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Abstract: With the continuous development of the networked society, the ability of cyber attackers
is becoming increasingly intelligent, posing a huge threat to complex cyber–physical networks
(CCPNs). Therefore, how to design a security strategy for CCPNs under attack has become an urgent
problem to be solved, which promotes our work. The problem of the distributed event-triggered
synchronization of CCPNs in the presence of denial-of-service (DoS) attacks is investigated in this
paper. Firstly, a distributed event-triggered controller is designed such that all nodes of networks
are synchronized without DoS attacks by relieving the communication occupancy rate of limited
bandwidths. Meanwhile, Zeno and singular triggering behaviors are excluded to illustrate the
effectiveness of the proposed event-triggered strategy. Secondly, in view of the continuous switching
of CCPNs topologies caused by DoS attacks, an event-triggered control (ETC) strategy is proposed to
ensure the synchronization of CCPNs under DoS attacks. Meanwhile, the frequency and duration of
tolerable DoS attacks that can ensure the stability of the systems are calculated. Finally, two examples
are given to illustrate the effectiveness of the proposed method.

Keywords: complex cyber–physical networks; distributed controller; ETC strategy; synchronization;
DoS attacks

1. Introduction

With the development of complex dynamical network theory and its application in
recent years, complex dynamical networks (CDNs) have become a hot research topic in
many fields [1]. CDNs are composed of many nodes and edges, which are used to represent
different individuals and connections between individuals. In particular, it is of great
importance to investigate the connection of edges and the communication of nodes. In re-
cent years, CDNs have been widely used to simulate many large-scale practical complex
projects [2–6]. Many topics on CDNs have been discussed, including synchronization,
propagation dynamics and fault diagnosis, control and network model [7–13], etc. On the
other hand, complex cyber–physical networks (CCPNs) as a special type of CDNs have
received extensive attention. CCPNs are multi-dimensional complex systems consisting
of computing network and physical environment, which realize the integrated design of
computing communication and physical systems. Therefore, it has a wide application
prospect, such as medical science, transportation networks, electric power grid and manu-
facturing [14–20]. Many interesting issues on CCPNs have been intensively investigated
in the literature. Specially, the synchronization problem of CCPNs has been discussed
in [21–25].

Due to high dependence on networks, CCPNs are faced with many cyber attack
threats. Typical cyber attacks main contain false data injection (FDI) attacks and denial-
of-service (DoS) attacks [15,21,26,27]. Attackers use cyber attacks to interfere with the
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information space of the system or destroy data, which can affect the physical space of
the system and even destroy the whole system. In particular, DoS attacks can block the
transmission links of networks such that the transmission information received by actuators
and sensors can be corrupted, thereby affecting the system performance. Many research
studies have been reported on the security of cyber–physical systems (CPSs) under DoS
attacks. For example, the event-triggered secure control for multi-agent systems with DoS
attacks was investigated in [28–33], in which a multi-robot model was proposed in [30],
keeping all six robots in a line and achieving the consensus of their position and velocity
under the designed event-triggered control (ETC) strategy. The distributed controller was
designed for CPSs with communication delays against attacks in [34–36]. Unfortunately,
the above existing results only discussed the convergence of the systems based on the
controller and did not investigate the strong coupling between individuals within the
systems. That is, the security synchronization control has not been fully investigated for
CCPNs, which have highly coupled nodes and intricate communication links, making it
difficult to solve. This motivates the present work.

In this paper, a distributed event-triggered control strategy is proposed for CCPNs
to update the state transmission under DoS attacks, which relieves the communication
occupancy rate of limited bandwidths and achieves synchronization of all the nodes.
The following are the contributions of this paper:

(1) A distributed controller is designed to achieve all nodes of CCPNs are synchronized
under DoS attacks, which uses two combinational measurements of isolated node and
follower nodes.

(2) An ETC strategy is proposed to save communication resources under DoS attacks.
Different from [25,28,30,36], triggering behavior and Zeno behavior are both excluded in
this paper, which avoids continuous triggering in each verification cycle and guarantees
that certain data are still transmitted after a successful transmission attempt.

(3) A resilient event-triggering mechanism is constructed to tolerate packet loss and
topologies change under DoS attacks. Attack duration and frequency can be calculated to
describe attack behavior based on piecewise Lyapunov functions.

Notation: L represents the Laplacian matrix of graph G = {ν, ε,A}. Γ(P) =
√

θ(PP),
and θ(P) represents the eigenvalue of matrix P.

2. Problem Formulation and Preliminaries

The CCPNs with N nodes are described as follows:

ẋi(t) = Axi(t) +
N

∑
j=1

gijΓxj(t) + Bui(t) (1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ <n is the state vector of node i, and ui ∈ <q is

the control input of node i. A ∈ <n×n, B ∈ <n×q are constant matrices. Γ and G = (gkl)N×N
are inner-coupling matrix and outer-coupling matrix, respectively. gkl = glk = 1, if node k

and node l (k 6= l) are connected; otherwise, gkl = glk = 0 (k 6= l). And
N
∑

l=1,l 6=k
gkl = −gkk.

