7% 1.00 1.00

2 60 30 180 0 1 M1,1 M2,1
M3 8 8 8 8 8 97.6% 97.2% 96.7% 96.3% 95.9% 229 40 3 96.7% 0.98 2.00

3 60 60 180 0 1 M1,1 M2,1
M3 13 13 13 13 13 95.6% 95.1% 94.7% 94.3% 93.9% 224 65 3 94.7% 0.96 3.25

7 60 0 180 0 1 M1,1 M2,2
M3 80 81 81 81 81 66.7% 66.7% 66.7% 66.2% 65.8% 156 404 3 66.4% 0.67 20.20

8 60 0 180 0 1 M1,1 M2,3
M3 107 108 108 107 107 55.8% 55.8% 55.4% 55.0% 55.0% 130 537 3 55.4% 0.56 26.85

9 60 0 180 0 1 M1,2 M2,2
M3 41 42 42 42 42 83.3% 83.3% 82.9% 82.5% 82.1% 195 209 3 82.8% 0.84 10.45

10 60 0 180 0 1 M1,3 M2,3
M3 54 55 55 55 55 77.9% 77.9% 77.5% 77.1% 76.7% 182 274 3 77.4% 0.78 13.70

11 60 30 180 0 1 M1,1 M2,2
M3 80 81 81 81 81 66.7% 66.7% 66.7% 66.2% 65.8% 156 404 3 66.4% 0.67 20.20

12 60 30 180 0 1 M1,1 M2,3
M3 107 108 108 107 107 55.8% 55.8% 55.4% 55.0% 55.0% 130 537 3 55.4% 0.56 26.85

13 60 30 180 0 1 M1,3 M2,3
M3 54 55 55 55 55 77.9% 77.9% 77.5% 77.1% 76.7% 182 274 3 77.4% 0.78 13.70

14 60 60 180 0 1 M1,1 M2,2
M3 80 81 81 81 81 66.7% 66.7% 66.7% 66.2% 65.8% 156 404 3 66.4% 0.67 20.20

15 60 60 180 0 1 M1,1 M2,3
M3 107 108 108 107 107 55.8% 55.8% 55.4% 55.0% 55.0% 130 537 3 55.4% 0.56 26.85

16 60 60 180 0 1 M1,2 M2,2
M3 41 42 42 42 42 83.3% 83.3% 82.9% 82.5% 82.1% 195 209 3 82.8% 0.84 10.45

17 60 60 180 0 1 M1,3 M2,3
M3 54 55 55 55 55 77.9% 77.9% 77.5% 77.1% 76.7% 182 274 3 77.4% 0.78 13.70

18 60 0 1800 0 1 M1,1 M2,1
M3 30 30 30 30 30 99.6% 99.2% 98.7% 98.3% 97.9% 233 150 30 98.7% 1.00 7.50

19 60 30 1800 0 1 M1,1 M2,1
M3 35 35 35 35 35 97.7% 97.3% 96.9% 96.5% 96.1% 229 175 30 96.9% 0.98 8.75

20 60 60 1800 0 1 M1,1 M2,1
M3 39 39 39 39 39 95.9% 95.5% 95.1% 94.7% 94.2% 225 195 30 95.1% 0.97 9.75

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The output parameters of the simulation, reported in Table 3, are calculated as follows
with Formulas (1)–(7) (please refer again to Table 1 for the complete description of the
adopted notations):

PFQi =
FPi

ALCTi
(1)

BSi = ∑
n

BSn,i (2)

MinBS = Min[BSi] (3)

MaxT = Max[THRi] (4)

Wi = ∑
n

Wn,i

N
(5)

Ti =
THRi
MaxT

(6)

Bi =
BSi

MinBs
(7)

Out of the seven reported output parameters, three were considered as main indicators
of the performance of the assembly system since they represent the overall performance of
the system in terms of working time, throughput, and buffer content, and were used for
the subsequent statistical analysis:

• Wi, the average station working time.
• Ti, relative total throughput.

Bi, relative total buffer content. Theoretically, the best possible simulation scenario
would be the one where the average station working time Wi is maximized, the relative
total throughput Ti is maximized, and the relative total buffer content Bi is minimized.

4. Discussion of the Simulation Results

Statistical analysis was conducted on the simulation results in order to understand
the impact that time perturbations (such as ALCTV, FP, and PFCTV) and model mix
perturbations (SEQ) have on the performance of the assembly system (measured by the
aforementioned parameters W, T, and B).