Let xN+1(t) be the isolated node whose dynamics are given as follows: ẋN+1(t) =
AxN+1(t). Denote the tracking error as

δi(t) = xi(t)− xN+1(t) (2)

For node i, designing a distributed ETC protocol is as follows:

ui(t) = Kξ̂i

(
ti
k

)
, t ∈

[
ti
k, ti

k+1

)
(3)
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ξ̂i

(
ti
k

)
=

N

∑
j=1

aij

(
xj(ti

k)− xi

(
ti
k

))
+ bi

(
xN+1

(
ti
k

)
− xi

(
ti
k

))
(4)

where
{

ti
k
}

k∈N denotes the event-triggering time sequence for node i. If node i can obtain
information from the isolated node, then bi = 1; otherwise bi = 0.

Definition 1. All nodes of CCPNs (1) are said to be synchronized if the following condition
is satisfied:

lim
t→∞

[‖xi(t)− xN+1(t)‖] = 0 (5)

The proposed attack model in this paper is a time-constrained DoS attack, which
mainly attacks the nodes and communication links of the systems in the physical layer.
The attack behavior is described below. Js =

[
jijs , jijs + ∆ij

s

]
, s ∈ N defines the s-th DoS time

interval, where the DoS attack begins at jijs and ∆ij
s > 0 represents the attack duration of the

s-th attack. Then, one can obtain

Θa(t1, t2) = [t1, t2] ∩ ∪Θ(i,j)
a (t1, t2) (6)

and
Θs(t1, t2) = [t1, t2]\Θa(t1, t2) (7)

where Θ(i,j)
a (t1, t2) = [t1, t2] ∩

∞
∪

s=1
J(i,j)s is a set in which the DoS attacks are active. Θa(t1, t2)

and Θs(t1, t2) denote the sets that the DoS attacks are active and dormant, respectively.
Figure 1 is a demonstration of a CCPN with six nodes under DoS attacks, in which

node 6 is the isolated node. As shown in Figure 1, the malicious attacks are active at
t0, and the systems are repaired at t̃0. The system transmission channel can be restored
at time t1. That is, the communication graphs are discontinuous between t̃0 to t1. The
communication topologies of networks can be restored to the initial state at t2.

Figure 1. The evolution of DoS attacks.

Remark 1. DoS attacks destroy the nodes or communication edges of networks such that commu-
nication links fail or nodes do not work normally. Meanwhile, without loss of generality, suppose
that at least one communication link or one node in dynamic network systems is attacked at time
tij
2l for l = 0, 1, . . . , N. tij

2l+1 is the time instant when the attack has been completely restored and
the entirely topology network has been restored. It is worth noticing that the CCPNs are paralyzed
during t ∈

[
tij
2l , tij

2l+1

)
, and the CCPNs work well during t ∈

(
tij
2l+1, tij

2(l+1)

]
.

Define Λ∗ as the continuous impact of DoS attacks to ensure that the sampling and
transmission of nodes are successful. Then the time interval of s-th attack is re-denoted
as follows:

J̃(i,j)s =
[

jijs , jijs + ∆ij
s +Λ∗

]
, s ∈ N (8)



Appl. Sci. 2023, 13, 1716 4 of 19

Θ̃a(t1, t2) = [t1, t2] ∩ ∪ J̃(i,j)s (9)

and
Θ̃s(t1, t2) = [t1, t2]\Θ̃a(t1, t2) (10)

we propose the following equations to characterize the case that the topologies are still
connected under the DoS attacks

Θc(t1, t2) =
{

t ∈ (t1, t2)
∣∣∣θmin

(
H̄σ(t)

)
> 0

}
(11)

where σ(t) is a switching signal and topologies are supposed to be completely normal
when σ(t) = 0. Finally, the characteristics of DoS attacks are rewritten as

Θ̃a′(t1, t2) = Θ̃a(t1, t2)\Θc(t1, t2) (12)

and
Θ̃s′(t1, t2) = [t1, t2]\Θ̃a′(t1, t2) (13)

Definition 2 ([30] (Attack Frequency)). Define Fa(T1,T2)
as the frequency of DoS attacks, satisfying

Fa(T1,T2)
=

Na(T1,T2)

T2 − T1

where Na(T1,T2)
is the number of DoS attacks occurring over [T1, T2), and T2 > T1 > t0.

Definition 3 ([30] (Attack Duration)). Define Ta(T1,T2)
as the total time of DoS attacks over

[T1, T2), satisfying

T0 +
T2 − T1

τa
≥ Ta(T1,T2)

where T0 > 0, τa > 0, T2 > T1 > t0.

Remark 2. It is noted that the transmission channel between nodes may be clogged instead of being
removed under DoS attacks. On one hand, to exclude the communication topologies that are still
normal under DoS attacks, (11) and (12) are designed to ensure that communication topologies of
CCPNs are destroyed under DoS attacks. On the other hand, different from the DoS attack interval
defined in [30], the attack interval is designed as (8) in this paper, which includes diversified DoS
attack opponents that destroy communication links or nodes or both. In other words, the directed
spanning tree of communication networks becomes disconnected under DoS attacks.

In this paper, we design an event-triggered distributed controller to guarantee that
all nodes of CCPNs are synchronized. The synchronization error can be defined as ei(t) =
xi
(
ti
k
)
− xi(t). The virtual DoS period is divided into two parts:

[
tij
2l , tij

2l+1

)
∪
(

tij
2l+1, tij

2(t+1)

]
.

The topologies are paralyzed by attacks of adversaries during t ∈
[
tij
2l , tij

2l+1

)
and the com-

munication topologies are assumed to be complete and σ(t) = 0 during t ∈
(

tij
2l+1, tij

2(t+1)

]
.

Then, the control law for node i is designed as

ui(t) =

 Fξ̂i1(t), t ∈
[
tij
2l , tij

2l+1

)
Kξ̂i2(t), t ∈

[
tij
2l+1, tij

2(l+1)

) (14)

where

ξ̂i1

(
ti
k

)
=

N

∑
j=1

aσ(t)
ij

(
xj

(
ti
k

)
− xi

(
ti
k

))
+ bσ(t)

i

(
xN+1

(
ti
k

)
− xi

(
ti
k

))
(15)
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ξ̂i2

(
ti
k

)
=

N

∑
j=1

a0
ij

(
xj

(
ti
k

)
− xi

(
ti
k

))
+ b0

i

(
xN+1

(
ti
k

)
− xi

(
ti
k

))
(16)

and
{

ti
k
}

is the updated state transmission sequence for each node i based on the ETC
strategy. xi(ti

k) = x̂i(t) is the latest transmission state, and xN+1(ti
k) = xN+1(t).

{
ti
k
}

of
each node satisfies the following triggering condition:

F
(

ei(t), ξ̂i

(
ti
k

))
= 0 (17)

Remark 3. An event-triggered transmission strategy is proposed to save communication resources
in this paper. Equation (17) states that the state-triggering time of each node is independent and not
affected by other nodes. In addition, the event-triggering condition in [30] only satisfies a specified
inequality, and the selection of parameters has a significant impact on the stability of the systems.
On the contrary, the event-triggering condition (17) obtained on the basis of the system stability in
this paper can better ensure the performance of systems. For each node i, if ti

k satisfies the update
condition (17), the x̂i(t) will update at event-triggering instant ti

k.

Then, the error systems can be written as

t ∈
[
tij
2l , tij

2l+1

)
,

δ̇i(t) = Aδi(t)+BF

[
N
∑

j=1
aσ(t)

ij
(
xj
(
ti
k
)
− xi

(
ti
k
))

+ bσ(t)
i
(
xN+1

(
ti
k
)
− xi

(
ti
k
))] (18)

and
t ∈

[
tij
2l+1, tij

2(l+1)

)
,

δ̇i(t) = Aδi(t) + BK

[
N
∑

j=1
a0

ij
(

xj
(
ti
k
)
− xi

(
ti
k
))

+ b0
i
(
xN+1

(
ti
k
)
− xi

(
ti
k
))] (19)

Let ẋN+1
(
ti
k
)
= ẋN+1(t), and from the system (18) and (19), we have

δ̇(t)=


(

IN ⊗ A + G⊗ Γ−H̄σ(t) ⊗ BF
)

δ(t)−
(

H̄σ(t) ⊗ BF
)
e(t),t∈

[
tij
2l , tij

2l+1

)
(IN ⊗ A + G⊗ Γ−H ⊗ BK)δ(t)−(H ⊗ BK)e(t),t∈

(
tij
2l+1, tij

2(l+1)

] (20)

where δ(t) = col(δ1(t), δ2(t), . . . , δN(t)), e(t) = col(e1(t), e2(t), . . . , eN(t)), H = L+B, H̄σ(t)

= Lσ(t) + Bσ(t), B = diag(b1,b2, . . . , bN), Bσ(t) = diag
(

bσ(t)
1 , bσ(t)

2 , . . . , bσ(t)
N

)
.

The goal of this paper is to design an event-triggered distributed control law (3) such
that CCPNs (1) under DoS attacks are stable and the normal transmission of information
is guaranteed.

The following lemma is needed in the sequel.

Lemma 1 ([25]). For positive definite matrix M ∈ <n×n and symmetric matrix N ∈ <n×n,
the following inequalities hold

θmin

(
M−1N

)
xTTx ≤ xT Nx ≤ θmax

(
M−1N

)
xT Mx

θmin(N)xTx ≤ xT Nx ≤ θmax(N)xTx

3. Main Results

We propose an ETC data update strategy to guarantee that all nodes of CCPNs are
synchronized in this section. Then, we solve the topologies change caused by DoS attacks
by a distributed controller.
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Theorem 1. The all nodes of CCPNs (1) without DoS attacks can be synchronized based on the
event-triggered distributed controller (14) with K = BT P satisfying

AT P + PA− 2εminPΓ− 2εminPBBT P + εmin IN < 0 (21)

and the triggering function

F
(
ei, ξ̂i2

)
=‖ei‖ −

√
γi(q1 − q2ρ)

q2ρ−1 + q3

∥∥ξ̂i2
∥∥ (22)

Moreover, the event-triggering time is defined as

τi
k = inf

{
t > ti

k
∣∣F(ei, ξ̂i2

)
= 0

}
, k = 1, 2, . . . (23)

where ρ > 0, 0 < γi < 1 and q1 − q2ρ > 0, εmin = max{θ(G), θ(H)},
0 < ε1 < εmin, εmin = ε1 + ε2, q1 = min

{
ε1Γmin

(
H−2)},

q2 = max
{

Γmax
{

H−1 ⊗ 2ε1 IN − IN ⊗ 2PBBT P
}}

> 0,
q3 = max

{
Γmax

{
IN ⊗ 2PBBT P

}
− ε1

}
> 0.