Inferential analysis was conducted first, in order to quantify the magnitude of the effects
of the input variables on the simulation outputs. Then, an ANOVA analysis was performed,
aimed at the determination of the interactions between input and output parameters. With
regards to the inferential analysis, a Pareto chart of the standardized effects was drawn for each
output parameter (T, W, and B) and is represented in Figures 3–5 respectively. The interaction
plots of the ANOVA analysis are also reported for each considered output parameter (T, W,
and B) and presented in Figures 6–8 respectively.

With relation to the total throughput T, Figure 3 shows that the input variables that
have a significant effect on the output are mainly SEQ and PFCTV, followed by the inter-
action of FP and PFCTV, FP and the interactions PFCTV-SEQ, FP-SEQ, FP-PFCTV-SEQ.
Focusing on the main influencing factors, the trends shown in Figure 6 indicate that the
larger the deviation of both SEQ and PFCTV from their nominal values, the larger the
reduction of the mean of the total throughput T. With regard to the FP-PFCTV interaction,
Figure 6 indicates that the larger FP, the bigger the effect of PFCTV on the reduction of the
throughput T, and vice versa.

Similar considerations can be drawn for the average station working time W. Figure 4
shows that the input variables that have a significant effect on the output are mostly SEQ
and PFCTV, followed by the interaction SEQ-PFCTV and then by FP-PFCTV, FP, FP-SEQ,
and FP-PFCTV-SEQ. Again, the trends represented in Figure 7 show that deviating from
the nominal values of both SEQ and PFCTV ends up reducing the mean of the average
station working time W.
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Finally, for the last output parameter B, the total buffer content, Figure 5 shows that the
main influencing variables are SEQ, ALCTV, and PFCTV, followed by FP-SEQ, PFCTV-SEQ,
FP-PFCTV, and FP-PFCTV-SEQ. The trends reported in Figure 8 indicate that a deviation
from the nominal value of the three main influencing factors (SEQ, ALCTV, and PFCTV)
results in an increase of the mean of the total buffer content B.

To visualize the relations between the values of the three output parameters across
different simulation scenarios, a contour plot is shown in Figure 9: W and B are represented
on the x- and y-axis, respectively, while different levels of the value of T are represented in
a green-shading scale.
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Figure 9 shows that there is a set of scenarios where all three main output parameters
tend towards their theoretical optimum at the same time: T and W are maximized, and B is
minimized. These scenarios are represented in dark green in the bottom-right corner of
Figure 9. There are also two other areas, however, where the highest values of T do not
correspond to the minimum values of B or the maximum values of W: they are the two dark
green areas at the center of Figure 9. In these scenarios, the maximum values of throughput
can be reached even if the total buffer content and the average station working time are
sub-optimal.
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5. Industry 4.0 Solutions

Table 4 offers a summary of the results of the statistical analysis and provides a set of
process variability management solutions that are empowered by the adoption of Industry
4.0 technologies. The first column of the table includes the main input parameters (SEQ,
PFCTV, FP, ALCTV) and refers, in particular, to their variations. The second and third
columns report the effects in terms of the impact level of the variability of a certain input
parameter on all three main output parameters (T, W, B). The negative impact level is
represented with the aid of a set of black dots: the more dots, the worse the negative impact
of the variability of the input on the output parameter. The fourth column indicates the
Industry 4.0 technologies that can be adopted to address the process variability issue. The
reported technologies were chosen from—and were consequently numbered according
to—the classification proposed in [33]: this is one of the most widely adopted Industry
4.0 classifications, coming from one of the most cited scientific articles on the topic, and
it provides a rather wide list of (up to 32) Industry 4.0 technologies. The fifth, and last,
column shows how the I4.0 technologies can be combined in order to provide an effective
solution to the process variability.

Table 4. Summary of the negative impact level of the variations of the input over the output
parameters and possible solutions enabled by the adoption of Industry 4.0 technologies.

Input Variations. Output Negative Impact Level Useful I4.0
Technologies Possible I4.0 Solutions

SEQ

T ••••

1. Sensors
7. Simulation of

processes
10.