Proof. The following Lyapunov function is constructed for systems (19)

Va(t) = δT(IN ⊗ P)δ (24)

From (16), one can obtain

ξ̂i2(t) =
N
∑

j=1
a0

ij
(
xj
(
ti
k
)
− xi

(
ti
k
))

+ b0
i
(
xN+1

(
ti
k
)
− xi

(
ti
k
))

= −(H ⊗ IN)
(

xi(ti
k)− xN+1(t)

) (25)

and
δi(t) = xi(ti

k)− ei(t)− xN+1(t) (26)

Combining (25) and (26), we have

δ = −
(

H−1 ⊗ IN

)
ξ̂2 − e (27)

The time derivatives of (24) yield

V̇a(t) = 2δT(IN ⊗ P)δ̇
= 2δT(IN ⊗ P)[(IN ⊗ A + G⊗ Γ− H ⊗ BK)δ− (H ⊗ BK)e]
= δT(AT P + PA + G⊗ 2PΓ−H ⊗ 2PBBT P

)
δ−δT(H ⊗ 2PBBT P

)
e

≤ −εminδTδ− δT(H ⊗ 2PBBT P
)
e

≤ −(ε1 + ε2)
{

ξ̂T
2
(

H−2 ⊗ IN
)
ξ̂2 + 2ξ̂T

2
(

H−1 ⊗ IN
)
e + eTe

}
− eT(IN ⊗ 2PBBT P

)
ξ̂2 + eT(IN ⊗ 2PBBT P

)
e

≤ −ε1ξ̂T
2
(

H−2 ⊗ IN
)
ξ̂2 + 2ε1ξ̂T

2
(

H−1 ⊗ IN
)
e− ε1eTe

− eT(IN ⊗ 2PBBT P
)
ξ̂2 + eT(IN ⊗ 2PBBT P

)
e− ε2δTδ

(28)

Combine with MT N ≤ ‖M‖‖N‖, MT N ≤ 1
2h‖M‖2 +

h
2
‖N‖2, then we have

−ε1ξ̂T
2
(

H−2 ⊗ IN
)
ξ̂2 ≤ −q1

∥∥ξ̂2
∥∥2

,−ε1eTe + eT(IN ⊗ 2PBBT P
)
e ≤ q3‖e‖2

2ε1ξ̂T
2
(

H−1 ⊗ IN
)
e− eT(IN ⊗ 2PBBT P

)
ξ̂2 ≤ 2q2‖e‖

∥∥ξ̂2
∥∥ (29)
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Inequality (28) can be rewritten as

V̇a(t) ≤ −q1
∥∥ξ̂2
∥∥2

+ 2q2‖e‖
∥∥ξ̂2
∥∥+ q3‖e‖2 − ε2δTδ

≤ −q1
∥∥ξ̂2
∥∥2

+ 2q2

(
1

2ρ
‖e‖2 +

ρ

2

∥∥ξ̂2
∥∥2
)
+ q3‖e‖2 − ε2δTδ

≤ −
N
∑

i=1

[
(q1 − q2ρ)

∥∥ξ̂i2
∥∥2 −

(
q2

ρ
+ q3

)
‖ei‖2

]
− ε2δTδ

(30)

We have V̇a(t) < 0, and we can obtain

q1 − q2ρ > 0, ‖ei‖2 <
γi(q1 − q2ρ)

q2ρ−1 + q3

∥∥ξ̂i2
∥∥2

(31)

Then, we have
V̇a(t) ≤ −αVa(t) (32)

where α =
ε2

θmin(P)
. By Lyapunov stability theory and Definition 1, one can obtain that all

nodes of CCPNs (1) are synchronized under the distributed controller (14) without DoS
attacks. The proof is completed.

The Zeno and singular triggering behaviors are the most common failure behaviors
in the ETC strategy, in which the Zeno behavior is defined as multiple transmissions in a
continuous time, and singular triggering behavior is defined as no further trigger after a
single trigger. The Zeno and singular triggering behaviors can cause the proposed event-
triggered strategy to be ineffective, so these two behaviors must be excluded to ensure the
efficient transmission of system information. Then, the following Lemmas show that Zeno
behavior is excluded and no node exhibits singular triggering behavior.

Lemma 2. For CCPNs (1) without DoS attacks, under the event-triggered controller (14), all nodes
will not have Zeno behavior if the inter-event time intervals satisfy

τ > max {b1, b2}−1 ln

{√
γi(q1 − q2ρ)

q2ρ−1 + q3
+ 1

}
(33)

where b1 = Γmax{IN ⊗ BK}, and
b2 = max{Γmax{IN ⊗ A + H ⊗ BK}+ Γmax{H ⊗ BK + G⊗ Γ + IN ⊗ A}}.

Proof. Let ei(t) = xi
(
ti
k
)
− xi(t), then we obtain

ėi(t) = Axi
(
ti
k
)
− Axi(t)−

N
∑

j=1
gijΓxi(t)− Bui(t) = A

(
xi
(
ti
k
)
− xi(t)

)
−

N
∑

j=1
gijΓxi(t)−BK

N
∑

j=1
a0

ij
(
xj
(
ti
k
)
−xi

(
ti
k
))
−BKb0

i
(
xN+1(t)−xi

(
ti
k
))

= A
(

xi
(
ti
k
)
− xi(t)

)
−

N
∑

j=1
gijΓxi(t)− BK

N
∑

j=1
a0

ij
(
xj(t)− xi(t)

)
− BK

N
∑

j=1
a0

ij
(
ej(t)− ei(t)

)
− BKb0

i (xN+1(t)− xi(t)) + BKb0
i ei(t)

(34)

The system (34) can be rewritten as

ė = [(IN ⊗ A)− (G⊗ Γ) + (H ⊗ BK)]e− (H ⊗ BK)δ (35)

We have

d
dt

(
‖ei‖∥∥ξ̂i2
∥∥
)
≤ ‖ėi‖∥∥ξ̂i2

∥∥ +
‖ei‖

∥∥∥ ˙̂ξ i2

∥∥∥∥∥ξ̂i2
∥∥2 (36)
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It follows from (36) that

‖ėi‖ ≤ ‖(IN ⊗ A) + (G⊗ Γ) + (H ⊗ BK)‖‖ei‖ − ‖(H ⊗ BK)‖‖δi‖ (37)

From (36) and (37), it yields

d
dt

(
‖ei‖∥∥ξ̂i2
∥∥
)

≤ ‖(IN ⊗ A) + (G⊗ Γ) + (H ⊗ BK)‖‖ei‖∥∥ξ̂i2
∥∥ − ‖(H ⊗ BK)‖‖δi‖∥∥ξ̂i2

∥∥ +
‖ei‖

∥∥∥ ˙̂ξ i2

∥∥∥∥∥ξ̂i2
∥∥2

≤ ‖(IN ⊗ A) + (H ⊗ BK)‖ ‖ei‖∥∥ξ̂i2
∥∥ + ‖(IN ⊗ BK)‖+ (G⊗ Γ)

‖ei‖∥∥ξ̂i2
∥∥

+ ‖(H ⊗ BK)‖ ‖ei‖∥∥ξ̂i2
∥∥ + (IN ⊗ A)

‖ei‖∥∥ξ̂i2
∥∥ (38)

Let y =
‖ei‖∥∥ξ̂i2
∥∥ , and then we have

ẏ ≤ max{b1, b2}(1 + y) (39)

It is concluded that y ≤ φ(t, φ0), where φ(t, φ0) is the solution of φ̇ = max{b1, b2} ∗
(1 + φ) satisfying φ(t, φ0) = φ0. From (39), we have

φ(t, φ0) = emax{b1,b2}t − 1 (40)

It yields from (22), that

y =
‖ei‖∥∥ξ̂i2
∥∥ ≤ φ(τ, 0) = emax{b1,b2}τ − 1 (41)

Combining (40) and (41), we can obtain

τ > max {b1, b2}−1 ln

{√
γi(q1 − q2ρ)

q2ρ−1 + q3
+ 1

}
(42)

which means that Zeno behavior does not occur.

Lemma 3. For CCPNs (1) without DoS attacks, under the event-triggered controller (14), no node
exhibits singular triggering behavior.

Proof. From (4) and (16), we have

ξ̂i2(t)− ξi2(t) =
N
∑

j=1
a0

ij
(
xj
(
ti
k
)
− xi

(
ti
k
))

+ b0
i
(
xN+1

(
ti
k
)
− xi

(
ti
k
))

−
{

N
∑

j=1
a0

ij

(
xj(t)− xi(t)

)
+ b0

i (xN+1(t)− xi(t))

}
=

N
∑

j=1
a0

ij

(
ej(t)− ei(t)

)
− b0

i ei(t)

(43)

Then, one can obtain
ξ̂2 − ξ2 = (−H ⊗ IN)e (44)
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Combining the event-triggering condition ‖ei‖ ≤

√
γi(q1 − q2ρ)

q2ρ−1 + q3

∥∥ξ̂i2
∥∥ and (44), it yields

∣∣∣∥∥∥ξ̂i2

(
ti
k

)∥∥∥− ‖ξi2(t)‖
∣∣∣ ≤ Γmax{−H ⊗ IN}

√
γi(q1 − q2ρ)

q2ρ−1 + q3
‖ei(t)‖ = σci‖ei(t)‖ (45)

where ci =

√
γi(q1 − q2ρ)

q2ρ−1 + q3
, σ = Γmax{−H ⊗ IN}, σci = c̃i, and

ν1 =

∥∥ξ̂i2
(
ti
k
)∥∥

1 + c̃i
≤ ‖ξi2(t)‖ ≤

∥∥ξ̂i2
(
ti
k
)∥∥

1− c̃i
= ν2 (46)

From (25), we have

ξi2(t) =
N
∑

j=1
a0

ij

(
xj(t)− xi(t)

)
+ b0

i (xN+1(t)− xi(t))

=
N
∑

j=1
a0

ij

(
δj(t)− δi(t)

)
− b0

i δi(t)

⇒ ξ2(t) = (−H ⊗ IN)δ⇒ ‖ξi2‖ ≤ σ‖δi‖ ≤

√
Va(t)

θmin(P)

(47)

It is obvious to show that ‖ξi2(t)‖ always stays between ν1 and ν2 from (46), and Va(t)
strictly decreases to zero from (17) and (32), that is, ‖ξi2(t)‖ will eventually decrease to ν1
based on (46) and (47). The proof is completed.