Machine-to-Machine
communication

13. Traceability of raw
materials

14. Traceability of final
products

22. Remote monitoring
of production

23. Remote operation
of production

1-Introduce sensors
within assembly lines

to monitor the real
sequences of models
and parts at assembly

stations.
2-Compare in real time
model sequences with

planned sequences.
3-Compare in real time

parts sequences
withplanned sequences.

4-Send real-time
information to the parts
feeder at the warehouse

highlighting if
real-time models and
parts sequences in the

assembly line are
different from planned

ones.
5-Act accordingly

W ••••

B ••••

PFCTV

T ••• 1. Sensors
7. Simulation of

processes
10.

Machine-to-Machine
communication

13. Traceability of raw
materials

22. Remote monitoring
of production

23. Remote operation
of production

1-Introduce sensors on
tow trains to monitor
the real-time positions

across the routes.
2-Compare the

real-time positions with
the planned positions
according to the parts

feeding cycle time.
3- Send real-time

information to tow
trains operators4-Act

accordingly

W •••

B ••
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Table 4. Cont.

Input Variations. Output Negative Impact Level Useful I4.0
Technologies Possible I4.0 Solutions

FP

T ••

11. Industrial Robots
(including AGVs)

1-Minimize feeding
period by reducing the

tow train routes and
increasing the number

of tow trains using
Automated Guided

Vehicles.

W ••

B •••

ALCTV

T • 1. Sensors
7. Simulation of

processes
10.

Machine-to-Machine
communication

13. Traceability of raw
materials

22. Remote monitoring
of production

23. Remote operation
of production

1-Introduce sensors
within assembly lines

to monitor the
assembly stations takt

time.
2-Compare the

real-time takt time with
the planned takt time.

3- Send real-time
information to

assembly stations.
4-Act accordingly

W •

B •

For example, let’s focus on the first input parameter: the models sequence variation
SEQ. SEQ has the worst negative impact level on all three output parameters, as indicated
by ••••. An intuitive solution would be to freeze the sequence of models for long periods
of time. However, the current market is characterized by large variability in demand,
which forces productive systems to be as reactive as possible to changes, making the
freezing solution impractical. To address this variability, it would be ideal to monitor
in real time the actual progress of the products on the assembly line, taking immediate
action in the case of variations in order to minimize the time in which the system remains
out of its nominal conditions. Conveniently, Industry 4.0 technologies allow companies
to do exactly that. In the case of addressing the variability of the models sequence, the
technologies that were chosen from the classification of [33] were: (1) Sensors, (7) Simulation
of processes, (10) Machine-to-machine communication, (13) Traceability of raw materials,
(14) Traceability of final products, (22) Remote monitoring of production, and (23) Remote
operation of production. The combination of these seven technologies empowers the
following solutions:

1. Introduce sensors within assembly lines (such as RFID and RFID readers or barcode
and barcode readers or, in general, sensors that can guarantee the traceability of
materials along the assembly line) to monitor the real sequences of models and parts
at assembly stations.

2. Compare in real time the model sequences with the planned sequences.
3. Compare in real time the parts sequences with the planned sequences.
4. Send real-time information to the parts feeder at the warehouse highlighting if real-

time models and parts sequences in the assembly line are different from planned ones.
5. Act accordingly (for example, correct immediately any discrepancies between the

planned and real-time sequences, both at the warehouse and the assembly sta-
tion level)

By implementing this five-point solution plan, it is possible to restore the system to its
nominal state, reducing the negative impact on the output parameters T, W, and B.

Similar considerations are then provided in Table 4 for the other remaining input
variables PFCTV, FP, and ALCTV.
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6. Conclusions

This paper provides an in-depth analysis of the station-sequence parts feeding policy,
focusing on its dynamic time dependence and analyzing the effects of time and model mix
perturbations on the performance of a mixed-model assembly system. A simulation study
was conducted, generating a simulation model of an assembly line with five assembly
stations where three different models are assembled. The simulation model included five
main input parameters (assembly line average cycle time, assembly line cycle time variation,
average parts feeding period, parts feeding period variation, and models sequence varia-
tion) and three output parameters (average stations working time, relative total throughput,
and relative total buffer content). The input parameters were then combined into a wide set
of simulation scenarios. Once all the scenarios had been tested, a statistical analysis of the
results of the simulation was conducted, identifying the main influencing factors and their
effects on the performance of the system. Finally, the negative effects on the performance
of the system were addressed with a set of specifically designed, I4.0-enabled solutions.
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