Remark 4. Lemmas 2 and 3 present the feasibility of the event-triggered strategy proposed in this
paper, which means that every node of the systems is effectively transmitted under this transmission
strategy. It is obvious to obtain that γi can affect the convergence rate from (30). Different
from [25,28,30,36], singular triggering behavior of is excluded in Lemma 3. It means that there
exists the instant ti

k+1 after the current triggering time ti
k so that at least one event will be triggered.

That is, Lemma 3 excludes the singular triggering behavior that there is no transmission attempt for
a long time to ensure that the proposed distributed ETC scheme is effective.

The communication topologies of CCPNs (1) are easily changed by DoS attacks.
However, there are few results focusing on switching topologies of CCPNs caused by DoS
attacks, which motivates us to discuss this issue.

Theorem 2. For systems (18) with the distributed controller (14) and (15) and the event-triggering
condition (22) and (23), if there exists a symmetric matrix Q and F = BTQ such that the following
inequalities are satisfied

−Ψσ(t)H̄σ(t) −
(

H̄σ(t)

)T
Ψσ(t) ≤ 0 (48)

0 < Ψσ(t) ≤ β1 IN (49)

and
2
(

QA + ATQ + β2QΓ
)
< β3Q (50)

where Ψσ(t) ∈ {Ψ1, Ψ2, . . . , Ψw}, β2 =
θmax(Ψσ(t)G)
θmin(Ψσ(t))

, β3 > 0, and Ψ1, Ψ2, . . . , Ψw are the positive

definite matrices, then the following inequality can be obtained:

Vb(t) ≤ eβ3

(
t−tij

2l

)
Vb

(
tij
2l

)
(51)
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Proof. Constructing the following Lyapunov function

Vb(t) = δT
(

Ψσ(t) ⊗Q
)

δ (52)

The time-derivative trajectory of (52) yields

V̇b(t) = 2δT
(

Ψσ(t)⊗Q
)[(

IN ⊗ A + G⊗ Γ−H̄σ(t) ⊗ BF
)

δ−
(

H̄σ(t) ⊗ BF
)

e
]

= 2δT
(

Ψσ(t)⊗Q
)
(IN ⊗ A + G⊗ Γ)δ−2δT

(
Ψσ(t) ⊗Q

)(
H̄σ(t) ⊗ BF

)
δ

− 2δT
(

Ψσ(t) ⊗Q
)(

H̄σ(t) ⊗ BF
)

e = 2δTΨσ(t) ⊗
(
QA + ATQ

)
δ

+ 2δT
(

Ψσ(t)G⊗QΓ
)

δ−δT
(

Ψσ(t)H̄σ(t)+
(

H̄σ(t)

)T
Ψσ(t)

)
⊗QBBTQδ

−δT
(

Ψσ(t)H̄σ(t) +
(

H̄σ(t)

)T
Ψσ(t)

)
⊗QBBTQe

(53)

By Lemma 1 and (53), we can obtain

V̇b(t) ≤ 2δTΨσ(t) ⊗
(
QA + ATQ

)
δ + 2δTΨσ(t) ⊗

(
θmax(Ψσ(t)G)
θmin(Ψσ(t))

)
QΓ

= 2δT
{

Ψσ(t) ⊗
[(

QA + ATQ
)
+

(
θmax(Ψσ(t)G)
θmin(Ψσ(t))

)
QΓ
]}

δ

= 2δT
{

Ψσ(t) ⊗
[(

QA + ATQ
)
+ β2QΓ

]}
δ

(54)

From the condition of (50) in Theorem 2, (54) is equivalent to

V̇b(t) ≤ β3Vb(t) (55)

Then, the following inequality holds:

Vb(t) ≤ eβ3

(
t−tij

2l

)
Vb

(
tij
2l

)
(56)

The proof is completed.

Theorem 3. If DoS attacks satisfy Definitions 1 and 2 with T0 > 0, and conditions (14), (17)
and (23) hold, then all nodes of CCPNs (1) are synchronized under DoS attacks provided that the
following two conditions are satisfied:

(1) ∃ θ∗1 ∈ (0, β3), and the frequency of DoS attacks Fa(t0,t)
satisfies

Fa(t0,t)
=

Na(t0,t)

t− t0
≤

θ∗1
2 ln(µ) + (α + β3)∆∗

(57)

(2) ∃ τa ≥ 0, for ∀ T0 > 0 such that

τa >
α + β3

α + θ∗1
(58)

where β3 > 0, µ = max{θmax(P)/θmin(Q), θmax(Q)/θmin(P)}.

Proof. Construct the following piecewise Lyapunov function for the CCPNs (1):

V =

 Vb, t ∈
[

jijm, jijm+∆ij
m + Λ∗

)
Va, t ∈

[
jijm+∆ij

m + Λ∗, jijm+1

) (59)
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Am =
[

jijm, jijm + ∆ij
m + Λ∗

)
represents the m-th attack is activated. For any t ∈ Am,

from (51), one can obtain

V(t) ≤ eβ3

(
t−jijm

)
Vb

(
jijm
)

(60)

Sm =
[

jijm + ∆ij
m + Λ∗, jijm+1

)
represents the m-th attack is dormant. For any t ∈ Sm,

from (32), it follows that

V(t) ≤ e−α
(

t−jijm−∆ij
m−Λ∗

)
Va

(
jijm + ∆ij

m + Λ∗
)

(61)

According to (60), one can obtain

V−b
(

jijm + ∆ij
m + Λ∗

)
≤ eβ3

(
∆ij

m+Λ∗
)

Vb

(
jijm
)

(62)

From (60)–(62), then we have

V(t) ≤ e−α
(

t−jijm−∆ij
m−Λ∗

)
eβ3

(
∆ij

m+Λ∗
)

Vb

(
jijm
)

≤ µe−α
∣∣∣Θ̃s′

(
jijm+∆ij

m+Λ∗ ,t
)∣∣∣eβ3

∣∣∣Θ̃a′
(

jijm ,t
)∣∣∣Vb

(
jijm
)

≤ µ2e−α
∣∣∣Θ̃s′

(
jijm ,t

)∣∣∣eβ3

∣∣∣Θ̃a′
(

jijm ,t
)∣∣∣V−a (jijm

)
≤ µ2e−α

∣∣∣Θ̃s′
(

jijm−1,t
)∣∣∣eβ3

∣∣∣Θ̃a′
(

jijm ,t
)∣∣∣V−a (jijm−1 + ∆ij

m−1 + Λ∗
)

. . .

≤ µ
2Na(t0,t) e−α|Θ̃s′ (t0,t)|eβ3|Θ̃a′ (t0,t)|V(t0)

(63)

For all t > t0,
∣∣Θ̃a′(t0, t)

∣∣ ≤ ∣∣Θ̃a(t0, t)
∣∣ ≤ [|Θa(t0, t)|+

(
1 + Na(t0,t)

)
Λ∗
]
, and

∣∣Θ̃s′(t0, t)
∣∣

= t− t0 −
∣∣Θ̃a′(t0, t)

∣∣. Therefore, we have

−α
(
t− t0 −

∣∣Θ̃a′(t0, t)
∣∣)+ β3

∣∣Θ̃a′(t0, t)
∣∣

= −α(t− t0) + (α + β3)
[
|Θa(t0, t)|+

(
1 + Na(t0,t)

)
Λ∗
] (64)

Combining (63) and (64), we have

V(t) ≤ µ
2Na(t0,t) e−α|Θ̃s′ (t0,t)|eβ3|Θ̃a′ (t0,t)|V(t0)

≤ e(α+β3)(T0+Λ∗)e−α(t−t0)e
(α+β3)

τa (t−t0)e
[2 ln µ+(α+β3)Λ∗ ]Na(t0,t)V(t0)

(65)

From (57), (58) and (60) can be rewritten as

V(t) ≤ e(α+β3)(T0+Λ∗)e−θ1(t−t0)V(t0) (66)

where θ1 = α − (α+β3)
τa
− θ∗1 > 0. This is equivalent to all nodes of CCPNs (1) being

synchronized in the presence of DoS attacks. The proof is completed.

Remark 5. The synchronization problem was investigated on an assumption that each node main-
tains communication connection with other nodes in [37]. On the contrary, these assumptions
can be removed in this paper, and the triggering time of each node is not affected by each other.
In addition, the frequency and duration of DoS attacks are accurately characterized in Theorem 3.

In this respect, the designed parameter µ needs to satisfy the fixed constraints to ensure that µ
Na(t0,t)

is converged.
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4. Numerical Examples

Example 1. Consider the CCPNs as shown in Figure 2, which have five nodes (node 5 is an isolated
node). The parameters are chosen as follows:

A =

 −5 4 7
−3 −7 −4
−2 −7 −9

, G =


1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1

, B =

 0.4
1.7
0.3

,

Γ = diag(0.1, 0.1, 0.1), εmin = 7.236, ε1 = 1, γi = 0.5, q1 = 6.8541, q2 = 5.2361, q3 =
2.7058, ε2 = 6.236, α = 19.9552.

When the complex cyber–physical networks are not attacked by DoS attacks, one can obtain
the H matrix by the communication topologies as shown in Figure 2.

H =


3 −1 0 −1
−1 1 0 0
0 −1 2 −1
0 0 −1 2

.

By Theorem 1, we obtain the controller gain K and Lyapunov variable P as follows:

K =
[
−2.4163 8.8224 −4.9069

]
,

P =

 1.0221 −0.5332 0.5421
−0.5332 0.9725 −0.7241
0.5421 −0.7241 1.1136

.

The initial states of nodes are x1 =
[
−2 0.5 0.5

]T , x2 =
[
2 −3 4

]T , x3 =
[
2 3 3

]T , x4 =[
−3.5 −0.5 1

]T .
As shown in Figure 3, the trajectories of error states between follower nodes and the isolated

node approach zero when the DoS attacks are dormant. Figures 4 and 5 show the trajectories of
synchronization errors based on the ETC strategy and transmission errors of nodes, which prove that
all nodes of the systems are synchronized with the distributed controller. The transmission attempts
of nodes based on the ETC strategy are shown in Figure 6. It means that each node’s triggering
rules are independent. It can be seen from Figures 3, 4 and 6 that the proposed ETC strategy
saves communication resources and reduces the unnecessary transmission of the systems while
ensuring the convergence effect. The above simulation results show that when the external attacks
are zero, the system realizes the synchronization of all nodes based on the distributed event-triggered
controller, which verifies the validity of Theorem 1 in this paper.

When the systems are attacked by the DoS attacks, it is supposed that two edges can be attacked
separately or simultaneously. Figure 7b–d show several network topologies generated by DoS attacks.
Figure 8 shows the DoS signal, where mode 0 denotes DoS dormancy and mode 1 denotes DoS
activation. Suppose that three topologies caused by DoS attacks are shown as in Figure 8. We have

H1 =


2 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 0 1

, H2 =


2 −1 0 0
−1 1 0 0
0 −1 2 −1
0 0 −1 2

,

H3 =


3 −1 0 −1
−1 1 0 0
0 0 1 −1
0 0 −1 2

.
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The parameters are chosen as β1 = 15, β2 = 0.3843, β3 = 1. By Theorem 2, we obtain the
controller gain F and Lyapunov variable Q as follows:

F =
[
−0.7125 6.5357 −5.1397

]
,

Q =

 0.7845 −0.6392 0.9091
−0.6392 2.8395 −2.7592
0.9091 −2.7592 3.4799

.

Then, we obtain θmax(P) = 2.2434, θmin(P) = 0.3125, θmax(Q) = 6.1641, θmin(Q) =
0.3172, µ = 19.7251. Let θ∗1 = 0.8448, then, one can obtain

Fa(t0,t)
=

Na(t0,t)

t− t0
≤

θ∗1
2 ln(µ) + (α + β3)Λ∗

= 0.316, τa >
α + β3

α + θ∗1
= 1.001.

This means that the DoS attacks cannot occur more than 0.316 s during a unit of time and
duration smaller than 1.001 s. Figure 9 shows the trajectories of error states between follower
nodes and the isolated node converge to zero under DoS attacks. Figures 10 and 11 show the
trajectories of synchronization errors based on the ETC strategy and transmission errors of nodes,
which prove that all nodes of the systems are synchronized with the distributed controller. It can
be seen from Figures 9 and 10 that the proposed ETC strategy saves communication resources and
reduces unnecessary transmission of the systems while ensuring the convergence effect. The above
simulation results show that as long as the dwell time and attack frequency of DoS attacks satisfy the
upper limit constraints calculated in this paper, the complex cyber–physical networks can achieve
the synchronization of all nodes with the designed ETC strategy, which also verifies the effectiveness
of Theorem 3 to calculate the tolerable attacks.

5

1 4

2 3
Figure 2. Fixed topology.

Figure 3. Tracking error trajectories of nodes without DoS attacks.
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Figure 4. Tracking error trajectories of nodes with event-triggered protocol without DoS attacks.

Figure 5. Error trajectories of nodes without DoS attacks.
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Figure 6. Transmission attempts of follower nodes.
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Figure 7. Switching topologies.
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Figure 9. Tracking error trajectories of nodes under DoS attacks.
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Figure 10. Tracking error trajectories of nodes with event-triggered protocol under DoS attacks.

Figure 11. Error trajectories of nodes under DoS attacks.

Example 2. In order to verify the superiority of the proposed method, we consider the security
control problem solved in [38]. The parameters borrowed from [38] are as follows:

A =

[
0 −1
2 1

]
, B =

[
1 0
0 2

]
, H =

 3 −1 −1
−1 3 −1
−1 −1 3

,

H1 =

 2 −1 0
−1 3 −1
0 −1 2

, H2 =

 1 0 0
0 2 −1
0 −1 2

.

The DoS attack behavior and topologies are the same as [38], as shown in Figures 12 and 13.
Other parameters are chosen as follows:

εmin = 5.231, ε1 = 1, γmin = 0.43, q1 = 4.783, q2 = 6.893,
q3 = 2.785, α = 7.981, β1 = 13, β2 = 0.2983, θ∗1 = 0.5897, β3 = 18.

By Theorems 1 and 3, one can obtain the controller gains K and F as follows:

K =

[
−1.6521 0.7893
0.0672 −2.0972

]
, F =

[
−1.7624 −0.9821
0.0762 −0.9879

]
.

and

Fa(t0,t)
=

Na(t0,t)

t− t0
≤

θ∗1
2 ln(µ) + (α + β3)Λ∗

= 0.1087, τa >
α + β3

α + θ∗1
= 4.1253.
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This means that the DoS attacks cannot occur more than 0.1087 s during a unit of time
and duration smaller than 4.1253 s. The initial values of the error systems borrowed from [38] is
e(0) =

[
0.25 0.09 0.09

]T .
Figure 14 shows the trajectories of synchronization errors based on the ETC strategy. It is

easy to see that all nodes of the systems are synchronized under the distributed controller after 110 s
compared with 600 s in [38], which verifies the superiority of the results. The above simulation
results show that as long as the dwell time and attack frequency of DoS attacks satisfy the upper
limit constraints calculated in this paper, the complex cyber–physical networks can achieve the
synchronization of all nodes by the designed ETC strategy.
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Figure 12. DoS attack signal.
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Figure 13. Topologies of systems.

Figure 14. Error trajectories of nodes under DoS attacks.

5. Conclusions

This paper addressed the distributed event-triggered synchronization problem of
CCPNs in the presence of DoS attacks. A distributed event-triggered controller using two
combined measurements was designed to achieve synchronization and save the limited
communication resources. In addition, the Zeno and singular triggering behaviors of the
proposed event triggering strategy were excluded to ensure the effectiveness of states
transmission. Since DoS attacks can generate many communication topologies, sufficient
conditions for synchronization under finite energy attack are obtained by using a piecewise
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Lyapunov function. We will focus on the problem of attack detection and resilient control
of CCPNs under mixed attacks in future work.
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